
Evolving discrete-valued anomaly detectors for a network
intrusion detection system using negative selection

Simon T. Powers

School of Computer Science
University of Birmingham

Birmingham, B15 2TT
UK

simonpowers@blueyonder.co.uk

Jun He

School of Computer Science
University of Birmingham

Birmingham, B15 2TT
UK

J.He@cs.bham.ac.uk

Abstract

Network intrusion detection is the prob-
lem of detecting unauthorised use of, or
access to, computer systems over a net-
work. One approach is anomaly de-
tection, where deviations from a model
of normal network activity are reported.
The negative selection algorithm, inspired
by the immune system, can be used to
generate anomaly detectors. Previous
work has applied a genetic algorithm to
real-valued detectors. However, we argue
that at least some discrete fields are re-
quired in detectors, e.g. the port number.
The system reported in this paper evolves
discrete-valued detectors, which we show
are able to outperform real-valued detec-
tors.

1 Introduction

Network intrusion detection is the problem of
detecting unauthorised use of, or access to, com-
puter systems over a network. Two broad ap-
proaches exist to solving this problem; anomaly
detection and misuse detection [13]. Misuse de-
tection systems store a database of attack signa-
tures, and then recognise attacks in the database
through pattern matching. This technique has a
low false alarm rate, but is incapable of detecting
anything not contained in the database and so
will miss novel attacks. An alternative approach
is anomaly detection, where deviations from a
model of normal network activity are monitored,
rather than the signatures of known attacks. A
system using anomaly detection is therefore able
to detect novel attacks, providing that the attack
is sufficiently different from normal activity as
defined by the intrusion detection system (IDS).
However, such a system is also prone to a higher
false alarm rate.

The field of natural computation takes inspi-
ration from natural systems and applies it to

computational problems. In recent years, the
field of artificial immune systems has begun to
flourish. An artificial immune system uses ideas
from the operation of the human immune sys-
tem. In the case of intrusion detection, the
immune system can be viewed as performing
anomaly detection as it distinguishes between
normal self and harmful non-self in the body. In
the body, self is the normal cells and non-self
is invading pathogens. In an IDS, self is normal
network activity and non-self is an attack. In the
body, one type of anomaly detector is a certain
type of lymphocyte known as a T-cell. T-cells
are capable of binding to non-self (antigens) but
not to self. This is ensured during a maturation
process, whereby any T-cells that bind to self
are destroyed.

The negative selection algorithm [6] copies
this approach, by randomly generating anomaly
detectors and then discarding any that match
self. However, while this approach has worked
successfully with a binary string representation,
it has been argued that such a low-level repre-
sentation is inappropriate for an IDS [7]. This
is because it is difficult to analyse the operation
of a binary string detector. A more intuitive
approach is to use a higher level representation
in the form of IF-THEN rules. González has
proposed such a system using a real-valued rep-
resentation [7] and a genetic algorithm (GA) for
detector generation. However, his system only
considered 3 statistics of network activity and so
is extremely limited as an IDS. Furthermore, it is
not possible to incorporate important features of
TCP connections such as the port number into
his detectors. This is because such features are
discrete, not real-valued.

In this work, we propose a discrete-valued
representation for detectors, along with a GA
for detector generation. Specifically, we build
an IDS that monitors important features of in-
dividual TCP connections. Our system is novel
in the sense that a GA incorporating negative
selection has not been used to construct discrete-



valued anomaly detectors before. We also con-
sider different statistics of network activity to
those in other works. Experimental results com-
paring the performance of our system to that of
González are presented in this paper, where we
show that for the same false positive rate, our
system is able to achieve a greater attack detec-
tion rate.

The remainder of this paper is organised as
follows. Section 2 provides a review of pre-
vious work applying negative selection to net-
work intrusion detection. Section 3 presents our
discrete-valued representation for detectors, and
describes the GA used to generate them. Section
4 presents empirical results analysing the attack
detection and false positive rate trade-off of our
system, along with a comparison of our system
to that of González. Finally, section 5 makes
some concluding remarks along with suggestions
for further improvement.

2 Negative selection approaches

to network intrusion detection

This section provides a review of existing works
that apply negative selection to the problem of
network intrusion detection.

2.1 Negative selection on binary strings

The research group of Stephanie Forrest [6] ap-
plied negative selection to binary strings. They
represent both detectors and antigens as strings
of the same length, and declare a measurement
to be anomalous if the corresponding antigen
binary string is matched by a detector binary
string. There are many ways in which this
matching can be defined, however, they chose
to use the simple r-contiguous bits rule. This
rule states that two strings match if they share
the same values in an uninterrupted stretch of
r bits. One detector can therefore match many
similar antigen strings.

Amongst other applications, e.g. [5], For-
rest’s group have applied this technique to the
problem of network intrusion detection. Their
LISYS system [8], [2] encodes the source IP
address, destination IP address and server-side
port of TCP connections in a 49-bit binary
string. They obtain a set of self strings by ob-
serving normal TCP connections over a period
of time, and then use negative selection to gen-
erate detector strings that aim to match anoma-
lous connections that may occur in the future.

Unfortunately, there are two problems with
such an approach. Firstly, the use of binary

strings and an r-contiguous bits matching rule
makes it difficult to extract high-level domain
knowledge from the detectors [7]. For example,
in an intrusion detection system, we would like
to be able to analyse the detectors that were
activated during an attack, in order to discover
the properties of the attack. However, analysing
the part of a binary string that matched part
of another such string is unlikely to yield much
useful domain knowledge. This is because both
the representation and the matching rule are too
low-level to facilitate such a process.

The second problem with LISYS is one of
applicability to a real-world scenario. It is cer-
tainly the case that simply looking at the IP
addresses and ports of a connection is insuffi-
cient to detect many types of attacks. However,
adding further information about the connection
to the detector and antigen strings would rapidly
increase their length, given that binary coding
is used. Furthermore, as the detectors come
to store more information, it becomes question-
able whether random detector generation would
be feasible. For example, Kim & Bentley [10]
showed random generation to be infeasible when
they attempted to use 33 features of a connec-
tion.

2.2 Real-valued detectors

To overcome these problems, González [7] has
proposed the use of real-valued anomaly detec-
tors for network intrusion detection. The most
significant improvement that his work offers over
those previously discussed is a distinction be-
tween a detector genotype and a detector phe-
notype. At the genotypic level, his detectors are
vectors of real numbers. At the phenotypic level,
they are interpreted as specifying intervals on
the space of real numbers. These intervals are
then read as conditions for an IF-THEN rule,
where the consequent is that an anomaly has
been detected. This means that an antigen vec-
tor is matched by a detector if the components
of the antigen vector lie within the correspond-
ing intervals specified by the detector. A GA is
used to generate detectors in this work, rather
than the random generation of Forrest.

In applying this work to network intrusion
detection, González used intervals on 3 aggre-
gate network traffic statistics. Specifically, he
used the total number of packets, the number
of ICMP packets, and the number of bytes of
data transmitted, over a period of 1 second. In
addition, he also used a sliding time window to
attempt to detect temporal anomalies, e.g. if



the window size was 3 then he would consider
the last 3 observations together as a sequence.

The key advantage of this approach is that it
is easy to interpret the detectors in terms of do-
main knowledge. This is because at the pheno-
typic level they can be interpreted as conditional
rules specifying intervals on the three network
traffic statistics. By contrast, with the binary
string representation used in LISYS there is no
corresponding phenotype, and the r-contiguous
bits matching rule does not have an intuitive in-
terpretation at the domain level.

However, we argue that there is still a prob-
lem of scalability up to a real-world IDS with his
approach. This is because his system only con-
siders aggregate network traffic statistics. While
such information is undoubtedly useful, it could
not be used in isolation in a real system. For
example, it is surely important to know the ser-
vice ports that are being accessed. However, it
is non-trivial to incorporate information about
specific connections with aggregate traffic statis-
tics into the same detector. This is because when
discrete fields such as the port number are in-
cluded in the detectors then the fitness of a de-
tector must be calculated in a different way.

In this paper we therefore present a sys-
tem that still uses the genotype-phenotype dis-
tinction and conditional rule interpretation, but
which deals with properties of individual TCP
connections. In so doing, our system is forced
to deal with discrete values. We have designed
a detector representation scheme and generation
algorithm that is able to cope with this.

3 An artificial immune system for

network intrusion detection

that evolves discrete-valued

detectors

This section describes the representation scheme
used for our detectors and the GA used to gen-
erate them.

3.1 Detector representation

Figure 1 lists the fields contained in a detector
phenotype. All of the fields reference properties
(network features) of an incoming TCP connec-
tion.

The choice of features for our detectors was
motivated by a desire to be able to detect port
scans and certain types of denial of service at-
tack (see [9] for an explanation of these). Our
system uses more features than both González’s

1. The port category.

2. Interval on the duration of the connection,
in milliseconds.

3. Interval on the total number of packets re-
ceived over the connection

4. Interval on the number of packets received
over the connection that have a data pay-
load.

5. The number of FIN packets received (0, 1
or more than 1).

6. The number of packets received with the
urgent flag set (0, 1 or more than 1).

7. Interval on the maximum time the connec-
tion was idle.

Figure 1: Specification of the detector pheno-
type.

system and LISYS, as the use of only 3 network
features in those systems seems excessively lim-
iting and does not give any idea of how the algo-
rithms will scale. However, a detector does not
have to use all of the features, it is free to leave
any of the fields undefined. By contrast, in the
system proposed by González, every field had to
be specified by every detector.

Regarding the port category field, there are
65535 possible ports, far too many to consider
each one individually for the purpose of detector
generation. Our system therefore groups ports
into functional categories, as shown in Table 1.
As a consequence of this categorisation, the port
number field of a detector can now only store a
value between 1 and 9, rather than between 1
and 65535. This greatly assists the search for de-
tectors, by reducing the size of the search space.

Category Description

1 Remote shell

2 FTP

3 HTTP

4 Mail

5 SQL

6 Several ports known to be unsafe

7 Network diagnostics

8 0 - 49151 (excluding those above)

9 49152 - 65535

Table 1: Port categories.

A genotype consists of two genes for each in-
terval field (specifying the lower and upper lim-
its of the interval) and one gene for each non-



interval field. At this level, it was deemed neces-
sary to cluster the values of the interval fields in
to one of 9 categories. The reason for this is that
fields such as the number of packets received can
take on values from a very large range, and it
was felt that this resulted in too large a search
space. There is also no need in this application
to represent the values with such a precision, e.g.
whether the number of packets received is 131 or
132 is unlikely to provide any useful indication
of whether an intrusion has occurred.

The decision to use 9 categories was some-
what arbitrary, but was chosen to match the
port categorisation. It also seems to produce ac-
ceptable results. The clustering was performed
for each gene by taking the values observed for
that gene in the training data and dividing them
into 9 bins, such that approximately the same
number of training examples were in each bin.
This is the standard equal frequency binning al-
gorithm.

3.2 Detector generation

This section describes how a set of detectors is
produced using a steady-state GA.

Detector generation is a multi-modal search
problem, since we require individual detectors to
cover different parts of the non-self space. This
work follows González in the use of the determin-
istic crowding algorithm [11] for this purpose.

Uniform crossover is used to produce a single
child from two parents. Each gene of the child
is then mutated with a small probability. This
mutation is performed by replacing the value of
the gene with a randomly chosen value from the
list of those allowed for that gene. Alternatively,
the value of the gene is randomly set to -1, which
means that the corresponding field is left unde-
fined at the phenotypic level. Under the deter-
ministic crowding scheme, the child replaces the
parent that it is most similar to if it is fitter than
that parent.

We define similarity at the phenotypic level
as follows. A similarity score is computed for
each corresponding field in the two detectors.
For non-interval fields, a score of 1 is given if the
fields store the same value, otherwise the score
is 0. For interval fields, the score is the degree
of overlap between the corresponding intervals,
normalised to lie between 0 and 1. The sum of
the scores from each field then yields the overall
similarity between the two detectors.

There are two objectives to optimise during
detector generation, shown in Figure 2. One
approach for dealing with multiple objectives

is to weight each objective, and then sum the
weighted objective values to yield the overall fit-
ness [4]. However, our two objectives yield val-
ues on different scales, making it inappropriate
to weight them directly [4]. We therefore use
the Sum of Weighted Ratios method proposed
by Bentley & Wakefield [4], shown in Figure 3.
The overall fitness of a detector is computed as
shown in Figure 4.

• obj1 = Maximise the generality of the de-
tector. Generality is defined as the sum of
the ranges specified by each interval field
plus the number of undefined non-interval
fields, normalised to lie between 0 and 1.

• obj2 = Minimise the number of self sam-
ples in the training data matched by the
detector.

Figure 2: The two objectives during detector
generation. These are discrete versions of those
used by González. However, our discrete repre-
sentation means that they must be computed in
a different way from in that work.

fr
j

i =
(objj

i − min(objj))

(max(objj) − min(objj))

Figure 3: The fitness ratio score of individual i

at objective j (i runs from 1 to the population
size, j from 1 to 2). obj

j

i is the raw fitness value
of individual i at objective j, as defined in Fig-
ure 2. min(objj) is the lowest raw fitness value
for objective j in the population, max(objj) is
the largest. This equation is taken from [4].

fitnessi = w1 ∗ fr1

i − w2 ∗ fr2

i

Figure 4: The overall fitness of individual i. w1

and w2 are the objective weights, and must sum
to 1. The negative sign is because the second
objective is a penalty (see Figure 2).

At the end of the final iteration of the steady-
state GA, it could still be the case that a de-
tector could match some of the self samples in
the training set. Through experimentation, we
have found that a sensible thing to do with such
detectors is to simply remove them from the de-
tector set.



4 Experimental results

This section presents results comparing the per-
formance of our IDS to that of González. The
same training and testing datasets are used as
in that work. Specifically, a subset of the 1999
DARPA intrusion detection evaluation dataset
from MIT Lincoln Labs [12] is used, correspond-
ing to connections from outside the LAN to the
machine with host-name Marx. Although this
dataset is now quite old, it is nevertheless still
widely used to evaluate intrusion detection sys-
tems. Week 1 of this dataset, consisting of en-
tirely normal network activity, is used for detec-
tor generation. The evolved detectors are then
tested on the connections in the second week,
which contains 5 attacks against Marx. 2 of
these are denial of service attacks, while the re-
maining 3 are port scans that probe the machine
for vulnerabilities.

When evaluating the system, two perfor-
mance metrics must be considered. The first
is the attack detection rate (ADR), which is the
percentage of the 5 attacks that were recognised
by the detectors. The second is the false positive
rate (FPR), which is the percentage of normal
network activity mistakenly flagged as anoma-
lous. Because our system monitors each indi-
vidual incoming TCP connection, the FPR is
computed as the number of normal connections
marked as anomalous divided by the total num-
ber of normal connections. When computing the
ADR, we consider an attack to be detected if
one or more connections comprising the attack
are marked as anomalous.

4.1 Experimental setup

In all of the experiments described below, the re-
sults reported are the mean from 100 trials. This
is necessary because our detector generation al-
gorithm is stochastic, i.e. two different runs of
the algorithm are unlikely to produce exactly the
same set of detectors. In all cases, the steady-
state GA was executed for 25000 iterations, as
preliminary experimentation had revealed that
even for larger population sizes there was noth-
ing to be gained by allowing it to run for longer.
The mutation rate was set so that on average
a single gene was mutated, while full crossover
was used. The population was initialised by gen-
erating initial detectors that specified a random
value for a gene with a probability of 0.5. The re-
maining genes were assigned a value of -1, mean-
ing that the corresponding phenotypic field is
left unspecified. Finally, results for population

sizes of 400, 800, 1200 and 1600 are presented
here because they provide a good illustration of
the different ADR and FPR values obtainable
by the system.

Our system has two parameters that can be
varied to control the trade-off between the ADR
and FPR. These are the population size and the
objective weights. Recall that the size of the de-
tector set is dependant on, but not completely
determined by, the population size. This is be-
cause of the final negative selection filter, which
removes any detectors that still match self at the
end of the GA. Intuitively, one would expect a
greater number of detectors to lead to a larger
FPR, as the more detectors there are, the more
likely it is that some of them will cover parts
of the self space. Similarly, setting the objec-
tive weights directly specifies the importance of
not covering the self space against having de-
tectors that cover a large total area of antigen
space. The weight setting therefore influences
the trade-off between the ADR (covering a large
total area of antigen space) and the FPR (cov-
ering a small area of the self space).

4.2 Receiver operator characteristics

analysis

When a system has parameters that control the
trade-off between the detection and false pos-
itive rates, a useful tool for evaluation is the
ROC (receiver operating characteristics) curve
[14]. In our case, this curve plots the FPR
against the ADR for various settings of a pa-
rameter. The ideal system has a curve which
passes through the point (0,1), corresponding to
an FPR of 0% and an ADR of 100%. Therefore,
a curve which passes closer to this point should
be prefered.

A series of ROC curves showing the perfor-
mance of our system on the test data is shown
in Figure 5. Each curve represents the perfor-
mance with a different population size. For a
particular population size, the points along the
curve were obtained by varying the weightings
of the two objectives. Specifically, the weight of
each objective was varied from 0.1 to 0.9 in in-
crements of 0.1, respecting the constraint that
the two weights must sum to 1.

From Figure 5, it can be seen that the curve
for a population of size 400 reaches further to
the left than any of the other curves. A point
in the ROC plot further to the left indicates a
lower FPR. Therefore, the plot shows that the
lowest FPR is obtained with a population of size
400, i.e. the smallest population size that was



Figure 5: ROC (receiver operating characteris-
tics) curves [14] for varying population sizes.

trialled. However, all of the other curves are able
to reach larger values on the y-axis, correspond-
ing to a larger ADR. Overall, the trend is that
increasing the population size moves the curve
upwards and to the right. This means that in-
creasing the population size increases the largest
obtainable ADR, but also increases the smallest
possible FPR.

This observed trend was expected intuitively,
as a greater number of detectors would be ex-
pected to cover a greater area of the total anti-
gen space, and hence a greater area of the self
space. Covering a greater area of the total anti-
gen space therefore increases both the ADR and
FPR.

4.3 Comparison of discrete and

real-valued detectors

In addition to analysing the ADR-FPR trade-
off our system, we have also compared the per-
formance of our discrete-valued detectors to the
real-valued detectors used by González [7]. In
order to do so, we adopt his approach of fix-
ing the FPR at a maximum of 1% and then
looking at the best ADR that can be achieved
within that constraint. Table 2 shows the results
achieved by our system, and Table 3 the results
achieved by González. The correspondance be-
tween Table 2 and Figure 5 is that the table gives
the y co-ordinates of the points on the ROC plot
that have an x co-ordinate of 0.01. The result
for a population of size 1600 is marked as N/A
in the table, because an FPR as low as 1% was
not obtainable with that population size.

The corresponding weight settings are also
given in the caption of Table 2. Note that speci-
fying a larger weight for the generality objective
means that fewer detectors fail to match any
self sample at the end of the GA. This makes
the final detector set smaller, reducing the FPR,

Population size Best ADR (FPR max 1%)
400 92.7%
800 94.0%
1200 96.0%
1600 N/A

Table 2: Best ADR with FPR fixed at 1% for our
discrete-valued detectors.. The result is labeled
as N/A for a population size of 1600 because it
was not possible to obtain an FPR that low with
such a large number of detectors. For a popu-
lation of size 400, the weight of the generality
objective, w1, was set to 0.3. For a population
size of 800 it was set to 0.6, and for size 1200
it was set to 0.8. These weight settings were
determined empirically.

Window size Best ADR (FPR max 1%)
1 82.1%
3 87.5%

Table 3: Best ADR with FPR fixed at 1% for
González’s [7] real-valued detectors. Note that
the time window, rather than population, size
was used as the variable parameter in that work.

which explains why a larger weight was needed
with larger population sizes.

Note that whereas in our work we vary the
population size as a parameter, in the work of
González the population size is fixed at 100 but
the time window size is varied. We suspect that
the reason that our system requires a larger pop-
ulation size is that we use more fields in our de-
tectors (7 rather than 3). However, our choice of
network features and representation means that
we do not need to use a time window to detect
the 5 attacks, whereas González was unable to
detect two of them without such a window.

From the tables it can clearly be seen that
our system is able to achieve a better ADR
when the FPR is fixed at a maximum of 1%. In
fact, this is the case when any of our evaluated
parameter settings is compared against any of
González’s. Fixing the FPR at 1% is an appro-
priate way to compare such systems, as a system
with a high FPR will effectively be useless due
to the fact that it will overload the network ad-
ministrator with alerts. Unfortunately, we were
not able to run any statistical significance tests
to compare our results to those of González, as
González does not provide the variance of his
results.



4.4 Examples of generated detectors

Earlier in this paper, we agreed with the claim
made by González [7] that higher-level detec-
tor representations are more appropriate than
binary. We supported his argument that this is
because it is hard to understand the operation
of binary detectors. This is particularly the case
when there is no distinction between the detec-
tor genotype and phenotype, as detector-antigen
matching is then often defined in terms of a
stretch of bits on one string being identical to a
stretch of bits somewhere on the other. By con-
trast, both the work of ourselves and González
features detectors with a phenotype that corre-
sponds to IF-THEN rules. In our case, the IF
part of a rule is conditions on properties of a
TCP connection, and the consequent is that an
anomaly has occurred.

To demonstrate the fact that such rules are
easy to understand, we present two examples of
evolved detectors. Figure 6 shows a detector ca-
pable of detecting the Back denial of service at-
tack. An explanation of this attack is provided
in [9], however, it essentially involves a request
to a server for a URL containing many slashes,
which takes a long time to process. Should this
attack occur, then the form of the attack is im-
mediately obvious from the phenotype of the ac-
tivated detector. In this case, from looking at
the detector phenotype it can be seen that the
attack involved a connection to a HTTP server,
and that between 2 and 10 data packets were
received. Such information would go a long way
towards creating a profile of the attack.

Genotype:

3 -1 -1 -1 -1 3 -1 -1 -1 -1 -1

Phenotype:

Port Category = HTTP AND

Number of data packets = [3,*]

Figure 6: An evolved detector that detects the
Back denial of service attack. The value of 3 in
the first gene means the condition port cate-

gory = 3 in the phenotype. The value of 3 in
the sixth gene is the lower bound on the num-
ber of data packets received. Note that because
of our clustering procedure, this does not cor-
respond to the integer 3 but to the third clus-
ter from the equal-frequency binning algorithm.
With this dataset, cluster 3 corresponds to a
number of data packets between 2 and 10 (in-
clusive). Finally, the value of -1 in the other
genes means that the corresponding fields are
left unspecified in the detector phenotype.

Figure 7 shows a detector capable of detect-
ing a port scan. Note that this detector only
specifies one field, the port category. The detec-
tor specifies that any connection to a port used
for network diagnostics is anomalous. This is
perfectly feasible, as it is rare to connect to such
ports, and so if a connection to one is made then
it may well be a port scan. It also illustrates
how our system detects attacks by performing
anomaly detection. In this case, a port scan
is detected by observing a connection to a port
that is not normally accessed. Finally, both of
the detectors shown here do not specify many
conditions. This is a consequence of the gen-
erality objective in the fitness function, which
aims to evolve detectors that can match many
connections.

Genotype:

7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Phenotype:

Port Category = network diagnostics

Figure 7: An evolved detector that detects a
port scan. The value of 7 in the first gene means
the condition port category = 7 in the pheno-
type. The value of -1 in the other genes means
that the corresponding fields are left unspecified
in the detector phenotype.

5 Conclusion

This paper has presented an anomaly based IDS
inspired by the human immune system. Our
work differs from previous artificial immune sys-
tems in that we use a GA to evolve discrete-
valued detectors, rather than the real-valued de-
tectors of González. This has enabled our rep-
resentation to incorporate such pertinent infor-
mation as the port numbers of connections and
whether or not the connection was closed cor-
rectly. By contrast, such information could not
be incorporated in a purely real-valued repre-
sentation. Although some other works, e.g. [8]
and [1], have used discrete fields in their detec-
tors, they have used random generation, rather
than a GA. Our work has shown how to formu-
late the competing objectives of maximising the
area of the antigen space covered while minimis-
ing overlap with the self space, in the discrete
case.

Through the use of discrete statistics on spe-
cific TCP connections, we have shown that our
system is able to outperform that of González in
terms of a higher attack detection rate for the



same false positive rate. In addition, our sys-
tem did not require the computational expense
of a time window to detect the 5 test attacks,
whereas González’s system is unable to detect
two of the attacks without such a window. How-
ever, in the general case it is likely to be bene-
ficial to use both real-valued and discrete detec-
tors.

In the future, we intend to look at two broad
ways in which our system could be improved.
Both of these are aimed at allowing the sys-
tem to scale to handle larger amounts of net-
work traffic. Large amounts of traffic will require
more detectors, as the antigen space is more
complicated, i.e. it is harder to distinguish self
from non-self. However, our experimental anal-
ysis has revealed that increasing the number of
detectors increases the false positive rate.

The first way that we propose to deal with
this problem is to use some sort of data fusion
technique [3] to combine the outputs of differ-
ent detectors. For example, detectors close to
each other in the antigen space could form a vot-
ing ensemble. Our second idea is to reduce the
number of self training samples through the use
of a clustering technique, thereby reducing the
amount of data that the detector generation al-
gorithm has to work with.

Acknowledgements

This work was supported by the School of Com-
puter Science at the University of Birmingham.

References

[1] K. P. Anchor, P. D. Williams, G. H. Gun-
sch, and G. B. Lamont. The Computer De-
fense Immune System: current and future
research in intrusion detection. In Proceed-
ings of the 2002 Congress on Evolutionary
Computation (CEC’02), volume 2, pages
1027–1032. IEEE Press, 2002.

[2] J. Balthrop, S. Forrest, and M. Glick-
man. Revisiting LISYS: Parameters and
normal behavior. In Proceedings of the
2002 Congress on Evolutionary Computa-
tion (CEC’02), volume 2, pages 1045–1050.
IEEE Press, 2002.

[3] T. Bass. Intrusion detection systems and
multisensor data fusion. Communications
of the ACM, 43(4):99–105, 2000.

[4] P. J. Bentley and J. P. Wakefield. Finding
acceptable solutions in the Pareto-optimal

range using multiobjective genetic algo-
rithms. In P. K. Chawdhry, R. Roy, and
R. K. Pant, editors, Soft Computing in En-
gineering Design and Manufacturing, pages
231–240. Springer, 1997.

[5] S. Forrest, S. A. Hofmeyr, A. Somayaji, and
T. A. Longstaff. A sense of self for Unix
processes. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pages
120–128. IEEE Press, 1996.

[6] S. Forrest, A. Perelson, L. Allen, and
R. Cherukuri. Self-nonself discrimination
in a computer. In Proceedings of the 1994
IEEE Symposium on Research in Security
and Privacy, pages 202–212. IEEE Press,
1994.

[7] F. González. A Study of Artificial Im-
mune Systems Applied to Anomaly Detec-
tion. PhD thesis, The University of Mem-
phis, May 2003.

[8] S. A. Hofmeyr and S. Forrest. Immunity
by design: an Artificial Immune System. In
Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO’99),
volume 2, pages 1289–1296. Morgan Kauf-
mann, 1999.

[9] K. Kendall. A database of computer attacks
for the evaluation of intrusion detection sys-
tems. Master’s thesis, Massachusetts Insti-
tute of Technology, 1998.

[10] J. Kim and P. J. Bentley. Evaluating neg-
ative selection in an Artificial Immune Sys-
tem for network intrusion detection. In Pro-
ceedings of the 2001 Genetic and Evolution-
ary Computation Conference (GECCO’01),
pages 1330–1337. Morgan Kaufmann, 2001.

[11] S. W. Mahfoud. Crowding and preselection
revisited. In Proceedings of the Second Con-
ference on Parallel Problem Solving from
Nature, pages 27–36. North-Holland, 1992.

[12] MIT Lincoln Labs. 1999 DARPA intrusion
detection evaluation. Available online at:
http://www.ll.mit.edu/IST/ideval/.

[13] B. Mukherjee, L. T. Heberlein, and K. N.
Levitt. Network intrusion detection. IEEE
Network, 8(3):26–41, 1994.

[14] J. A. Swets. Measuring the accuracy of di-
agnostic systems. Science, 240:1285–1293,
1988.


