On an Algebraic Approach to Cubic Lattice Potts Models


Dasmahapatra, Srinandan and Martin, Paul (1996) On an Algebraic Approach to Cubic Lattice Potts Models. Journal of Physics A, 29, 263.

Download

Full text not available from this repository.

Description/Abstract

We consider Diagram algebras, $\Dg(G)$ (generalized Temperley-Lieb algebras) defined for a large class of graphs $G$, including those of relevance for cubic lattice Potts models, and study their structure for generic $Q$. We find that these algebras are too large to play the precisely analogous role in three dimensions to that played by the Temperley-Lieb algebras for generic $Q$ in the planar case. We outline measures to extract the quotient algebra that would illuminate the physics of three dimensional Potts models.

Item Type: Article
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Comms, Signal Processing & Control
ePrint ID: 264095
Date Deposited: 29 May 2007
Last Modified: 27 Mar 2014 20:08
Further Information:Google Scholar
ISI Citation Count:4
URI: http://eprints.soton.ac.uk/id/eprint/264095

Actions (login required)

View Item View Item