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Abstract

In dynamic and uncertain e-commerce settings, the value
of contracts can change after they have been entered into.
Sometimes this can make the contract in question counter-
productive to the affected parties. Given this, leveled com-
mitment contracts, in which one agent pays the other a fee
to be released from their decommitment, are widely used.
However; these fees are often seen only as a deterrent of de-
commitment and the fact that the decommitment also affects
the other party and the society in general is usually ignored.
This paper investigates an alternative view, coming from law,
that sees the decommitment fees as a means of compensat-
ing the victim for their loss. Moreover, we show that these
compensatory policies can outperform their traditional non-
compensatory counterparts in terms of total utility (the sum
of all agent’s utilities) in situations in which the utility of one
of the parties decreases after the contract has been entered
into, but before it is due to be performed.

1 Introduction

In fast-moving electronic markets, hundreds of contracts can
be formed in a matter of seconds. However, in dynamic,
ever-changing environments, sometimes the parties of these
contracts may live to regret their choices. A better alternative
may surface only seconds after agreeing to something or the
circumstances may change and turn a contract from lucrative
into disastrous. On the other hand, contracts (or commit-
ments about performing a service at a later time) have been
seen as an essential requirement for any type of predictable
behaviour in such systems [5]. Against this background, an
often used compromise is Sandholm and Lesser’s [7] leveled
commitment contract, which:
e allows unilateral decommitting for both parties at any
time, but
e requires the decommitting party to pay the opponent a
monetary fee (called a decommitting fee) for doing so.
This allows a party to abandon a contract that has become
counter-productive to it; that is, its utility has become nega-

tive. Now, because the party must pay the penalty in order
to decommit, a decommitment occurs only if the decommit-
ment improves the decommitter’s utility more than the fee to
be paid reduces it. In the literature, the decommitment fee is
therefore mostly seen as a deterrent of decommitment. This
view, however, overlooks the effect a decommitment has on
the other party (the victim) and on the society in general.
In particular, the decommitment will usually decrease the
utility of the victim, because he will lose the profit he was
expecting and it is also possible that he has accrued some
costs (preparing for its performance) before decommitment
occurs. When the contract is abandoned, these costs may
have been wasted. Now, if these lost profits and accrued
costs outweigh the benefit the decommitter receives from de-
commitment, the decommitment actually decreases the sum
of utilities of parties and is therefore detrimental to the wel-
fare of the society as a whole.

In contrast, the law has traditionally taken another view,
that of the victim’s. In cases of non-performance, the vic-
tim (in most legal systems) is entitled to damages (there may
be other remedies in some situations and in some legal sys-
tems, but we concentrate on damages here) and the aim of
damages is usually to put the victim financially in the same
position as if the contract had been performed appropriately
[8]. That is, the damages compensate the victim for the loss
that the non-performance causes. The economic efficiency
of this rule has been investigated in the law and economics
literature in the area of efficient breach theory [2]. The con-
clusion of this work is that this is the optimal policy from
the society’s point of view. In particular, by setting the dam-
ages (decommitment fee) equal to the damage caused by the
decommitment to the other party, a breach (decommitment)
occurs when and only when the benefit to the decommitter
is greater than the damage to the victim. Therefore decom-
mitment always increases the total welfare of the society.

In this paper, we will call compensatory any decommit-
ment policy (a rule for setting the decommitment fees) that
always tries to compensate for the loss that the decommit-



ment causes to the opponent. Any policy that does not have
this goal, is called non-compensatory." Most of the poli-
cies used in the literature so far are non-compensatory, al-
though many papers (e.g. [1] and [6]) have suggested using
fees that increase over time. Although the reason for this is
usually not explicitly stated, this type of fee can be seen as
being both more compensatory and more fair than the con-
stant fee. Also some partially compensatory policies have
been suggested (e.g. [3]), but no consistent theory for do-
ing so has been presented. We will address these shortcom-
ings by using ideas from contract law to create novel com-
pensatory decommitment policies and show how they (under
certain circumstances) can be used to improve total utility in
e-commerce settings.

However, the compensatory approach has its problems. For
example, Andersson and Sandholm [1] have argued that if
the victim’s actual loss is not known, he has an incentive to
overstate it in order to keep the contract or to make additional
profit. In law, this problem is avoided by making the victim
show the actual amount of loss in a court of law after the final
outcome and losses are known exactly. This incurs consider-
able costs to the parties and is often slow. In global electronic
markets of relatively low-value services, both characteristics
are undesirable. We therefore suggest using the opponent’s
expected or average losses as a decommitment fee. These
expected losses are estimated and given to all parties by the
neutral marketplace. In many markets, this type of informa-
tion is available or can be obtained at reasonable costs.?> In
addition, we will show that even relatively inaccurate esti-
mates can improve the total utility over non-compensatory
alternatives.

We will also show that the better the estimates are, the more
they will lead to better total utilities. Since in the long run,
the marketplaces that generate most welfare to their partic-
ipants are likely to be the most popular, the neutral market-
place has an incentive to improve its estimates. Compen-
sating for these losses also has a fairness aspect that many
humans find appealing. In dynamic environments, all par-
ties are occationally decommitters and sometimes victims,
so the markets that treat both cases fairly may find greater
acceptance among the (potential) users.

The rest of the paper is structured as follows. Section 2
introduces our model of electronic markets, in which the
parties make contracts. Section 3 discusses the various de-
commitment policies. Section 4 details our experiments and
findings. Finally, section 5 concludes.

IThe distinction is not always clear-cut, because some non-
compensatory policies can be compensatory in some circumstances. The
important requirement for the compensatory policies is that they always try
to compensate for the victim’s loss.

2For example, in many industries the product, its preparation process
and costs are well-known (e.g. printing a book). Also if all providers use
similar technologies or sub-providers (e.g. teleoperators renting capacity
from the same network company), it may be possible to estimate the costs.

2 The Marketplace Model

We consider a market of buyers and sellers for one service.
We refer with subscript b to a single buyer (consumer) and
with subscript s to a single seller (provider) in this market.
We are especially interested in their utility, U, and U; re-
spectively. The time ¢ is discrete and divided into turns.

We assume that all participants expect the delivery of the
service to occur at the same time tgesvery (there are separate
markets for different delivery times and other services). In
the beginning (tg = 0) there are ng buyers and n sellers in
the market. This is to ensure that negotiations can start from
the beginning. Over time, some buyers and sellers enter and
some may exit. The numbers of entries for the parties are
independent variables, but follow the same standard Poisson
distribution, with the parameter A(t) = zw, where
1 is the basic entry intensity and ¢ is the current turn. This
formulation means that entries are more probable earlier in
the experiment. This is because we assume that the provision
of the service takes time, ¢, and this time is different from
one provider to another (selected at random). The nearer the
time of performance, the fewer providers are likely to be able
provide the service in time. In the experiments we discuss in
this paper, we have tgejivery = 1000, ng = 50 and 7, = 0.4,
which gives us an expected population size of 250 during an
individual experimental run.

On the other hand, we assume that the provision costs
money. Specifically, in order to provide the product at the
delivery time, the provider s has to invest cost c, at time
te,s(< tdetivery). Each provider has a quality ¢, which is
selected at random from Uni form(0, 1). The cost is a func-
tion of quality and time:

B 0, ift < tc,sv
Cs(qS)t) - { 0.5qs, ift > tc,s-

Here, we have six different settings for ¢, :
o any: Uniform(tes + 1,999),
e second half: Uni form(max(500,te s + 1),999),
o last quarter: Uni form(max(750,te s + 1),999),
o last 100: Uni form(max(900, te s + 1),999),
o turns 925-975: Uni form(max (925, te s + 1),975) ,
o turn 950: 950,

where {. , is the time of entry for provider 5.3 The time tess
is selected at random for each provider from the same in-
terval. These provider characteristics are mapped into typi-
cal bilateral negotiation parameters by setting the reservation
price rs equal to the provider’s preparation cost ¢, and the
deadline to t. ;. This means that the provider will never ac-
cept a price that is less than its costs and that if the provider
does not have a contract when it should start preparing for

3In the last two cases, there are no entries after turn 974 and 949 respec-
tively.



service, it will exit the market. The provider’s utility for a
contractis: Us(p, cs) = p— cs, where p is the contract price.

The consumers do not have costs, but each consumer
b has a deadline t,;, which is selected at random from
Uniform(tes + 1, tdetivery), Where t is the time con-
sumer b entered the market. The consumer’s utility for the
contract is Uy(q,p) = V4(q) — p, where the value function
Vi(q) is:

0 lfq < qénin
Vi(q) = 9 v(9), if g < g < g™,

U(qénax)7 lfq > qéllax,

min

where v(q) is the consumers’ common value function, g;
and ¢;** are consumer specific parameters of that function.
Here we assume simply that v(¢) = ¢. This means that each
consumer has a minimum useful quality ¢;*™ and any ser-
vice that does not offer at least this, is worthless (V3 = 0).
On the other hand, the consumer also has a maximum use-
ful quality, ¢;**, which gives him his full utility. Any im-
provement above this level does not increase the value of the
service to the consumer in question. The parameters g™
and g;"** are selected for each consumer independently at
random from Uni form(0,0.5) and Uni form(0.5,1.0) re-
spectively. The consumer’s reservation price for a given ser-
vice is then equal to its value.

The buyers and sellers in the market are paired at random
by the marketplace. This means that each provider will be
given one consumer to negotiate with (and vice versa). The
pairs then negotiate for a 100 turns on the price of the ser-
vice. Both parties use simple exponential time-dependent
heuristic tactics [4], in which the parameter (5 is selected at
random. Once all negotiations finish, the parties remaining
in the market are again matched at random. This process
(from the random matching to the end of negotiations) is re-
peated 10 times.

The entries and exits can occur at any time, but the parties
are only matched at turns that can be divided by 100 without
aremainder (i.e. 0, 100, 200, ...). If there is an unequal num-
ber of buyers and sellers in the market, some members of the
larger population will not get an opponent and will have to
wait until the next matching. The contracts are performed
when the negotiations end, tgezivery = 1000.

We assume that the parties will always decommit as soon
as the need arises and therefore do not engage in any type of
strategic behavior about this facet of their operation. In par-
ticular, we focus on situations in which the parties always
exit the market after they have found a contract and that they
cannot return. Since the original contract is always beneficial
to both parties (Us > 0 and U, > 0) they would not consider
abandoning it without some external force. We therefore in-
troduce an adverse impact that decreases the value of the
contract to one of the parties after the agreement has been
reached, but before the contract is due to be performed. This
decrease may make the contract counter-productive to the
affected party and he may want to decommit.

For the provider, the decrease means that the costs of pro-
viding the service increase by amount L and this will de-
crease its utility by the same amount. He will then need to
make a decision on whether or not to decommit from the
contract in this new situation. The decision is influenced by
the decommitment fee f. We assume that the provider s will
decommit at turn ¢ if and only if:

Us(contract| Ls =1) < Us(tdecommit = t)
p—cs—1 < —f—=0C(gs,t).

where Uy (tgecommit = t) is the seller’s utility, when he de-
commits at turn ¢ and [ is the amount the utility decreases.
Here we use the following ten values I € {0.1,0.2,...,1.0}.
So, the seller decommits if the decreased utility is lower than
the cost it has already paid and the decommitment fee it has
to pay to get out of the contract. The loss occurs at some
point ¢; between the time the contract was formed t.on¢ract
and the time it was due to be performed (gei;very)-

As a performance measure, we use the sum of expected
utilities of all contracts in the market. We chose the expected
utilities because they give us more information than just se-
lecting the adverse impact point at random and the sum of
these because it is the simplest way to measure common
good. In addition, the sum of utilities is also the measure
used in law and economics literature. The expected total
utility for a single contract (to which b and s are parties) is:

EUps(contract| Ly = 1)
tditc idzetl;z:;ia” [Ds (l; t, P)UbJrs (tdecommit - t))+

(1 — Ds(i,t, P))Upys(contract| L, = 7)],

where Up s (tdecommit = t) is the total utility of the parties,
when the seller decommits at time ¢, Uy s (contract|Ls = 1)
is the total utility if the seller stays in contract despite the
losing ! from his utility and P is the decommitment policy
used in the market and

1, if the seller decommits when his
utility decreases by [ at turn ¢ given
the decommitment policy P

0, otherwise

Ds(l,t,P) =

The total utility for the case in which the contract is aban-
doned (Ds = 1) at turn ¢ is:

Ub+s(tdecommit = t)
- Ub(tdecommit - t) + Us (tdecommit - t)
=f+(—f—-Clgs1) = —C(gs, 1)

The seller avoids the utility decrease of the contract, because
there is no contract any more, but it will have to pay the fee
f. If the seller decides to perform the contract despite the
utility decrease (D, = 0), the total utility is:

Up+s(contract| Ly = 1)
= Up(contract) 4+ U (contract| Ly =)
= (V;)(q‘;) _p) + (p — Cs — l) = V;)(q.s) —cs — L.



The total expected utility, EU,,qrket, fOr each setting is
then the sum of expected values of all contracts. The same
logic applies to the buyer, but there are two important dif-
ferences. For the buyer, the impact ¢ decreases the value of
the contract. However, because the buyer can, in many types
of service, just ignore the service delivered, the value cannot
be enormously negative. We therefore assume that the im-
pacted value cannot be lower than —0.05. This small value
would then come from accepting the service and disposing
of the results. This means that the utility of the buyer can
never go below —0.05 — p. We do not make a similar as-
sumption with the seller, because the cost of producing the
service can (in theory) increase without any limit (hardware
failures, resource shortages, strikes, etc. can make the ser-
vice very expensive to perform). The second difference is
that for the buyer, always C;, = 0 (for the seller Cs > 0).

3 The Decommitment Policies

This section describes the decommitment policies we will
examine in this paper. We first discuss the various non-
compensatory policies (section 3.1), before going on to the
compensatory ones (section 3.2).

3.1 Non-Compensatory Policies

Since there are an infinite number of ways to devise a non-
compensatory decommitment policy, we do not try to make
an exhaustive comparison. Instead, we examine some typi-
cal policies. To be more precise, we consider the following:

e Not Allowed: The contracts are absolutely binding and
decommitment is not possible.

e Constant: The decommitment penalty f is con-
stant; here we investigate cases where f €
{0.00,0.25, ...,1.00}.

e Increasing: The decommitment starts with min at
tmin and increases linearly to max at time t,,4,.
We investigate cases where min = {0.00,0.25,0.50}
and maz = {0.25,0.50, ..., 1.00, 1.50, 2.00,2.50} and
min < max. There are three variations (all with
tmaz = tdelivery):

— Contract Time Only: tin = to and t = teontract-

— Decommitment Time Only: t,;, = to, andt =
tdecommit-

— Both: tmin = teontract and t = tiecommit-

e Constant Price [1]: The decommitment fee is a fraction
of the price (p). Here we investigate cases where f =

{0.5p, 1.0p, ..., 2.5p}.

e [ncreasing Price: This has the same variations as the in-
creasing policy (contract time only and decommitment
time only variations were used in [1]), but the minimum
and maximum are fractions of the contract price. We
investigate cases where min = {0,0.25p,0.5p} and
maz = {0.5p,1.0p, ..., 2.5p} and in all case min <
max.

In total, this means that there are 100 non-compensatory
variations. Nevertheless, there is still a large number of pos-
sible policies and parameter values that we do not investi-
gate. We have tried to choose a reasonable sized selection
of the most obvious and different policies. However, we
cannot claim that this selection contains the optimal non-
compensatory policy for our setting. The selection should,
however, give us a reasonable view on how well the various
non-compensatory policies perform.

3.2 Compensatory Policies

We will discuss compensatory policies in two parts: (i) those
that have access to complete information on the opponent’s
profits and costs (section 3.2.1) and (ii) those where this in-
formation is incomplete (section 3.2.2).

3.2.1 The Complete Information Case

In this case, we can use the decommitment policy that is
optimal according to efficient breach theory:

o Expectation Damages: The fee is the opponent’s ex-
pected profit (his utility if the contract is performed
properly) plus his costs at decommitment time.

Alternatively, if the compensation does not entail compen-
sation for the expected profit, it is possible that decommit-
ment occurs when the increase of the decommitter’s utility
is lower than the expected profit that the victim loses. To
investigate this, we take a decommitment policy that com-
pensates only for the costs. This is typical in tort law and is
called reliance damages:

e Reliance Damages: The fee is equal to the opponent’s
costs at decommitment time.*

3.2.2 The Incomplete Information Case

There are many possible ways to create a compensatory de-
commitment policy that works under incomplete informa-
tion, but that aims to compensate for the loss the decommit-
ment causes. Here, we introduce two of the most obvious
ones: analytic compensatory and average loss.

In the analytic compensatory policy, the victim’s loss is es-
timated analytically using available information. This ap-
proach uses estimates of the cost and value functions, the
distributions for the deadlines, and so on, to analytically es-
timate the loss. The accuracy of these estimates can vary and
we will investigate a number of possibilities.

o Analytic Compensatory: The fee is equal to the ex-
pected loss for the victims in similar circumstances.

In more detail, the decommitment fee for the buyer is:

fo(p,q,t) = D(t)p+ (1 = D(t))(p — EC(q)),

4This policy was used in [3], but it was called sunk costs.




where ¢ is the quality, FC(q) the estimated cost function
and D(t) a probability that the seller has paid the cost at turn
t. In a similar fashion, the fee for the seller is:

fs(p,q) =EV(g)—p
= [Fmid(Q) : V(Q) + Finaa (Q) *dmax (Q)] 4

where E'V (q) is the estimated value function, Fy,,;4(q) is the
probability that quality q is between the buyer’s minimum
and maximum value, F}, 4. (q) is the probability that quality
q is above the maximum quality, and gmq.(q) is the esti-
mated value for ¢;"** for the opponent b in the latter case. In
case this is negative, the fee is zero.

In the other compensatory policy, average loss, we use the
notion of ‘normal’ or typical loss. In law, the unusually large
losses (even if real) are not compensated if they were not
foreseeable to the other party.> In law, this limits the maxi-
mum for damages, but here we use it as the measure of loss.
We compensate the typical loss for the opponent in the same
circumstances. The circumstances are determined by infor-
mation that is available to both parties, such as the turn the
agreement was reached (tcontrqct), the decommitment turn
(tdecommit), the quality of the service (¢,) and the contract
price of the decommitted contract (p). As the measure of
typical loss we use the average:

e Average Loss: The fee is equal to the average loss for
the victims in similar circumstances.

Here, we investigate the variation in which the similarity
of the situation is assessed by the contract price, quality,
contract turn and decommitment turn, and in which each
of the first three factors are divided into k& categories and
we have accurate information of all possible decommitment
turns; that is, we have 10013 different categories. For our
experiments, we establish the typical loss simply by running
the market 1000 times in advance and by calculating the av-
erage losses experienced by the parties in different situations
(from each contract we get the information on losses of all
possible decommitment situations). In the calculation of the
fee, the situation is first categorised in terms of all three fac-
tors and the similar situations are those that belong to the
same categories in all three factors.

For both policies, we assume that the decommitment fees
are established by the marketplace and the fee for any set of
circumstances is always known by all parties. Both policies
give the victim incentives to minimise his loss, because the
compensation is set in advance and hence all the savings the
victim can make are going to benefit him (and the society).

4 Empirical Evaluation

Having introduced the various decommitment policies, it is
time to compare their performance. This section consists of

5The actual rule is that the loss must either be directly or naturally fol-
lowing from the breach or the other party knew or should have known of
this loss at the time of signing the contract [8]. This rule can be also seen as
a special case (market-set) of liquidated damages.

three parts. First, we discuss our hypotheses (section 4.1).
Second, we explain how our experiments were set up and
how the analysis was conducted (section 4.2). Finally, we
discuss the actual results (section 4.3).

4.1 Hypotheses

According to efficient breach theory, the Expectation Dam-
ages should be the optimal decommitment policy. On the
other hand, if the number of decommitments is very small
(nobody ever decommits) or very large (everybody always
decommits), the different decommitment policies are likely
to have similar results. The difference should therefore be at
its clearest, when there are some but not too many decom-
mitments. In these cases, non-compensatory policies can de-
commit contracts that are still beneficial or stay in contracts
that no longer are. We therefore contend:

Hypothesis 1 Under complete information, the Expectation
Damages policy will yield at least as good an expected total
utility as any of the non-compensatory alternatives and with
intermediate utility losses it will be better.

Now, the more interesting setting is the one with incom-
plete information. Since the total utility is maximised when
the losses are always perfectly compensated, we assert that
in situations in which the losses can be more accurately es-
timated, and therefore the decommitment fees can be set
closer to the optimal ones, we should see better total utili-
ties. To see why this is the case, we need to consider two
ways that the effect the policy has on individuals can dif-
fer from the optimal policy. First, the policy may force the
party to stay in a contract even if the socially optimal ac-
tion would be to abandon it (adverse commitment). Second,
the policy may allow the party to decommit from a contract
even though it is still socially valuable (adverse decommit-
ment). In the first case, the policy overestimates the loss and
in the latter case it underestimates the loss. Both cases de-
crease total utility. Now, the closer the estimates are to the
actual values, the fewer of these mistakes occur. The fewer
mistakes, the less total utility is decreased and, hence, the
higher it is.

So, when the information available to the compensatory
policies improves, they are likely to get closer to the opti-
mal decommitment fees and therefore do better. We investi-
gate this theory first by applying it to the two compensatory
policies we introduced. If we improve the information that
is available to them, we expect the estimates to improve and
for the reasons just described, the total utility should also
improve.

Hypothesis 2 Under incomplete cost information, the per-
formance of the Analytic Compensatory policy improves
when the information on the seller’s deadline improves.

In a similar manner, when Average Loss distinguishes be-
tween more situations, the situations that are considered sim-



ilar are likely to really be more similar (have a smaller vari-
ance) and therefore we expect the performance to improve.

Hypothesis 3 Under incomplete cost information, the per-
formance of the Average Loss policy improves when more
situations are considered dissimilar.

Now, the whole point of using the compensatory policies
is that they can improve the total utility of the system. The
logic is that when these policies manage to accurately com-
pensate for the actual losses, the performance should be
close to the full information case. However, they do need
sufficient information of the opponent’s losses to achieve
this.

Hypothesis 4 Under incomplete cost information, both the
Average Loss and Analytic Compensatory policies can out-
perform all the non-compensatory policies.

Speaking more generally, we believe that there is a clear
relation between the accuracy of loss estimates and the per-
formance (in the terms of total utility). To investigate this
claim, we need to define a new measure for the accuracy
of estimates, average compensation error, which for a single
seller in a contract x is:

1 1000
To01 S O If(Ptx) — f2(t ),
t=0

where f4(P,t,x) is the decommitment fee using the policy
P at time ¢ and fX(¢, ) is the optimal (Expectation Dam-
ages) fee for that contract at that time. An average of these
averages is then calculated over all contracts. As a measure
of performance, we use the average total utility over differ-
ent utility loss cases. A similar calculation is performed to
obtain the error for the buyer.
We are now ready to state our final hypothesis:

Hypothesis 5 Average compensation error and the average
expected total utility are inversely related. That is, lower
error implies higher total utility and vice versa.

4.2 Experimental Setup

We ran the market and saved the contracts that were formed.
We use the Second Half deadline setting for the providers
unless otherwise stated. We then calculated the expected to-
tal utility of each contract in 21 different settings; one setting
for the situation without any adverse effects and then with 10
adverse effects on the buyers and 10 with the sellers. We ran
the market with the same setup 100 times and calculated the
expected value of all contracts for all 21 situations after each
run (using the same contracts in different situations). We re-
peated the whole process for each decommitment policy we
investigated.

6In other words, the contracts that the different policies were analysing
were different, but by repeating the process 100 times we get sufficient data
for a statistical analysis.

4.3 Results

We will now discuss the results.

4.3.1 Expectation Damages vs. Non-
Compensatory Policies

We start by investigating how well the Expectation Dam-
ages policy fares against the non-compensatory policies. To
this end, figure 1 shows the case in which the buyer’s utility
decreases. Specifically the figure shows Expectation Dam-
ages, Reliance Damages and the best results any of the non-
compensatory policies achieved. In other words, the best of
non-compensatory plot shows the maximum result of all 100
non-compensatory policies in each data point (more than one
policy has contributed to this plot).

We performed a one-tailed ¢-test comparing pairwisely the
means of the Expectation Damages policy and the means
of all the non-compensatory policies in turn at all of the
data points.” As can be seen, when the buyer’s utility
decreases, the Expectation Damages policy clearly outper-
forms all other alternatives when the buyer’s maximum util-
ity decrease is between 0.2 — 0.7 (at p < 0.01 level). This is
because the other policies suffer from adverse commitments
and decommitments, but the Expectation Damages policy
makes the parties decommit optimally. With a small utility
loss (I = 0.1), there is no statistically significant difference
to the best non-compensatory policies. This is because in
that case, the decommitments are rare with all the best poli-
cies and the few decommitments that do occur do not affect
the total utility that much. On the other hand, all the best
policies converge in the high utility loss cases (0.9 — 1.0),

because in all of them, all contracts are abandoned.
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Figure 1. Compensatory vs. Non-

Compensatory Policies.
The performance of the Reliance Damages policy is worse
than that of the best non-compensatory policies when the
loss is 0.1 or 0.2 (two-tailed t-test at p < 0.001 level), but

7We do this every time we compare a compensatory policy to the best of
non-compensatory policies.



at intermediate levels (between 0.4 — 0.5) it outperforms all
non-compensatory policies (at p < 0.001 level). This is be-
cause at low loss levels it is often optimal to allow only very
few if any decommitments and because Reliance Damages
consistently underestimates the losses, it will allow some
detrimental decommitments. The best non-compensatory
policies are those that make it very expensive to decommit
(for example Not Allowed). However, when the losses are
bigger, these policies perform badly and other policies with
less extreme fees take over. None of these policies will be
able to outperform a policy that accurately compensates for
the costs (Reliance Damages), because with c¢; = 0.5q5 the
costs are often a significant portion of the actual losses.

The other case (in which the seller is affected) is very sim-
ilar (and therefore there is no figure for that case). There
are two small differences that can be explained by the dif-
ferent assumptions of the cases. First, the performance dif-
ference between Expectation Damages and the best non-
compensatory policies is smaller. This is because the seller
also has costs, which the Expectation Damages takes into ac-
count and the non-compensatory policies do not. However,
the advantage of the Expectation Damages is maintained at
the same interval (0.2 — 0.7 at p < 0.01 level). We can
therefore accept hypothesis 1. The Reliance Damages pol-
icy does not do well here because the buyers have no costs
and, therefore, it compensates nothing.

4.3.2 The Analytic Compensatory Policy

We will now investigate how the performance of the Ana-
Iytic Compensatory policy will be affected by different lev-
els of knowledge about the seller’s deadline. We ran the ex-
periments with the seller having the deadline selected be-
tween turns 925-975 and varied the buyer’s (or the market’s)
knowledge of this deadline. At worst, the buyer has no reli-
able information of the deadline and must therefore assume
that it can be at any time (after the contract has been entered
into) and that all possibilities are equally likely. In the other
settings, the buyer knows that the buyer’s deadline is in the
second half (turns 500-1000), last quarter (750-1000), last
100 (900-1000) or turns 925-975 (correct one). Here, figure
2 shows the performance in each case (Last 100 was omit-
ted because it was statistically inseparable from the correct
one and made the figure more difficult to read.) and we can
see that the best compensatory policies are very close to the
optimal (Expectation Damages).

From this figure, it is clear that the additional information
improves the performance. All shown policies outperform
the policies with less information when utility losses are
between 0.3 — 0.7 (at p < 0.001 level). This is what hy-
pothesis 2 predicted, so we accept it. The figure also shows
what the best of the non-compensatory policies achieve in
the same setting. The Analytic Compensatory (Last Quarter)
policy is the first one to outperfom all compensatory poli-
cies (p < 0.001 level with at least 0.2 — 0.4) and policies
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Figure 2. Analytic Compensatory Policy with
Different Levels of Knowledge.

with more accurate information do this in wider number of
cases. Clearly, the Analytic Compensatory policy can out-
perform all the non-compensatory policies we tried, so hy-
pothesis 4 is accepted as far Analytic Compensatory policy
is concerned.

4.3.3 The Average Loss Policy

We expected that our other compensatory policy would show
similar improvement to those of the previous subsection,
when the number of distinguished situations increases. To
this end, we use the Last 100 deadline setting. Since there
were three different parameters for distinguishing situations
from each other, we increase the number of different cat-
egories k on each from 1 to 10 and then 15, 20 and 25.
Then some of the results are shown in figure 3. As can be
seen, increasing k clearly improves the performance when
k is small, but with high k there is no statistically signifi-
cant improvement. This is because in our setting, most of
the relevant patterns can be described with a relatively small

number of distinctions. We therefore accept hypothesis 3.
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Figure 3. Average Loss and Estimator Size.



The first policy to defeat all the non-compensatory ones
consistently is Average Loss(4).% It will outperform all non-
compensatory policies with the losses between 0.3 — 0.6 (at
p < 0.001 level). Therefore we accept hypothesis 4 with
Average Loss.

4.3.4 The Average Compensation Error

Finally, we investigate the relationship between average
compensation error and the total utility. We calculated the
average compensation errors and average total utility for all
the policies. The preliminary results showed a clear correla-
tion between the compensation error and performance when
the fees were relatively low, but a larger variation when the
fees were large (overall correlation —0.75). This is because
the total average compensation error is not that good a metric
if nobody ever decommits. In such cases, it hardly matters
if the fee was 1 or 2.5. We can limit this effect by setting
the maximum fee to be equal to the minimum one that al-
lows nobody to ever decommit in a given contract. With this
adjustment we then get figure 4, which shows a strong corre-
lation, of —0.95, which is statistically significantly different
from zero (at p < 0.001 level). Compensatory policies are
in the bottom right corner of the graph as one might expect
from the above discussion.
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Figure 4. Average Compensation Error and
Total Utility.

The seller has no similar restriction on his loss and there-
fore its losses can go higher and the effect described ear-
lier is less pronounced (the correlation is —0.93 without any
adjustments). Both results give a clear indication that the
average total utility is inversely related to the average com-
pensation error and therefore we accept hypothesis 5.

5 Conclusions

In this paper, we showed that compensatory decommitment
policies for contracts in electronic marketplaces can improve

8 Already Average Loss(2) defeats non-compensatory policies when the
loss is 0.4 or 0.5, but it loses to some policies when the loss is 0.2.

the welfare of the society and we gave two examples of such
policies that work under incomplete information. We also
showed how more accurate estimates for the losses improve
the performance of both our policies. Moreover, we showed
that in case of changing circumstances the performance of a
market under a certain decommitment policy clearly depends
on how accurately a policy compensates for the actual losses.

For a designer of dynamic electronic marketplaces, the
conclusions of this paper are as follows. First, decommit-
ment policies can and do affect the performance of the mar-
ketplace. Therefore a suitable decommitment policy should
be a part of the overall design of any marketplace, where the
parties’ preferences or circumstances can change after the
contract has been entered into but before it is performed.
Second, a compensatory policy is a serious contender for
such policy if enough reliable information about the par-
ties’ costs, valuations, preparations times and so on is readily
available and can easily be obtained.

In future work, we extend the compensatory policies to
cases in which the victims try to find substitute contracts to
replace the ones they lose when their opponent decommits.
Another direction of future work is to consider other effects
that decommitment policies may have. Specifically, the law
and economics literature has identified three key decisions,
in which the decommitment fees play a role: the decision of
whether or not to perform a contract (performance decision,
the topic of this paper), but also whether or not to rely on
the upcoming performance (reliance decision) and whether
or not to enter a contract in the first place (contract decision).
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