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Abstract. Data replication across several sites improves fault tolerance as
available sites can take over the load of failed sites. Data is usually accessed
within a transactional framework. However, updating replicated data within
a transactional framework is a complex affair due to failures and conflict-
ing transactions. Group communication primitives have been proposed to
support transactions in a asynchronous distributed system. In this paper
we outline how a refinement based approach with Event B can be used for
the development of a reliable replicated database system that ensure atomic
commitment of update transactions using group communication primitives.

1 Introduction

A replicated database system can be defined as a distributed system where copies
of the database are kept across several sites. Data access in a replicated database
can be done within a transactional framework. It is advantageous to replicate the
data if the transaction workload is predominantly read only. However, during up-
dates, keeping the replicas in a consistent state arises due to race conditions among
conflicting update transactions. A distributed transaction may span several sites
reading or updating data objects. A typical distributed transaction contains a se-
quence of database operations which must be processed at all of the participating
sites or none of the sites to maintain the integrity of the database. The strong con-
sistency criterion in the replicated database requires that the database remains in a
consistent state despite transaction failures. The possible causes of the transaction
failures include bad data input, time outs, temporary unavailability of data at a
site and deadlocks.

No common global clock or shared memory exist in a distributed system. The
sites communicate by the exchange of messages which are delivered to them after
arbitrary time delays. In such systems up-to-date knowledge of the system is not
known to any process or site. This problem can dealt by relying on group communi-
cation primitives that provide higher guarantees on the delivery of messages. Group
communication has also been investigated in Isis [5], Totem [14] and Trans [12].
The protocols in these systems use varying broadcast primitives and address group
maintenance, fault tolerance and consistency services. The transaction semantics
in the management of replicated data is also considered in [3,16]. In addition to
providing fault tolerance, one of the important issues to be addressed in the design
of replica control protocols is consistency. The One Copy Equivalence [4] criteria
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requires that a replicated database is in a mutually consistent state only if all copies
of data objects logically have the same identical value.

Distributed algorithms can be deceptive, may have complex execution paths
and may allow unanticipated behavior. Rigorous reasoning about such algorithms
is required to ensure that an algorithm achieves what it is supposed to do [11]. Group
communication services have been studied as a basic building block for many fault
tolerant distributed services, however the application of formal methods providing
clear specifications and proofs of correctness is rare [6]. Some of the important
work on the application of formal methods to group communication services in
order to verify the properties of algorithm are given in [7,17]. The work reported
in [7] uses I/O automata for the specifications and proves properties about all
trace behavior of the automation. In [17] formal results are provided that defines
whether or not a totally ordered protocol provides a causal order. They provide a
proof of correctness by doing proofs by hand. Instead, our approach of specifying the
system and verification is based on the technique of abstraction and refinement. This
technique is supported by the Event B [13], an event driven approach used together
with B Method [1]. This formal approach carries a step-wise development from
initial abstract specifications to a detailed design of a system in the refinement steps.
Through the refinement proofs we verify that design of detailed system conforms to
the abstract specifications. The refinement approach of Event B has also been used
for the formal development of fault tolerant communication systems [9]. We have
used the Click’n’Prove [2] B tool for proof obligation generation and for discharging
proof obligations.

The remainder of this paper is organized as follows: Section 2 outline the system
model, Section 3 describes group communication primitives and its application to
replicated database, Section 4 outline the formal development of a system of total
order broadcast and Section 5 concludes the paper.

2 System Model

Our system model consist of a sets of sites and data objects. Users interact with
the database by starting transactions. We consider the case of full replication and
assume all data objects are updateable. The Read Anywhere Write Everywhere [4,
15] replica control mechanism is considered for updating replicas. A transaction
is considered as a sequence of read/write operations executed atomically, i.e., a
transaction will either commit or abort the effect of all database operations. The
following types of transactions are considered for this model of replicated database.

— Read-Only Transactions : These transaction are submitted locally to the site
and commit after reading the requested data object locally.

— Update Transactions : These transactions update the requested data objects.
The effect of update transactions are global, thus when committed, all replicas
of data objects maintained at all sites must be updated. In case of abort, none
of the sites update the data object.

Let the sequence of read/write operations issued by the transaction T; be defined
by a set of objects objectset[T;] where objectset[T;] # @. Let the set writeset[T;]
represents the set of object to be updated such that writeset[T;] C objectset[T;].

A transaction T; is a read-only transaction if writeset[T;]= @. Similarly a trans-
action T; is a update transaction if its writeset[T;] # @. Two update transactions
T; and T} are in conflict if the sequence of operations issued by T; and T} are de-
fined on set of object objectset[T;] and objectset[T;] respectively and objectset[T;] N
objectset[T;] # @.
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Fig. 1. Events of Update Transaction

In order to meet the strong consistency requirement where each transaction
reads the correct value of a replica, conflicting transactions need to be executed in
isolation. In our model, we ensure this property by not éssuing a transaction at a
site if there is a conflicting transaction that is active at that site. In our model the
transactions are executed as follows.

— A read-only transaction 7T; is executed locally at the initiating site of T;(also
called the coordinator site of T;) by acquiring locks on the data object defined
by objectset[ T;].

— An update transaction T; is executed by broadcasting its objectset[T;] to the
participating sites. On delivery, a participating site S; initiates a subtransaction
T;; by acquiring locks on objectset[T;]. If the objects are currently locked by
another transaction, the T;; is blocked.

— The coordinator site of T; waits for the vote commit/abort messages from all
participating site. A global commit/abort message is broadcasted by coordinator
site of T; only if it receives all local commit message from all participating sites
or at-least one vote-abort message from participating sites.

The commit or abort decision of global transaction Tj is taken at the coordinator site
within the framework of a two phase commit protocol as shown in Fig. 1 as follows.
A global transaction T; commits if all T;; commit at S;. The global transaction T
aborts if some T;; aborts at S;.

In [20] we have presented a formal refinement based approach using Event B
to model and analyze distributed transaction. In our abstract model, an update
transaction modifies the abstract one copy database through a single atomic event.
In the refinement, an update transaction consists of a collection of interleaved
events updating each replica separately. The transaction mechanism on the repli-
cated database is designed to provide the illusion of atomic update of a one copy
database. Through the refinement proofs, we verify that the design of the replicated
database confirms to the one copy database abstraction despite transaction failures
at a site. In this model we assume that the sites communicate by a reliable broad-
cast which eventually deliver messages without any ordering guarantees. Therefore,
the conflicting operations of update transactions originating from different sites
may arrive at different sites in the different order. This may lead to the deadlocks
among the conflicting transactions which results in unnecessary abort of various
transactions. The abort of these conflicting update transactions may be avoided if a
reliable broadcast also provide higher ordering guarantees on the message delivery.
We are currently investigating and formalizing the group communication primitive
with reference to the the update transactions.



3 Ordering Properties

In our model of replicated databases [20] we assume that the sites communicate by
exchange of messages using a reliable broadcast. A reliable broadcast [8] eventually
deliver the messages to all participating sites and satisfies following properties.

— Validity: If a correct process broadcasts a message m, then it eventually delivers
m.

— Agreement: All correct processes delivers a same set of message, i.e. if a process
delivers a message m then all correct processes eventually delivers m.

— Integrity : No spurious messages are ever delivered, i.e., for any message m,
every correct process delivers m at most once and only if m was previously
broadcast by sender(m).

A reliable broadcast imposes no restriction on the order in which messages are
delivered to the processes. This may lead to the blocking of conflicting transactions
and the sites may abort one or more of the conflicting transaction by timeouts. For
example, consider two conflicting update transactions T; and T} initiated at site
S; and S; respectively. Both of the transactions may be blocked in the following
scenario :

— S, starts transaction T; and acquire locks on objectset| T;] at site S;. Site S;
broadcast update messages of T} to participating sites. Similarly, another site S
starts a transaction T} , acquires locks on objectset[T;] at site S; and broadcast
update messages of T} to participating sites.

— The site S; delivers update message of T} from S; and S; delivers update mes-
sage of T; from S;. The T} is blocked at S; as S; waits for vote-commit from S;
for T;. Similarly, T} is blocked at \S; waiting for vote-commit from S; for T}

In order to recover from the above scenario where two conflicting transaction
are blocked, either or both transactions may be aborted by the sites. This problem
can greatly be simplified by assuming a stronger notion of reliable broadcast that
provide higher order guarantees on message delivery. Various definitions of ordering
properties have been discussed in [8]. A reliable broadcast can be used to deliver
messages to the processes following a FIFO Order, Local Order, Causal Order or a
Total Order. An informal specifications of these ordering properties are given below.

— FIFO Order : If a particular process broadcasts a message M1 before it broad-
casts a message M2, then each recipient process delivers M1 before M2.

— Local Order: If a process delivers M1 before broadcasting the message M2, then
each recipient process delivers M1 before M2.

— Causal Order : If the broadcast of a message M1 causally precedes the broadcast
of a message M2, then no correct process delivers M2 unless it has previously
delivered M1.

— Total Order : If two process P1 and P2 both deliver the messages M1 and M2
then P1 delivers M1 before M2 if and only if P2 also delivers M1 before M2.

A Causal Order Broadcast is a reliable broadcast that satisfies the causal order
requirement. The notion of causality is based on causal precedence relation (—)
defined by the Lamport [10]. It is also shown in the [8] that a causal order combines
the properties of both FIFO and Local order. The FIFO Order and Local Order is
shown in the Fig. 2. The dotted lines represents the delivery of message violating
the respective order. Similarly, a Total Order Broadcast® is a reliable broadcast that

! The Total Order Broadcast is also known as Atomic Broadcast. Both of the terms are
used interchangeably. However we prefer the former as the term atomic suggests the
agreement property rather than total order.
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satisfies the total order requirement. The Agreement and Total Order requirements
of Total Order Broadcast imply that all correct processes eventually deliver the
same sequence of messages [8]. As shown in the Fig. 3[a] the messages are delivered
conforming to both causal and a total order. However, as shown in Fig. 3[b] the
delivery order respects a total order but violates causal order. It can be noticed
that the causality among the broadcast of message M2 and M3 is not preserved for
delivery.
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Fig. 3. [a]Total Order and a Causal Order [b]Total Order but not a Causal Order

Processing Transactions on Ordered Broadcast : In a replicated database
that uses a reliable broadcast without ordering guarantees, the conflicting opera-
tions of the transactions mays arrive at different sites in different orders. This may
lead to unnecessary aborts of the transaction due to blocking. The abortion of the
conflicting transaction can be avoided by using a total order broadcast which deliv-
ers and execute the conflicting operations at all sites in the same order. Similarly,
a causal order broadcast captures conflict as causality and transactions executing
conflicting operations are executed at all sites in the same order. In [19], we used
a refinement approach with Event B for formal development of broadcast system
which deliver messages satisfying various ordering properties. In the abstract model
we outlined how a causal order on the message can be constructed and in the re-
finement we show how it can correctly be implemented by vector clocks. In [18]
we present a model of causal order broadcast which does not deliver messages to
the sender. In a separate development in [19] we also outline the construction of
abstract total order on messages and its implementation using sequencer numbers
in the refinements. Lastly, we also formally develop a system where message are
delivered following both a total and a causal order?.

4 Total Order Broadcast

In this section we outline the incremental development of a system of total order
broadcast. The operations of an update transaction are communicated by the co-

2 A reliable broadcast that satisfies both causal and total order is also called Causal
Atomic Broadcast.



ordinator site to the participating sites by broadcast of an update message. The
abortion of the conflicting transaction can be avoided by using an underlying sys-
tem of total order broadcast which delivers and execute the conflicting operations
at all sites in the same order.

Our system model consists of a set of sites communicating by a reliable broad-
cast. The key issues with respect to a system of total order broadcast are ; how
to build an order on messages? and what information is necessary for defining an
abstract total order? Our approach of building a total order is based on the notion
of sequencer, where a designated site called sequencer site is responsible for building
a total order. A sequencer site may also take the role of a sender and destination
in addition to the role of sequencer. The protocol consists of first broadcasting an
update message m to all destinations including the sequencer. Upon receiving m,
sequencer assigns it a sequence number and broadcast its sequence number to all
destinations through control messages. Each destination site deliver m in the order
of sequence numbers.

Abstract Model of Total Order Broadcast : The abstract B model of a total
order broadcast is given in Fig. 4 and 5. In the abstract model a total order is built
on the message when it is delivered to any site in the system for the first time.
The specification consists of four variables sender, order, deliver and delorder. The
sender is a partial function from MESSAGE to SITE. The mapping (m — s) €
sender indicates that message m was sent by the site s. The variable order is defined
as a relation among the messages. A mapping of the form (m! — m2 ) € order
indicates that message m1 is totally ordered before m2. In order to represent the

MACHINE Total Order
SETS STE; MESSAGE
VARIABLES sender, order, delorder, deliver
INVARIANT sender e MESSAGE — SITE
A order e MESSAGE <> MESSAGE
A delorder e STE - (MESSAGE <> MESSAGE)
A deliver e STE & MESSAGE
INITIALISATION
sender :=J || order =& ||
delorder ;=9 TEx{<Z} || deliver .=

Fig. 4. Abstract Model of Total Order : Initial Part

delivery order of messages at a site, variable delorder is used. A mapping (m!
m2) € delorder(s) indicate that a site s has delivered m1 before m2. The variable
deliver represent the messages delivered to a site following a total order. A mapping
of form (s — m) € deliver represents that a site s has delivered m.

The event Broadcast given in the Fig. 5 models the broadcast of a message.
Similarly the event Order models the construction of a total order on first ever
delivery of a message to any site in the system. The TODeliver models the delivery
of the messages when a total order on the message has been constructed.

Constructing a Total Order : The event Order models the delivery of a message
(mm) at a site (ss) when it is delivered for the first time. The following guards of



Broadcast (sse STE, mme MESSAGE ) =
WHEN mm & dom(sender)
THEN sender := sender U {mm — ss}
END;

Order (sse STE, mme MESSAGE ) =
WHEN mm e dom(sender)
A mme ran(deliver)
A ran(deliver) ¢ deliver[{ss}]
THEN  deliver := deliver U {ss— mm}
|| order :=order u (ran(deliver) x{mm})
|| delorder(ss) := delorder(ss) U ( deliver[{ss}] x {mm})
END;

TODdliver (sse STE, mme MESSAGE) =

WHEN mm e dom(sender)

A mme ran ( deliver )

A SS—mm ¢ deliver

A Vm.( me MESSAGE A (Mm— mm) e order = (ss— m) e deliver)
THEN  deliver := deliver u {pp — mm}

|| delorder(ss) := delorder(ss) u (deliver[{ss}] x {mm})

END

Fig. 5. Abstract Model of Total Order : Events

this event ensures that the message(mm) has not been delivered elsewhere and that
each message delivered at any other site has also been delivered to the site(ss):

mm ¢ ran(deliver)
ran(deliver) C deliver[{ss}]

Later in the refinement we show that this is a function of a designated site called
sequencer. As a consequence of the occurrence of the Order event, the message mm
is delivered to site ss and the variable order is updated by mappings in (ran(deliver)
x {mm}). This indicates that all messages delivered at any site in the system are
ordered before mm. Similarly, the delivery order at the site ss is also updated such
that all messages delivered at ss precedes mm. It can be noticed that the total order
for a message is built when it is delivered to a site for the first time.

The event TOdeliver(ss,mm) models the delivery of a message mm to a site ss
respecting the total order. As the guard mm € ran(deliver) implies that the mm
has been delivered to at least one site and it also implies that the total order on
the message mm has also been constructed. Later in the refinement we show that
site ss represents a site other than the sequencer. The guards of the event ensure
that message mm has already been delivered elsewhere and that all messages which
precedes mm in the abstract total order has also been delivered to ss.

After constructing an abstract model of a total order we verify that this model
preserves the total order properties. The agreement and total order requirements
imply that all correct process eventually deliver all messages in the same order [8].
Therefore we add following invariant to our model as a primary invariant.

V(m1l,m2,p).((ml— m2) € delorder(p) = (ml— m2) € order)



This invariant states that if two messages, irrespective of the sender, are delivered at
any site then their delivery order at that site corresponds to the abstract total order.
In order to discharge the proof obligations associated with this invariant we also
discover new invariants. The process of discovery of invariants is explained in [19].
Similarly, in order to verify that our model also preserves the transitivity property,
we added following invariants to our model and discharge the proof obligations
associated with the invariant.

V(m1l,m2,m3).((ml — m2) € order A (m2 — m3) € order = (m1— m3) € order)

Overview of the Refinement Chain : Instead of presenting the full refinement
chain in the detail we will just briefly present the overview of the refinement steps.
Our refinement chain consists of six levels. A brief outline of each level is given
below.

L1 This consist of abstract model of total order broadcast. In this model, the ab-
stract total order is constructed when a message is delivered to a site for the
first time. At all other sites a message is delivered in the total order.

L2 This is a refinement of abstract model which introduces sequencer. In this re-
finement we demonstrate that the total order is built by the sequencer. In the
refined specifications of the Order event we outline that the first ever deliv-
ery of a message is done at the sequencer. In order to do that the guards of
Order event in the abstract specification [ mm ¢ ran(deliver) A ran(deliver)
C deliver[pp] are replaced by [ss=sequencer A (sequencer — mm) ¢ deliver].
Similarly a guard ss # sequencer is added in the specifications of T'ODeliver
event. Thus on the occurrence of TODeliver event a message is delivered to the
sites other than the sequencer.

L3 This is a very simple refinement giving a more concrete specification of the Order
event. Through this refinement we illustrate that a total order can be built using
the messages delivered to the sequencer. Recall that a total order in the abstract
specifications are constructed as below which state that all messages delivered
at any process are ordered before the new message mm.

order := order U (ran(deliver) x {mm})

In the refined specifications of Order event the total order is constructed as
below stating that all messages delivered to the sequencer are ordered before
the new message mm.

order := order U (deliver[{sequencer}] x {mm})

L4 In this refinement we introduce the notion of computation messages. The com-
putation message are those message which need to be delivered following a total
order. Global sequence numbers of the computation message are generated by
the sequencer. The delivery of the messages is done based on the sequence num-
bers. In this intermediate refinement step, the sequence number of computation
messages are assigned by the sequencer. This refinement introduces the following
new variables.

computation C MESSAGE
seqno € computation + Natural
counter € Natural

The variable segno is used to assign sequence numbers to the computation
messages. The counter is updated by one each time a computation message is
assigned a sequence number.



Table 1. Proof Statistics

Model Total POs|POs by Interaction|Percent. automatic
Total Order Broadcast 106 27 74
Causal Order Broadcast |80 26 67
Total Causal Order Broadcast|163 67 58

L5 In this refinement we introduce the notion of control messages. We also introduce
the relationship of each computation message with the control messages. This
refinement consists of following new state variables typed as follows,

control C MESSAGE
messcontrol € control -+ computation

The variables control and computation are used to cast a message as either a
computation or a control message. The set control contains the control messages
sent by the sequencer. The variable messcontrol is a partial injective function
which defines relationship among a control message and its computation mes-
sage. It implies that there can only be a one control message for each computa-
tion message and vice-versa. The set ran(messcontrol) contains the computation
messages for which control messages has been sent by the sequencer.

L6 A new event Receive Control is introduced. We illustrate that a process other
than sequencer can deliver a computation message only if it has received control
message for it. It can be noticed that the message delivery to the sites other than
the sequencer is done using the sequence number generated by the sequencer.

5 Conclusions

In this paper we have outlined our refinement based approach for formal develop-
ment of a fault tolerant models of replicated database system. We have presented
the abstract B models of total order broadcast and outlined how an abstract to-
tal order can be refined by the concrete sequence numbers in the refinement steps.
The abortion of the conflicting update transactions originated at different sites
may be avoided if the updates are delivered to the participating sites in a total
order. However, the total order broadcast does not preserve the causality among
the transactions. In [19], we used a refinement approach with Event B for formal
development of broadcast system which deliver messages satisfying various ordering
properties. We have developed the separate models of total order broadcast, causal
order broadcast and total causal order broadcast. The work was carried out on the
Click’n’Prove B tool. The tool generates the proof obligations for refinement and
consistency checking. These proofs helped us to understand the complexity of the
problem and the correctness of the solutions. They also helped us to discover new
system invariants which provide a clear insight to the system. The overall proof
statistics for various developments including a total order broadcast is given in the
Table 1. Our experience with these case studies strengthens our belief that ab-
straction and refinement are valuable technique for modelling complex distributed
system.
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