An Analytical Model for Simulation of Heat Flow in Plasma-Sprayed Thermal Barrier Coatings


Golosnoy, I.O., Tsipas, S.A. and Clyne, T.W. (2005) An Analytical Model for Simulation of Heat Flow in Plasma-Sprayed Thermal Barrier Coatings. Journal of Thermal Spray Technology, 14, (2), 205-214.

Download

[img] PDF
Download (311Kb)

Description/Abstract

Numerical (finite difference) and analytical models have been developed for the simulation of heat flow through plasma-sprayed coatings, allowing the effective thermal conductivity to be predicted as a function of microstructural parameters. The structure is assumed to be composed of lamellar material (splats), separated by (thin) pores, within which there are areas of contact (bridges). The analytical model is based on dividing the material into two regimes, within which the heat flow occurs either by unidirectional serial flow through lamellae and pores or by being funneled through the regions of the lamellae above and below the bridges. The validity of this model is demonstrated by a comparison of the predictions obtained from it and those obtained from the numerical model. The effects of pore geometry on conductive and radiative heat transfer within the coating have been investigated over a range of temperatures and gas pressures. It is shown that the main factor controlling the conductivity is the intersplat bridge area. Comparisons are also presented with experimental conductivity data, for cases in which some attempt has been made to characterize the key microstructural features. The study is oriented toward thermal barrier coatings, based on zirconiayttria top coats. It is noted that the effect of microstructural sintering, which tends to occur in these coatings under service conditions, can be predicted using this model.

Item Type: Article
ISSNs: 1059-9630
Related URLs:
Keywords: heat transfer, modeling, plasma spaying, thermal barrier coatings, thermal conductivity
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > EEE
ePrint ID: 264625
Date Deposited: 03 Oct 2007
Last Modified: 27 Mar 2014 20:09
Further Information:Google Scholar
ISI Citation Count:29
URI: http://eprints.soton.ac.uk/id/eprint/264625

Actions (login required)

View Item View Item