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Abstract. The deregulation of the electricity industry in
many countries has created a number of marketplaces in
which producers and consumers can operate in order to more
effectively manage and meet their energy needs. To this
end, this paper develops a new model for electricity retail
where end-use customers choose their supplier from compet-
ing electricity retailers. The model is based on simultaneous
reverse combinatorial auctions, designed as a second-price
sealed-bid multi-item auction with supply function bidding.
This model prevents strategic bidding and allows the auction-
eer to maximise its pay-off. Furthermore, we develop opti-
mal single-item and multi-item algorithms for winner deter-
mination in such auctions that are significantly less complex
than those currently available in the literature.
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1. Introduction

The deregulation of electricity markets began in the
early nineties when the UK Government privatised the
electricity supply industry in England and Wales. This
process has been subsequently followed in many other
countries. In most cases, the restructuring involves sep-
arating the electricity generation and retail from the
natural monopoly functions of transmission and distri-
bution. This, in turn, leads to the establishment of a
wholesale electricity marketfor electricity generation
and aretail electricity marketfor electricity retailing.
In the former case, competing generators offer their
electricity output to retailers and in the latter case end-
use customers choose their supplier from competing
electricity retailers.

Here we focus on retail markets, which differ from
their more traditional counterparts because energy can-

not be stored or held in stock (as tangible goods can).
Consequently, retailers are forced to work with con-
sumption prognoses [1], which, in turn, creates a num-
ber of risks. First, producing more than is consumed
is not economical. Moreover, the price of the energy
mainly depends on the production cost and this typi-
cally rises with the amount of energy produced. Sec-
ond, if the demand exceeds the prediction, suppliers
must find additional energy to avoid a blackout. Fi-
nally, there are non-negligible costs stemming from the
variation in the electricity production volume that most
of the traditional types of energy generators (e.g. hy-
droelectric, thermoelectric, nuclear) have to face.

In this way, the desideratum is to achieve a market
model where retailers have the most accurate possible
prognosis and the capability of influencing or guiding
customers’ consumption. To this end, there have been
a number of initiatives, grouped under the general ban-
ner of Demand-Side Management(DSM), which has
been promoted by Utility Companies (UCs) as an alter-
native to building new power plants. Its (consciously
infeasible) objective consists of smoothing demand so
that ideally it is a flat constant energy consumption
24 hours a day, 365 days a year. This profile embod-
ies the ideal circumstances for energy producers and
Transmission System Operators (TSOs) since the for-
mer may employ cheap and stable production meth-
ods, harmless to the environment, and the latter get to
control a transmission grid with constant load [2].

Now, the easiest way to accomplish this goal is by
setting the price of the energy depending on the actual
demand load. Thus, the higher the demand, the more
expensive the price, and vice versa. Based upon these
premises, many utility companies already present a ba-
sic form of DSM by offering a cheaper night tariff. In
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this way, our aim in this work is to improve and ex-
tend this simple market model to permit UCs to ex-
press more complex aims and, thus, increase their in-
fluence on customers. For instance, in order to lighten
the peak-time load, the supplier can offer a discount
for consuming a small amount of energy at 8 am (peak-
time) and a larger amount at midnight (off peak). This
incentivises the customer to reschedule some tasks
to midnight (e.g. the dishwasher or the washing ma-
chine). If many clients accept this compromise offer,
the UC will have achieved a double goal. It will have a
more accurate prognosis for 8 am and midnight and it
will also have shifted some of the peak-time consump-
tion to off peak.

In e-commerce terms, this process can be seen as a
reverse combinatorial auction. It is “reverse” because
the customers pick one of the available companies and
tariffs to supply their future consumption. And it is
“combinatorial” because bidding for a bundle of items
is typically valued differently from bidding separately
for each of the constituent items (e.g. thecombination
of consuming at 8am and midnight is more appreci-
ated, and thus rewarded, than, for instance, the combi-
nation of consuming at 10am and 11am).

While combinatorial auctions provide very efficient
allocations that can maximise the revenue for the auc-
tioneer, their main drawback is the complexity of
the clearing process in which buyers and sellers are
matched and the quantities of items traded between
them are determined. Specifically, clearing combina-
torial auctions is non-deterministic polynomial-time
hard (NP-hard) [3,4], which can make combinatorial
auctions intractable in practice [5]. Thus, a significant
amount of work has been concentrated on develop-
ing strategies to overcome this shortcoming. Unfortu-
nately, most work in this area deals with clearing com-
binatorial auctions withatomic propositions[6,7,8,9].
Thus, bids are either accepted or rejected in their en-
tirety, which may limit the profit for the auctioneer.
A more efficient solution is to allow bidding with de-
mand/supply functions [10,5], in which bidders sub-
mit a function1 to calculate the cost of the units to
be bought or sold. This allows the customer to accept
parts of different bids and constitutes a powerful way
of expressing complex pricing policies. In our case,
production costs can be easily reflected in the supply
function and if bids are accepted partially, there may

1In case of a forward auction, bidders submit a demand function.
In case of a reverse auction, bidders submit a supply function.

be more than one winner for the same auction and
item. Therefore, customers may accept different parts
of bids from different bidders so they can get energy
simultaneously from several suppliers. This kind of
function was chosen since it can readily approximate
any curve.

In our problem domain, such a setting enables cus-
tomers to accept different parts of bids from different
bidders so they can get energy simultaneously from
several suppliers. Since the transmission and distribu-
tion grids are shared and the path followed by the elec-
tricity cannot be tracked down, it is impossible to de-
termine the producer of the energy being consumed.
Therefore, the hypothesis of customers being simul-
taneously supplied by several UCs does not pose any
technical problems.

Against this background, this paper advances the
state of the art in two main ways. First, we present,
for the first time, an energy retail market designed as
a system of reverse combinatorial auctions with sup-
ply function bidding. This novel market allows cus-
tomers to increase their profit and provides UCs with
a mechanism to influence customers’ behaviour. Sec-
ond, we develop new optimal clearing algorithms tai-
lored to electricity supply functions that perform better
than the existing more general clearing algorithms.

The remainder of the paper is organised as follows.
Section 2 details the overall market design. Section 3
presents the single-item and the multi-item clearing al-
gorithms, analyses their complexity and optimality, ex-
amines the results of comparing the multi-item algo-
rithm with the only other optimal multi-item one de-
fined in the literature and presents a strategy for keep-
ing the multi-item within tractable ranges. Section 4
discusses related work. Finally, Section 5 concludes
and outlines the avenues of future work.

2. Electricity Retail Markets

This section discusses the nature of current electric-
ity retail markets and outlines the design of our solu-
tion.

2.1. Requirements

Currently, most customers only partially enjoy the
benefits of a deregulated market. They typically sign
mid-term contracts with a single supplier and the tar-
iffs do not reflect the pressure of competition. More-
over, whereas classical capitalist pricing policies en-
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courage demand by applying discounts on quantity
(the more you buy, the cheaper the unit price becomes),
actual electricity contracts often include a threshold
above which the consumption becomes more expen-
sive. To move to a more dynamic environment where
the benefits of competition can be more fully realised,
we put forward the following requirements for our
market design. The arrangement of customers’ elec-
tricity supply from multiple UCs should be achieved
by having contracts that specify the provision of an
amount of energy for a certain period of time (say one
hour). These contracts should not necessarily be exclu-
sive and, thus, customers may have agreements with
different companies for the same hour if this is the best
thing to do. Finally, we assume customers auction, on
a daily basis, their next 24 hours consumption divided
into 24 items (representing one hour each). They sub-
sequently receive bids from the UCs and make their
decision for the next 24 hours, which is a trade-off be-
tween the very static situations of today and the possi-
bility of auctioning on a per minute basis for the com-
ing minute. Finally, in order to make the whole process
automatic, both UCs and customers are represented by
software agents. Thus, hereafter when we write “UCs”
or “customer”, we mean “UCs’ software agent” and
“customer’s software agent”.

2.2. Market Design

The requirements detailed above can be best met by
structuring the market as a reverse auction. Further-
more, we assume customers don’t issue any bids, but
simply choose among those offered by the UCs. An
exchange (in which multiple buyers and sellers sub-
mit their bids and offers to an independent auction-
eer that decides the winners [11]) was rejected because
it scales poorly. In practice, the number of customers
may be up to tens of thousands, each of which is sell-
ing 24 items, and with combinatorial bidding, clear-
ing such an exchange becomes intractable very fast.
Unlike exchanges, reverse auctions have the advantage
that they may be performed in parallel. This means
the complexity can be divided between the number of
customers because instead of one big auction, many
smallerones are carried out at the same time. For these
reasons, we have designed our system as a series of si-
multaneous reverse auctions despite the risk ofover-
booking.

This is a problem that cannot be underestimated (see
the consequences in, for instance, the 2000-2001 Cali-
fornia electricity crisis [12,13,14]). It refers to the im-

possibility of UCs of controlling exactly how many
customers will accept their bids (and, therefore, they
cannot predict their total demand). It can be approx-
imated or foreseen with the help of statistical means,
but depending on the quality of these measures, the
threat of a blackout will always be present. Such a
dilemma exists in every market in which a single pro-
ducer cannot supply all the demand itself. Therefore,
a producer that is too successful could get to a point
above which, paradoxically, it is not economical to sell
(because it cannot produce so much and, therefore,
must buy the difference somewhere else).

Think for instance of a UC starting a price war2.
In case it suddenly decreases the rates and more cus-
tomers than expected opt to change to this UC, it will
have problems to meet the new forthcoming demand.
Less dramatically, a normal UC can also submit an of-
fer that by sheer chance is accepted by more clients
than it expected. In other words, when UCs prepare
their tariffs, they must also take into account the num-
ber of clients they may supply, in addition to the fac-
tors mentioned before. Therefore, again, an extremely
successful tariff, ironically, may not be highly desir-
able.

From another point of view, carrying out separate
auctions in parallel, where duplicated resources are
available from each auction, implies the risk of selling
the same resource simultaneously in separate auctions
at the same time. This is a problem in our overbooking
approach and stems from the fact, as stated before, that
resource suppliers have uncertainty about the outcome
of each single reverse auction. In other words, suppli-
ers place bidsin all auctions simultaneouslyas if the
auctions were separate entities and their results do not
influence each other in any way (which is clearly not
the case).

In this way, in order to prevent this blackout (worst-
case) scenario, we see only two feasible solutions left,
detailed as follows.

1. Airline-like Model
In order to minimise the number of unoccu-
pied seats (and thus, the revenue of the flight)
within a passenger aeroplane, airlines are al-
lowed to accept a number of bookings that is
higher than the actual number of seats avail-
able on the plane [16]. Then, passengers de-
nied boarding due to overbooking are compen-

2For an interesting simulation and discussion of price wars with
software agents see [15].
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sated. Similarly, we may allow UCs to offer to
sell more electricity than they can actually sup-
ply. In case of overbooking, we envisage two
approaches: Either UCs withdraw (part of) their
bids and compensate affected customers3 or UCs
buy the energy they need in a second market.
Nevertheless, both pose new game-theoretic is-
sues (such as the influence of second markets and
bid-withdrawal possibilities in strategies) that re-
quire further research. Indeed, the second mar-
ket, together with a non-realistic ceiling price,
were the main factors which brought about the
aforementioned 2000-2001 Californian electric-
ity crisis. Therefore, we recommend the solution
detailed next.

2. Regions Model
A different approach to this problem is addressed
in [21], [22] and [23]. Here, Haque, Jennings and
Moreau present a distributed resource allocation
protocol that allocates end-to-end network band-
width by means of using market-based agents
that are deployed in a communications network.
The agents compete to buy and sell bandwidth
resources from auction servers that use combina-
torial reverse auctions. Their approach consists
of dividing their whole communications network
into distinct local regions, in which resources
are auctioned exclusively (i.e. only within the re-
gion they belong to). This setting provides much
needed benefits since communication messages
do not have to be broadcast to all auction servers
from where resources are needed, but only to the
desired ones.
We can borrow this idea and apply this strategy
to our framework in two ways. In the first pos-
sibility, customers are concentrated randomly or
geographically inheterogeneousgroups, so sup-
pliers can estimate the maximum demand they
will offer to each of the groups. In the second
modality, customers are concentrated inhomoge-
neousgroups, according to the priority of their
supply. For instance, one group might include
all public-service clients (e.g. hospitals, police
stations, etc.), the next most important group

3This is not an uncommon practice. The (USA) Federal Commu-
nications Commission (FCC, http://www.fcc.gov/) [17,18] allows
bid withdrawal at a penalty consisting of the maximum of zero or
the difference between the value of the withdrawn bid on a license
and the highest bid after the withdrawal on that license. See[19,20]
for more information on this subject.

might be composed by strategic private compa-
nies (e.g. petrol stations or big industries), and so
on. In both alternatives, auctions are carried out
in steps, in a random order, for the heterogeneous
groups case, or in a priority order for the homo-
geneous groups case and, therefore, the risk of
overbooking is minimised.

Coming back to our market design, as combinato-
rial bidding is permitted, UCs submit theirspecialdis-
counts together with the usual hour tariffs. In this case,
having 24 hours (or items) means that there may be
up to224 different combinations of discounts. This is
obviously a worst-case scenario because, in practice,
our experience in the domain indicates that UCs are
highly unlikely to issue a different discount for each
possible combination. Moreover, we decided that the
auctions should be sealed (to reveal the least possible
information) and single-round (to minimise commu-
nication and other delays). The auctions also need to
be both multi-item and multi-unit. As each item is the
supply of electricity in one hour, there are 24 items
to allocate in an auction. In addition, each bidder may
not allocate the whole consumption within an hour, but
rather just a portion of it (i.e. some units). Figure 1 il-
lustrates this new market setting.

Another important component to set is the price paid
by the winner. We do not want to have a first price
auction because it offers incentives for strategic be-
haviour (i.e. the participants act according to beliefs
formed about others’ values and types, which does not
assure them of maximising their payoff). To circum-
vent this, we choose a uniform second price for com-
binatorial auctions (Vickrey-Clarke-Groves) since this
has the dominant strategy of bidders bidding their true
valuations of the goods [24,25]. The price paid by the
winner is not directly specified in the bid because bid-
ders submit a supply function. Thus, the customer must
calculate the energy it wants to consume within a time
slot (i.e. the units of that item to be auctioned) and then
decide the cheapest combination with the supply func-
tions submitted (i.e. number of units to be allocated
with each bidder). Therefore, the bids are accepted par-
tially. To this end, we use the compact notation intro-
duced in [26], where bidders submit for a certain item
a piece-wise linear supply functionP composed ofn
linear segments. Each segmentl, 1 ≤ l ≤ n, is de-
scribed by a starting quantitysl, an ending quantityel,
a unit priceπl, and a fixed priceCl. Thus, if a customer
wants to buyq units of that item from the supplier, it
will pay Pl = πl · q + Cl if sl ≤ q ≤ el. Additionally,
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Fig. 1. Novel market format: simultaneous reverse auctions of demand.

bidders submit a correlation function,ω, which shows
the reward or penalty of buying a number of items to-
gether (it is this that makes the bidding truly combi-
natorial). For instance,ω1(A,B) = 0.95 would mean
that if buyingx units of itemsA andy units ofB (i.e.
consumingx Kw at timeA andy Kw at timeB), the
price paid will have a 5% discount. Thus, if the unit
price of itemA is pa and the unit price of itemB is pb,
the total price would be0.95 · ((x · pa) + (y · pb)).

Currently, there is only one optimal algorithm to
solve this problem. Specifically, the one presented by
Dang and Jennings in [26] (described in more detail
in section 4). However, we believe this is inapplicable
in our scenario because it scales poorly (as we show
in section 3.3). Therefore, with the market described
above in place, the next step is to design a clearing al-
gorithm that solves the winner determination problem
more efficiently and allows it to be actually applied in
realistic contexts.

3. Optimal Clearing Algorithms

This section details the optimal single-item (sPJ)
and the optimal multi-item clearing algorithm (mPJ)
that we have developed for the electricity retail market
described in section 2. Furthermore, we analyse their
complexity, prove their optimality, and analyse strate-
gies to keep them tractable. First of all, let us introduce
some basic definitions that will be used thereafter:

Definition 1 A single allocationis a set<time-slot t,
supplier s, amount q, price p> meaning that s wants to
pay p to buy q units of energy to be consumed at time
t.

Definition 2 An allocation is a list containing a num-
ber (between one and the number of suppliers) of sin-
gle allocations that detail the supply of electricity to
be provided to the customer at a given time-slot.

Definition 3 Amore profitable allocationfrom two al-
ternatives is the one that for a given total demand q,
has the lower total price p.

Definition 4 Anoptimal allocationis one in which the
demand constraint is satisfied and there is no more
profitable allocation.

Definition 5 An optimal day allocationis a set of 24
optimal allocations, each of which corresponds to a
different item (i.e. there is an optimal allocation for
each hour).

The clearing algorithms we present in this section
are related in that the multi-item one is a consecu-
tive and iterative processing of the single-item one (i.e.
the result of the multi-item algorithm is obtained by
executing the single-item one with different values).
Specifically, clearing a single-item case implies find-
ing the optimal allocation for that item, so this enter-
prise deals only with the supply functions submitted to
one item. The multi-item case has a broader remit (an
optimal day allocation) and, thus, it also takes into ac-
count the relationships between the different items of
the optimal allocations (i.e. the correlation functions).
Let us first start with the explanation of the single-item
case.
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Fig. 2. Linear piece-wise supply functions submitted to a single item.

3.1. The Optimal Single-Item Clearing Algorithm

Clearing a single-item algorithm with piece-wise
supply function bids involves determining the amount
to be allocated to each submitted bid function. In
essence, in each loop the algorithm selects one seg-
ment of each supply function (the one corresponding
to the already allocated demand) and allocatesk units
to the segment with the best price (i.e. the lowest price
for k units after applying any relevant discount on the
amount). The loop is repeated until the demand is sat-
isfied. Note that the value ofk is dynamically assigned
in each loop to guarantee the optimality of the algo-
rithm. Specifically, it always has the ending quantity
value (el) of the shortest segment being evaluated at
that moment.

Let us now illustrate this procedure with the exam-
ple of Figure 2. Assume there are three potential buy-
ers1, 2, and3 that submit their supply functionss1,
s2, ands3 for a certain item (i.e. the consumption in
one hour). In the first loop, the algorithm processes the
segmentss11, s21, ands31. Since the shortest of the
three is segments11(i.e. e1

1 < e2
1 < e3

1), k = e1
1 and

the algorithm comparess11(e
1
1), s21(e

1
1), ands32(e

1
1).

Suppose the price ofs31(e
1
1) is less than the price

of s11(e
1
1) ands21(e

1
1); then, it selectss31 to supply

these firste1
1 units. In the second loop, the algorithm

processes the segmentss11, s21, ands31(but starting
from e1

1) and givesk the value ofe3
1 − e1

1 because it is
less thane1

1 ande2
1. Then, it comparess11(e

3
1 − e1

1),
s21(e

3
1 − e1

1), ands31(e
1
1), and so on. The algorithm

continues until the amount of allocated units is equal
to the demand.

As we can see, the algorithm evaluates one function
per bidder in each step so it has a complexityO(m)
per loop, wherem is the number of bidders. As the
loop is repeatedk times, wherek is the number of seg-
ments of the function with the highest number of them,

the overall complexity isO(km). A safe way to reach
an optimal allocation is to select for each unit the seg-
ment that offers the best price (i.e.k = 1). However,
it is not necessary to repeat the process for each sin-
gle unit since price and discount are constant in each
segment. So, as long as the segments evaluated in each
loop are the same (unit price and fixed price remain
unchanged), the winner will also be the same. Thus, in
each loop it is only necessary to compare the price of
allocating the lowest ending quantity of the segments
being processed, repeating this process until the de-
mand is satisfied. Therefore, sPJ (detailed in Figure 3)
always finds the most profitable optimal allocation.

Input:m supply functionsf anddemand.

• Pre-loop: initialise needed variables:allocated to keep
the total allocated demand, the listallocation showing
the allocated demand per bidder, and the temporal storage
variablek.

• Loop: in each loop, until the demand is satisfied, se-
lect the segment with the lowest gradient and allocate the
minimum ending quantity units.

While (allocated< demand) do
/* Select the the segment with the lowest gradient */
k = select min. ending quantity of current segments
if (demand - allocated< k) then

winner = select the minimumfm(k)
/* Allocate the minimum ending quantity units */

allocated += k
allocation[winner] += k

else
winner = select the minimumfm(demand)

/* Allocate the minimum ending quantity units */
allocated += demand - allocated
allocation[winner] += demand - allocated

Output:allocation, the variable detailing the amount al-
located to each bidder.

Fig. 3. The sPJ clearing algorithm.

3.2. The Optimal Multi-Item Clearing Algorithm

This algorithm, detailed in Figure 4, is more com-
plex since it cannot simply be generalised from the
single-item one. If there were no correlations, it would
be sufficient to run the sPJ case once for each item.
However, the existence of correlations poses the prob-
lem of the inconsistent application of discounts. First,
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if a supplier bids for two items and offers a reduction if
both bids get accepted, no reduction should be applied
if only one of them succeeds. Second, functions be-
come different after applying a discount. For example,
assumePl is a piece-wise supply function for the iteml
and it is included in the correlationω(l, ...) = x. Then,
P ′

l
is the new supply function with the valueP ′

l
= xPl.

Thus, the optimal allocation of a set of functions in
whichPl is included may not be the same as the one in
which everything else is the same but withP ′

l
instead

of Pl.

Input: j supply functionssj , j correlation functionsωj

and demandqi for each itemi.

• Pre-loop: Initialise variableday-setto keep the optimal
allocation for each item,item-setto keep a group of sup-
ply functions to be evaluated by the single-item clearing
algorithm,all − item − sets to keep already processed
sets of supply functions (item − sets), and a boolean
variableok.

• Loop: For each item calculate the optimal allocation of
a possible set of supply functions and then check whether
the selected discounts are applicable.

Do
for each item i

for each suppliersj

/* Generate a new combination of segments*/
add nextsi

j to item-set
if item-set not in all-item-set then

/* Calculate optimal allocation of single item*/
opt.-alloc. = single_item_algorithm(item-set)
store item-set in all-item-sets

add optimal-allocation to day-set
/* Check whether the allocation is consistent*/
ok = check constraints (day-set,ωj).
If ok then compare day-set with best so far
and keep the best of both

until all the combinations are explored

Output: day-set, a set ofi optimal allocations (one for
each item) with the lowest total price.

Fig. 4. The mPJ clearing algorithm.

In this way, mPJ must process all possible combina-
tions of discounted and non-discounted functions and
check that discounts are applied consistently. To this
end, we use a brute-force strategy [27,28,29] for iden-
tifying all the possibilities. Here, all possible bids from
each bidder are combined with all possible bids from
the rest of the bidders. However, it is not necessary

to evaluate all the combinations since some of them
are repeated. For instance, Table 1 shows an auction
with two suppliers (1 and2) and two items (a andb).
In this case, there is one possible correlation for each
bidder,ω1(a, b) = x andω2(a, b) = y. Thus, clear-
ing the multi-item case implies evaluating the combi-
nations where supplier1 and2 bid normally for itema

(so the single-item clearing algorithm is run with sup-
ply functionsP 1

a
−P 2

a
); supplier1 bids for itema and

b with discount and supplier2 bids normally for itemb

(so the single-item algorithm clears itema with supply
functionxP 1

a
and itemb with xP 1

b
andP 2

b
), and so on.

Table 1

Single-item evaluations with two items and two bidders, repeated in
bold.

P 2
a yP 2

a P 2

b
-

yP 2

b

P 1
a P 1

a − P 2
a P 1

a − yP 2
a P1

a P1
a

yP2

b
P2

b

xP 1
a xP 1

a − P 2
a xP 1

a − yP 2
a xP1

a xP1
a

xP 1

b
xP1

b
xP 1

b
− yP 2

b
xP 1

b
− P 2

b
xP1

b

P2
a yP2

a

P 1

b
P1

b
P 1

b
− yP 2

b
P 1

b
− P 2

b
P1

b

- P2
a yP2

a -

yP2

b
P2

b

This brute-force strategy evaluates all possible bid
combinations (without repeating some of them) and,
therefore, it always finds the most profitable optimal
day allocation. However, it also scales poorly. First, the
number of possible combinations depends on the num-
ber of items. In our case, with 24 items, there are224

different combinations. Second, it also rises exponen-
tially as the number of bidders grows: withn items,
and two bidders,22n; with three bidders23n, and so
on. In the extreme situation with two bidders submit-
ting a different supply function for each one of the 24
items and224 correlations, there are2 · 248 possible
combinations. This isn · (2n)m wheren is the number
of items andm the number of bidders. For instance,
in the example of Table 1, there are2 · (22)2 = 32
possible combinations, but half of the combinations
do not need to be re-calculated (in bold format in
Table 1). Thus, if bidders bid for all items and sub-
mit all possible correlations, the number of times that
the multi-item algorithm clears the single-item one is
n · (2n − 2n−1)m = n · (2n−1)m. Therefore, the com-
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Fig. 5. Complexity evolution withn increasing andm steady
(m = 2)

plexity isO(kmn·2(n−1)·m), wheren is the number of
items,m the number of suppliers andk the number of
segments of the supply function with more segments.
Note, however, that this is a pathological worst-case
scenario, which is highly unlikely to happen in prac-
tice. Furthermore, as we discuss afterwards, it can be
mitigated against by constraining the agent’s bidding
behaviours.

3.3. Evaluation

In this section we present the results of compar-
ing the performance of our mPJ algorithm with the
only other optimal algorithm for this class of prob-
lem. Specifically, our benchmark is the multi-item al-
gorithm mDJ presented by Dang and Jennings in [5]
(described in more detail in section 4).

The comparison shown in Figure 5 details how the
complexity (defined in terms of X, the number of bids)
scales when the number of itemsn increases for a con-
stant number of biddersm. As can be seen, mDJ soon
becomes intractable (i.e. prohibitively high complex-
ity), and mPJ scales better.

Figure 6 tests how the algorithms react to the incre-
ment ofm (bidders) whenn (items) remains steady.
Again, mDJ becomes intractable as soon as it did in
Fig. 5, whereas mPJ presents a significantly better per-
formance profile. The main reason for this behaviour
is the sensitivity of mDJ to the increment of bothn and
m (while mPJ is only sensitive to the increment ofn, as
seen in Fig. 5). For mDJ, a larger number of items and
clients means a larger number of single-allocations to
form the set from which the allocations will be formed.
Whereas for mPJ, more clients means more correla-
tions to clear, but half of which need not be processed
since they are repeated.

Similarly, Figure 7 illustrates the behaviour of the
algorithms when bothn (items) andm (bidders) in-
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Fig. 6. Complexity evolution withm increasing andn steady
(n = 2).
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Fig. 7. Complexity evolution withn andm steady andk increasing
(n, m = 2)

crease. Again, mDJ performs worse than the others. Its
n = 2 series is almost equivalent to then = 3 of our
multi-item algorithm.

Finally, Figure 8 depicts the dependence of each al-
gorithm onk, the number of units allocated in each it-
eration of the single-item algorithm. In this dimension,
mPJ again performs well. For mDJ, increasingk im-
plies increasing the number of single allocations that
may be combined with each other (therefore the algo-
rithm grows exponentially withk as the base). In con-
trast, for mPJ increasingk just implies that the single-
item algorithm is going to process more steps (there-
fore the algorithm grows linearly withk as the factor).

3.4. Constrained Bidding

In order to prevent such pathological scenarios from
occurring, it is possible to constrain the choice of pos-
sible discounts so bidders can submit only a certain
number of correlations. This type of restriction has
already been successfully applied to atomic proposi-
tions bidding [30], where when limiting the allow-
able combinations to tree structures or sequential com-
binations, the NP-hard winner determination prob-
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lem can be solved in polynomial time [9]. In a sim-
ilar vein, mPJ can also take advantage of such an
approach. Specifically, we can constrain the num-
ber of correlations to a valuec. Thus, bidder1 can
issue, for instance, the following:ω1

1(n1, n2 . . . ni),
ω1

2(n1, n2 . . . ni) . . .ω1
c
(n1, n2 . . . ni) where i is the

number of items included in each discount (for the sake
of simplicity, let us suppose it is a fixed number less
thann, the number of items, but big enough to allow
the bidder to be sufficiently flexible in its offering).

In this way, the single-item algorithm sPJ will be ex-
ecuted, withm bidders,i · cm times (again, supposing
thati is fixed) and the complexity of the mPJ algorithm
will drop to O(ki · cm). Unfortunately, in this case, the
mPJ algorithm cannot skip evaluating half of the com-
binations (as in section 4). With this constrained dis-
count choice, the reduction depends much more on the
specific discount combinations chosen. For instance, if
the combinations include many items (i.e.i is bigger),
the single-item algorithm will be executed more often
than if the combinations only include two items each.
In short, there is no way to accurately determine ita
priori . Similarly, restricting the available amounts as-
signed to the discount increases the number of repeated
combinations. Thus, if a supplier offers the same re-
duction for accepting two different items (e.g.ω(a, b)
= ω(c, d)), the number of repeated combinations would
increase further and the complexity would continue de-
creasing.

For the comparison shown next, we have set the
maximum number of bids to be issued as half of the
maximum possible (c = 2n−1) and the maximum
number of items included in a correlation as the num-
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Fig. 9. Complexity evolution withn increasing andm steady
(m = 2).
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ber of items (i = n). For instance, in figure 9, we
present the reaction of the three algorithms to the in-
crement of the number of itemsn for a constant num-
ber of biddersm.

Here, the constrained variant presents the best pro-
file for our purposes. This would have been even
clearer if we had not set the value ofc andi depending
on the number of itemsn (as detailed above). With a
fixed c andi, the constrained variant would have pre-
sented a flat line, whereas mDJ and mPJ would had
grown exponentially because, in contrast to mDJ and
mPJ, the constrained variant does not depend directly
on the number of items being auctioned.

Figure 10 tests how the algorithms react to the in-
crement ofm (bidders) whenn (items) remains steady.
The results of the constrained variant are better than
those from mPJ. Again, mDJ becomes intractable as
soon as it did in Fig. 9.

Figure 11 presents the reaction of the algorithms to
the increment of bothn (items) andm (bidders). As
we would expect, the best results are again achieved
by the constrained variant.

Finally, Figure 12 shows the dependence of each al-
gorithm onk, the number of units allocated in each it-
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eration of the single-item algorithm. Again, mDJ is the
worst of the three and the constrained variant by far the
best. This behaviour is due to the direct dependency of
mDJ onk.

Note that the complexity of the constrained variant
can be further reduced depending on the values ofi

andc. With the values we assigned toi andc for these
comparisons, it is onlym times less complex than mPJ
(sincec = 2n−1, i = n andO(ki · cm), then the com-
plexity after substitution ofc andi isO(kn·2(n−1)m)).
The genuine advantage of the constrained variant can
be found when there are higher values ofn and m.
Thus, based on our beliefs about the likely operation of
the retail energy market some “typical” values might
be to have 24 items (e.g. 24 hours) and around 20 bid-
ders (e.g. 20 UCs trying to sell their energy). There-
fore, if we setk = 1 and restrict the number of possible
correlations to 10, each one with 5 items (which ex-
perience indicates will provide UCs with enoughper-

suasivepower), the results are clear: mDJ presents a
complexity of1, 498E + 147, our mPJ1, 429E + 141
and the constrained variant5E + 20. In our opin-
ion, this means the constrained variant is sufficiently
close to the optimal to be useful, but is still sufficiently
tractable to be practicable.

4. Related Work

There has been comparatively little previous work
in combinatorial energy markets, but there is a much
larger literature on clearing algorithms for combinato-
rial auctions. However, these two strands of work have
not been brought together before.

In more detail, there has been a surge of research
in this area lately, most of which has concentrated on
properties of the underlying multi-agent system and is
thus slightly out of focus to our needs. Moreover, only
the work of Palensky et al. [31,2,32,33] is explicitly
directed to remove the shortcomings posed by deregu-
lation (or seen in a positive way, to exploit the new op-
portunities it brings). Specially interesting is his PhD
thesis, where he addresses a genetic algorithm as an
optimal method to find the proper demand schedule.
Nevertheless, the problem target is different to ours
since he only intends to offer a solution to the con-
sumer side. In this way, by ignoring the supplier side,
aspects such as the electrical market are disregarded
and, thus, so is the possibility of influencing customers
that we offer to the suppliers.

Worthy of mention is also the work of Ygge et al.
[34,35,36,37,38,39,40,41,42], which is seminal in the
area of agents and energy management. Specifically,
they combine power load management with market-
oriented programming. However, there are two rea-
sons that make their approach inapplicable to our do-
main. First, market-oriented programming is based on
the Theory of Competitive Equilibrium (as opposed to
Game Theory). This model studies equilibrium condi-
tions in which participants deal only with parameters
such as the price, but not with possible actions of the
others. That is, agents are cooperative and not com-
petitive, a feature that we require to design electric-
ity markets in which bidder agents compete to be cho-
sen to supply an auctioneer’s energy demand. Second,
they introduce a hierarchical structure ofHomeBots,
intelligent agents that represent every load in the sys-
tem and buy the energy in a system of forward non-
combinatorial auctions. With only one energy supplier,
this approach places all the initiative on theHomeBots
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so the UCs cannot express their preferences for having
more or less demand at a certain time. We address this
shortcoming by allowing combinatorial bidding.

There has been an enormous amount of research
in combinatorial auctions [11] recently, but most of
this has focused on atomic propositions that may limit
the choice (and hence the profit) to the auctioneer,
as already stated. Addressing this limitation, several
authors have developed algorithms that deal with de-
mand/supply bidding. For instance, Sandholm and Suri
[10] considered this possibility but only for the single-
item case (which is not sufficient since our prob-
lems demand a multi-item auction). Moreover, work-
ing with a single item implies that the auction is not
truly combinatorial [43,5]. In this way, there exist only
two algorithms dealing with this auction setting.

In the first one, Dang and Jennings [43] develop
the first single-item and multi-item algorithm for
multi-unit combinatorial reverse auctions with de-
mand/supply functions. They sacrifice optimality at
the cost of running in polynomial time, which is a
common practice in AI (see a compilation of different
polynomial algorithms for diverse problems in [44] or
examples in [45,46,47]). The algorithms are not guar-
anteed to find the optimal solution, but do produce so-
lutions that are shown to be within a finite bound of the
optimal, which sometimes is an acceptable trade-off.
Still, we would like to have an optimal algorithm for
our problem.

In the second one, again Dang and Jennings [5]
present another pair of single and multi-item algo-
rithms (referred to here assDJandmDJ) for the same
environment, but this time they are optimal. The strat-
egy they use consists of defining a dominant set con-
taining an increasingly sorted group of single alloca-
tions, so they search within this dominant set for the
combinations that form the most profitable day alloca-
tion. Givenm bidders,n items andk, the upper bound
on the number of segments of the dominant set, the
complexity in a worst case scenario isO(n · (k + 1)n)
in the single-item case andO(mn · (k + 1)mn) in the
multi-item.

In comparison to this work, the single-item algo-
rithm presented here, sPJ, is less general than sDJ
(because it only clears continuous piece-wise sup-
ply functions), but both our algorithms present sig-
nificantly lower computational complexity even in a
worst-case scenario (O(km) in the single-item case
and O(kmn · 2(n−1)·m) in the multi-item). That is
even if, for instancek = 1, our mPJ algorithm is still
2n−1 times less complex than mDJ. Moreover, in the

constrained bidding variant of mPJ, this difference is
even higher. If we again setk = 1 and restrict the
number of possible correlations to 10, each one with
5 items (which experience indicates will provide UCs
with enoughpersuasivepower), the results are clear:
mDJ presents a complexity of1, 498E +147, our mPJ
1, 429E +141 and the constrained variant5E +20. In
our opinion, this means the constrained variant is suf-
ficiently close to the optimal to be useful, but is still
sufficiently tractable to be practicable.

5. Conclusions and Future Work

The deregulation of the electricity industry offers
new opportunities for providers and consumers. In
this environment, customers can choose their suppli-
ers to get cheaper energy and suppliers can compete
to increase the number of their customers and, subse-
quently, their profits. To make this happen in practice,
however, efficient electricity markets need to be de-
veloped. To this end, traditionally, energy management
techniques have presented the two different sides with
their own purposes and measures. On the one hand,
suppliers and retailers aim to smooth the overall en-
ergy consumption to avoid sudden peak loads. On the
other hand, customers intend to reduce their energy
bills without giving up freedom (meaning they can use
energy at any time). Our system addresses both needs.
It helps to reduce peak loads and to distribute them
amongst less-loaded time slots. Specifically, by includ-
ing off-peak hours in the discounts, UCs reward cus-
tomers that consume electricity off-peak. Thus, they
have an additional tool for energy management besides
setting off-peak prices lower than peak ones. More-
over, the use of combinatorial auctions helps to pro-
duce efficient allocations of goods because combina-
torial bidding allows the expression of more complex
synergies between auctioned items [48]. Together with
the use of supply functions and non-atomic proposi-
tions, consumers are able to accept energy from di-
verse UCs simultaneously, which, in turn, helps them
to maximise their benefits.

Against this background, this paper presents, for
the first time, an electricity retail market as a system
of simultaneous reverse combinatorial auctions with
supply-function bidding. Furthermore, we have devel-
oped the novel single and multi-item clearing algo-
rithms sPJ and mPJ that are optimal, as well as a strat-
egy to keep the multi-item algorithm within tractable
ranges for the real-world problem we face. Still, it is
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not enough to find the optimal allocation of demand
of a single customer if this demand is not consumed
according to the profile. Hence, we need a method
that coordinates the customers’ devices to find the best
consumption schedule with capacity to analyse the
submitted bids and find the best consumption profile
according to these bids. Thus, we have two interre-
lated combinatorial problems: finding the best sched-
ule among the possible consumption alternatives of de-
vices and finding the best demand allocation among
the submitted supply bids and bundle discounts. The
solution to this second problem has been presented in
[49] and [50].

Future work will focus on evaluating the whole elec-
tricity market system and on reducing the complexity
of the multi-item clearing algorithm with additional re-
strictions on combinatorial bidding. Moreover, a num-
ber of game-theoretic aspects should be reconsidered.
These include the suitability of the Vickrey-Clarke-
Groves mechanism (given the criticism about its ap-
plicability to real-world environments by Ausubel and
Milgrom in [51]) and the possibility of replacing it (for
instance with the Ausubel auction [51]). In this vein,
the work of Kahneman and Tversky [52,53,54] sug-
gests that human’s motivations and decision making
do not always follow mathematical (say game theoret-
ical) models and, therefore, it could be worth studying
this issue and its influence on both the pricing strate-
gies of suppliers and their real behaviour in our system
of simultaneous reverse combinatorial auctions. In the
same way, adopting the regions model as tool for re-
ducing the possibility of overbooking poses new ques-
tions regarding UC’s pricing strategies because both
with the heterogeneous and with the homogeneous
groups the auction would be multi-round. Finally, fur-
ther work should also focus on developing a simula-
tor to test both the electricity market and the electricity
consuming environment with real values. This would
lead us to an accurate assessment of the whole system
under concrete and realistic conditions.
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