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Modelling of photonic wire Bragg gratings
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Abstract. Some important properties of photonic wire Bragg grating structures have been investigated.
The design, obtained as a generalisation of the full-width gap grating, has been modelled using 3D
finite-difference time-domain simulations. Different types of stop-band have been observed. The impact
of the grating geometry on the lowest order (longest wavelength) stop-band has been investigated – and
has identified deeply indented configurations where reduction of the stop-bandwidth and of the reflec-
tivity occurred. Our computational results have been substantially validated by an experimental demon-
stration of the fundamental stop-band of photonic wire Bragg gratings fabricated on silicon-on-insulator
material. The accuracy of two distinct 2D computational models based on the effective index method
has also been studied – because of their inherently much greater rapidity and consequent utility for
approximate initial designs. A 2D plan-view model has been found to reproduce a large part of the
essential features of the spectral response of full 3D models.

Key words: finite-difference time-domain, optical waveguide modelling, photonic crystal, photonic wire,
silicon on insulator, waveguide grating

1. Introduction

In recent years the race for faster optical communication and data process-
ing, whether for switching or computation, has motivated research towards
devices with more functional elements directly interconnected on a single
chip - or even, with full processing on the chip, to truly integrated optical
circuits (Noda et al. 2002; Almeida et al. 2004; Kimerling et al. 2004).

For these objectives, planar photonic crystal (PhC) based devices have
been recognised as providing a possible implementation, since they offer
enhanced possibilities as compared with devices based on total internal
reflection (TIR). These possibilities come from the inherent complexity of
2D PhC band-structure and the additional effects of various types of defect
engineering. However, because their characteristics are ultimately produced
by multiple diffraction effects, PhCs have drawbacks in terms of fabrication
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complexity and significant propagation losses, unless the fabrication preci-
sion and quality are of the highest possible standard (Van Thourhout et al.
2005).

On the other hand, devices based on TIR, such as photonic wires
(PhWs) have demonstrated various elements such as 90◦ abrupt bends,
T-junctions (Espinola et al. 2001; Ahmad et al. 2002) and Mach-Zehnder
structures (Zhao et al. 1995). For wavelength selective functionalities, pho-
tonic wires with periodic variation of the waveguide-width and/or depth can
be employed (Krauss et al. 1997; Foresi et al. 1997; Lalanne and Hugonin
2003; Jugessur et al. 2004). Essentially two kinds of design for the mod-
ulation of the effective refractive index have been described: the ‘on-off’
design, (intuitively similar to a 1D periodic structure and exemplified by
side-wall gratings or full-width gap gratings), and the periodic insertion of
holes, (which can be considered as incorporating a form of 1D or 2D pho-
tonic crystal (Joannopoulos et al. 1995)). For all of these structures, sili-
con-on-insulator (SOI) provides an attractive choice of base material, even
potentially for devices requiring active functionality (Van Thourhout et al.
2005). Photonic wire structures have been employed to realise microcavities
with distributed Bragg reflector mirrors that can exhibit high reflectivity
and small size, because the refractive index can be strongly modulated
(between semiconductor and air values) in the central region of the wave-
guide, where the field is highest. On the other hand, photonic wire
grating structures are intuitively more prone to diffraction losses. For these
reasons, a design that enables an adjustable and more controllable reflec-
tivity is potentially important. Consideration of a waveguide with a period-
ically varied width (a generalisation of the full-width gap grating) provides
the necessary base for designing the structures required. Moreover, from a
fabrication point of view, the photonic wire Bragg grating makes for more
homogeneous dry-etch processing, since the ions employed are readily able
to escape from the interaction region, instead of being trapped in the PhC
holes.

Proper design of these PhW Bragg grating structures requires prelimi-
nary modelling to account for the many degrees of freedom allowed by
this structure – and we shall describe here a study on the properties of the
PhW Bragg grating. Starting from a photonic wire realised in silicon-on-
insulator material, the grating is obtained as a periodic insertion of recesses
into the wire. In the following sections a three dimensional model is inves-
tigated via the finite-difference time-domain (FDTD) method. The proper-
ties of the Bragg grating transmission spectrum will be investigated and the
dependence of its reflection properties on the geometrical parameters will
be analysed. Experimental results for the transmission stop-band behaviour
of fabricated structures will then be given to validate the theoretical results.
Finally, the accuracy of two distinct 2D reduced computational models will
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Fig. 1. Schematic of the cross-section of the photonic wire (a), and of the top view of the grating (b).

be studied, in order to find modelling tools that will enable the rapid real-
isation of approximate initial designs.

2. Design description

Considering SOI material with a 260 nm thick silicon (Si) core layer – and
a 1µm thick silica (SiO2) lower cladding layer, a 500 nm wide photonic
wire waveguide may be defined by a complete vertical etch through the
core, as shown schematically in Fig. 1a. This waveguide is intended to be
used at wavelengths around 1.52 µm, at which the refractive index of the
materials are 3.479 and 1.445, for Si and SiO2 respectively (Palik 1998).
The width d has been fixed at 500 nm, because considering the polarisation
(quasi-TE, with the main electric-field component parallel to the x-direc-
tion), and the wavelength of operation, a waveguide with this width sup-
ports only a single even transverse mode of propagation. As the device has
perfect transverse symmetry, this choice ensures operation in a mono-mode
regime that, it has been shown, can be maintained in conjunction with low
propagation losses in the fabricated waveguide (Van Thourhout et al. 2005).

The indented grating structure was obtained by the periodic insertion
of recesses on both sides. The description of the grating is defined by the
parameters: grating period (Λ), recess depth (rd), tooth length (tl), as shown
in Fig. 1b. In the following discussion, the behaviour of the cascade of
(input) wire, grating, (output) wire (as exemplified in Fig. 1b) will be pre-
sented.

3. 3D model

In order to describe the behaviour of the device, its spectral response was
calculated. For the simulation of the behaviour of the device, 3D-FDTD
code was employed (Taflove 1995). The method, which relies on the dis-
cretisation of Maxwell’s equations, provides the description of the time
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evolution of the electromagnetic field without any assumption about the
number and the characteristics of the propagating modes. For a review of
other algorithms capable of performing a similar analysis, the references
in (Čtyroký et al. 2002) should be consulted. In that paper, in a deeply-
etched, 1D-periodic, grating geometry, a high level of agreement between
the FDTD method and other numerical techniques has been demonstrated.

The cascade of input wire, grating, output wire was reproduced by a
mesh of δx = δy =20 nm and δz=19.5 nm. The simulation domain was ter-
minated by uniaxial perfectly matched layers (UPML). The excitation sec-
tion was set by the input wire at distance of 2 µm from the beginning of
the grating, together with an output port computing reflected field. Sym-
metrically, the output port computing transmitted field was set on the out-
put wire. The source employed was a sinusoid enveloped by a Gaussian
pulse, with a transverse profile corresponding to the fundamental mode of
the input wire waveguide: by Fast-Fourier Transforming the Ex field-com-
ponent sampled at the output ports, the frequency response of the device
under investigation was obtained, with just a single simulation run. To
guarantee a frequency resolution of about 20 GHz, the simulations were
run for 46000 time steps. To speed-up the computations, a parallel FDTD
code was used on a cluster of 8 Personal Computers (Bellanca et al. 1999).

In the following description, firstly the transmission and loss spectra of a
generic configuration are shown and analysed with the help of the field dis-
tribution. The loss spectrum (L) is defined as that part of the power which,
not being detected, is assumed to be scattered by the device – and is cal-
culated as L= I − (T +R), where I is the input power that is launched in
the waveguide in the fundamental mode (refer to the appendix for a more
detailed explanation). Then the influence of the variation of the geometry
will be explained.

When dealing with distributed reflectors, it is evident that the amount of
reflected power depends strongly on the number of periods. In the follow-
ing results, unless explicitly stated, the length of the grating is 16 periods:
this allows a good compromise between computational load and the visibil-
ity of the basic effects. The stop-band width is conveniently defined here as
the distance between the peaks of the Bragg ripples, and the centre wave-
length is then defined as their arithmetic mean wavelength.

Figure 2 shows the transmission and loss spectra of a generic configura-
tion obtained for Λ=390 nm, rd = 120 nm, tl = Λ/2. It is possible to distin-
guish various features in the spectrum – and these features will be analysed
in detail in the following discussion.

The first order stop-band is centred at λ0 = 1528 nm and has a width
�λ=93 nm. Within the stop-band the loss curve has a monotonic trend: in
particular the longer wavelengths show low total loss and the shorter wave-
lengths show higher loss. Plots of the field configuration of the Bloch mode
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Fig. 2. Transmission (T) and loss (L) spectra of a generic 3D configuration (Λ = 390 nm rd =120 nm
tl = 195 nm). For some wavelengths within the stop-bands the plots of Ex field absolute value are shown.
A full period is given by the distance between two maxima of the displayed absolute value.

supported by the grating at the loss minimum (λ = 1556 nm), at the mid-
dle point of the stop-band – and at the maximum loss point (λ=1498 nm)
show that, within the stop-band (λ=1528 nm), the stationary wave progres-
sively undergoes shifts in the position of its field maxima (which have a full
period of 2Λ) from the wider sections of the grating, to the shorter ones.

As the field becomes more spread along the (transverse) x-direction, its
mismatch with the incoming photonic wire mode increases. As a result, the
field is increasingly scattered at the interface between the two, as is depicted
in the figures. Further simulations on this device were performed with a
doubled length (32 periods) – and showed that the average loss within
the stop-band increases by 0.9%. These considerations allow the conclu-
sion that, within the stop-band, the grating Bloch mode is confined, and
the loss of power is due to the mismatch at the two interfaces between the
grating section and the unstructured photonic wire at its input and output.
Similar effects were reported in the case of planar photonic crystal geom-
etries (Sauvan et al. 2005). Further demonstration that the modes of the
wires waveguides and grating sections are confined is given by the absence
of leakage of power into the substrate: a simulation performed in the worst
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case (rd = 250 nm, i.e. a fully recessed grating profile), with a lower silica
cladding of doubled thickness (in 16 periods), shows a maximum variation
in the transmission as low as 0.1% over a bandwidth spanning from λ= 1
to λ = 2 µm. A second transmission stop-band is centred at λ0 = 1262 nm
and has the width �λ= 334 nm. Within this stop-band, the losses tend to
reach unity – and, in this case, the field distribution shows coupling to radi-
ative modes. A third transmission stop-band is centred at λ0 =1054 nm and
has the width �λ = 53 nm. Considering the behaviour of the losses and
the field distribution (the periodicity of the maxima is here Λ), it is evi-
dent that this is a higher order stop-band of the first order one centred at
λ0 =1528 nm. This kind of repetition of stop-bands then goes further as the
wavelength decreases.

As a partial conclusion, this grating configuration shows two kinds of
stop-bands, one in which confined modes are coupled – and one in which
radiative modes are coupled. For practical applications, the first order stop-
band can be used as a reflector, since the confined Bloch modes can be
combined with the mono-mode operating regime of the PhW waveguide.

The behaviour of this stop-band is therefore investigated further for its
dependence on variations in the geometry of the grating. To do so, a
simplified model of the interaction that occurs within the grating will be
used. The aim is to provide a better vision of the properties of the grat-
ing itself – without the effect of the input wire waveguide, which so far
has been understood as generating scattering losses at the interfaces. Sup-
posing this to be the only effect of the wire outside the grating (Palamaru
and Lalanne 2001), a simplified model is described in the appendix – and
yields the reflectance of the grating itself. According to the model and con-
sidering unitary input power (I =1), the transmission in that case would be
TG =T/(1−L), and the reflection would be RG =1−TG.

For the analysis of the geometrical variations, rd and tl will be the free
parameters. The grating period Λ is kept constant for the sake of simplicity:
it is assumed, as a first approximation, to be only a scaling parameter,
the effect of which would result mainly in shifting the spectral features,
with reduced distortion. This assumption is justified from basic photonic
crystal theory (Joannopoulos et al. 1995). Furthermore, the width of the
wire (d) is also considered as fixed, since it is designed for operation at
1.52 µm. As for photonic crystal structures, the filling factor ( ff ) can be
defined as the ratio of the air fraction in a period – and is then given by
ff =2rd(Λ− t l)/(d ·Λ).

Figure 3 shows a generic representation of the evolution of the character-
istics of the first order stop-band, respectively as a function of rd (a) and tl
(b). Common features can be found: with increasing filling factor, accord-
ing to the reduction of the average index value per period, the position of
the stop-band (in the figure the stop-band edges are shown as filled circles)
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Fig. 3. First order stop-band behaviour according to variation of: a) recess depth (Λ = 390 nm,
tl = 195 nm), and b) tooth length (Λ= 390 nm, rd = 150 nm). The values have been calculated using the
simplified grating model.

shifts to shorter wavelengths. On the contrary the width slowly varies and
becomes larger for the highest values of both rd and tl. The average loss
in the stop-band (triangles) increases with the filling factor, showing the
increasing mismatch between the Bloch mode of the grating and the mode
of the wire waveguide. In the figures, the reflectance of the grating (con-
sidered as the maximum reflectance value within the stop-band), according
to the approximate model (RG), is shown (the crosses represent calculated
points and the connecting lines are mainly as an aid to visualisation). In
the regions around rd = 160 nm and tl = 170 nm the geometrical configura-
tion makes the multiple reflections in each period of the grating become
progressively less destructive, thus enhancing transmission, as is clearly vis-
ible by a drop in the reflectance and a reduction in the width of the
stop-band.

It can be concluded that, even when the corrugation of the grating is
as small as rd = 100 nm, the 16-period long grating can operate with high
reflectivity. On the other hand, losses quickly become large as the fill-
ing factor increases, showing the need for an engineered interface with
the unstructured wire waveguide in a manner similar to that used in refs
(Akahane et al. 2005; Englund et al. 2005; Sauvan et al. 2005). Finally,
the presence of geometries in which the interplay of multiple reflections
enhances transmission has been evidenced.

4. Experimental results

In order to obtain validation of the theoretical results, fabrication of the
gratings was performed using electron-beam lithography and dry-etching



140 M. GNAN ET AL.

1460 1480 1500 1520 1540 1560 1580
0.0

0.2

0.4

0.6

0.8

 Λ=330nm, rd=150nm, tl=110nm
 Λ=330nm, rd=250nm, tl=83nm

T
ra

ns
m

is
si

on
 (

a.
u.

)

Wavelength (nm)

(a) (b)

Fig. 4. (a) Scanning electron microscope micrograph of a PhW Bragg grating fabricated on SOI; the
inset shows the section of the wire: it is possible to recognise the silicon core not completely etched
through, and the layer of silica left on top of the wire. (b) Measured transmission of the fabricated PhW
Bragg gratings showing stop-band in the 1.52 µm spectral region: the stop-band position and width vary
depending on the geometrical parameters which are specified in the legend.

technologies. As will be described in detail in a future publication, because
of the actual details of the fabrication processes, the cross-sectional geom-
etry of the photonic wires and grating sections was different from those
in the 3D computational model described above. As shown in the micro-
graph in Fig. 4, a silica layer with an estimated thickness of 35 nm was
left on top of the silicon core and, furthermore, the etching of the silicon
was incomplete – and left ∼60 nm of silicon on top of the lower cladding.
Even though the fabricated structure was different from the simulations, it
showed a clear stop-band, as shown in Fig. 4, which gives the experimental
transmission results. To obtain these results TE polarised light was end-fire-
coupled into and out of the waveguides, and the output light was detected
using a germanium photodiode.

The two curves for the measurements show that, even if the fabricated
device deviates from the perfection of the original model, there is, in each
case, a stop-band that is determined by its parameters. Obviously, the abso-
lute values of stop-bandwidth and position are different from those already
shown, since the actual device is different. Nevertheless the measurement
gives a positive indication for the probable existence of the other stop-
bands predicted by the computational simulation.

As a partial conclusion, the characteristic effect of the grating is strong
enough to be clearly apparent, even when the dimensions realised drift
away from the initial design. But the behaviour of the grating exhibits sen-
sitivity to the position and width of the stop-band. Furthermore, our work
demonstrates the intrinsic limits of the computational modelling process:
whenever agreement with measurements is sought, the model has to be
adapted to the actual dimensions of the fabricated structure. In practice
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obtaining agreement has to become an iterative sequence obtained after
many repetitions of the fabrication processes and adaptation of the model.
In that sense, time becomes an important parameter, since there may need
to be several cyclic repetitions of the simulation and fabrication processes.
Therefore, since approximation is unavoidable, the most rapid computa-
tions, even if quite approximate, should be used, at least in the early stages
of the design process. We shall therefore move to investigations of whether
it is possible to study this kind of structure with a reduced computational
model. In particular, we shall study a 2D computational model based on
the effective index method, which is a widely diffused and much used gen-
eral approach.

5. Reduced models

The effective index method is one of the most common ways to reduce the
dimensionality from 3D to 2D. The basic concept for this method is to
replace the 3D representation of the waveguide by an equivalent 2D wave-
guide, in which the core is represented by the effective refractive index of
a slab guide that is obtained by considering the remaining dimension of
the problem. This dimension is characteristically the waveguide thickness,
along a direction perpendicular to the plane of the substrate surface. In the
case of a waveguide with a rectangular cross-section, the task is to solve
the electromagnetic problem of a reduced structure, thus leading to approx-
imation errors that are greater in absolute magnitude for the case of strong
confinement. The method was originally proposed by Knox and Toulios
as a simplified quasi-analytical means to model waveguides in 1970 (Knox
and Toulios 1970). Since then the effective index method has been used
many times and many improvements within the basic approach have been
proposed (Chiang 1996; Han et al. 2003).

Figure 5 shows the three ‘natural’ cross-sections for 2D analysis of the
structure, considering the directions of the three axes that provide a refer-
ence for the analysis. Since part (a) corresponds to a cross-section of the
waveguide and does not provide any information on the grating part, the
plan view (part (b)) and the axial cross section (part (c)) can be used as 2D
approximations of the structure. For the two resulting modelling problems,
an analysis similar to the one already shown for the 3D model has been
performed and the transmission spectrum of a generic configuration has
been obtained, followed by further investigations of the behaviour of the
fundamental order stop-band according to variations of the geometry. In
order to allow for a simple comparison with the 3D data, the electromag-
netic simulation still used the FDTD method- but now with two character-
istic dimensions. The issue of accuracy deserves a remark: as the approach
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Fig. 5. Three possible orthogonal cross-sections of the PhW Bragg grating: (a) waveguide cross section,
(b) plan view, (c) axial cross section.

used here has been to find a simple model that can approximate the struc-
ture, and the 2D approach is inherently prone to approximation errors,
there is little point in using a very accurate mesh, which implies that the
emphasis can be placed on reducing the computation time. The error intro-
duced by using a relatively coarse mesh in the 2D computation can in fact
be considered as contained within the 2D approximation itself - and could
be reduced by an iterative optimisation stage.

5.1. 2D plan-view model

In the 2D plan-view model, a 2D simulation of the propagation in the
zx-plane is performed with a structure obtained from the projection on
to that plane (Fig. 5b). The device is then modulated using a refractive
index (nplan) that is the value for the slab waveguide obtained by consider-
ing the distribution in the y-direction (the vertical direction), with regions
defined as: (i) an infinite upper-cladding of air, (ii) a 260 nm thick silicon
core and (iii) an infinite silica lower cladding, as already stated. (The actual
silica lower cladding thickness of 1µm is thick enough for this purpose).
As before the central wavelength of operation is λ = 1.52 µm, which gives
an effective refractive index value of 2.97. Laterally the index is considered
to be 1.
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Fig. 6. Comparison of transmission of 2D plan view model (continuous line) and full 3D model (dashed
line).
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Fig. 7. Comparison of the properties of the first order stop-band according to 3D (filled symbols)
and 2D (empty symbols) plan view models. The geometry is varied by: (a) recess depth (Λ = 390 nm,
tl = 195 nm), and (b) tooth length (Λ=390 nm, rd = 150 nm). The values have been calculated using the
simplified grating model. The empty and shaded rectangles represent the regions of reduced reflectivity
for the 3D and 2D-plan view models respectively.

Considering the same geometry analysed in section 3 for the 3D case
(Fig. 2) – Fig. 6 shows the transmission spectra for the 2D plan-view model
superimposed on the 3D case. It is possible to distinguish all the stop-bands
of the 3D computation replicated in the 2D one, but with some distortion,
as well as translation of the stop-band and other feature positions. This
relative behaviour is expected quite simply because the effective refractive
index determined by the waveguide dimension is a strong function of wave-
length - while we have taken it to be constant. Specifically for the lower
order stop-band, this drift compared to the 3D values is quantified as 3.6%
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(57 nm) for the stop-band centre λ0, and 44% (41 nm) for the stop-band-
width �λ. There are several ways in which the relative behaviour between
the 2D and 3D simulations can be compared. In Fig. 7 we have consid-
ered the properties of the lowest order stop-band according to the varia-
tion of rd (a), and tl (b), with Λ and d fixed at the same values shown for
Fig. 3. As for the 3D case, the calculated values correspond to the simpli-
fied model described in the appendix. The figure shows that the stop-band
is always shifted with a distortion that reduces for higher values of filling
factor – and that the losses are reduced (by almost one half) in the 2D
case. Moreover, as for the 3D case, the behaviour of the maximum reflec-
tivity exhibits a region of reduced values (exemplified by shaded rectangles)
corresponding to rd ∼ 190 nm and tl ∼ 140 nm. In that case, the drift from
the 3D values (exemplified by empty rectangles) is 18.7% for rd and 17.6%
for tl.

5.2. 2D axial cross section analysis

In the 2D axial cross-section model (Fig. 5c), a 2D simulation of the prop-
agation in the zy-plane is performed with a structure obtained from the
projection on to that plane. The device is then modulated using a refrac-
tive index that is the value for the slab waveguide obtained by considering
the distribution in the x-direction. The structure is more complex than in
the case of the plan-view as the index distribution (considered along the
x-direction) varies more strongly in the zy-plane. The area corresponding to
the projection of the wire is assigned a refractive index (naxW) that is the
effective refractive index of a slab consisting of a 500 nm (= d) thick sili-
con layer in air. The recessed regions of the wire have a refractive index
(naxR) equal to that of a similar slab with a core thickness reduced to
d − 2rd – and the silica cladding and air regions preserve their refractive
index.

Considering the same geometry analysed in section 3 for the 3D case
(Fig. 2) – Fig. 8a shows the transmission spectra for the 2D axial cross-sec-
tion model superimposed on the 3D one. In the curve for the two-dimen-
sional model, it is possible to distinguish two major stop-bands, around
λ = 1.7µm and λ = 0.9µm, that are shifted and roughly three times as
wide as the corresponding ones in the 3D model. Moreover, considering
variations of the geometry (i.e. of the value of naxR in Fig. 5c), the situ-
ation does not improve, since the stop-bandwidth difference remains high
(Fig. 8b) – and the geometries that lead to reduced reflectivity cannot be
modelled.

As a conclusion about the 2D modelling approach, considerable differ-
ences of behaviour between the two models have been evidenced, which
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Fig. 8. (a) Comparison between transmission of 2D axial cross-section and full 3D models. (b) Trans-
mission spectra according to two different values of rd.

can be attributed to the different properties of the sets of planar modes
created by the two equivalent geometries – and to the levels of approxima-
tion introduced by the effective index method (which is related to the order
in which the cross-sections of the waveguide are considered (Chiang 1996)).

The 2D plan-view model appears to reflect the full 3D model much more
closely than the 2D axial-cross section one. In fact it reproduces the major
features of the whole spectrum and, with respect to the lower order stop-
band, it maintains a similar level of accuracy when the geometry varies,
even reproducing the reductions of reflection. However, the overall devi-
ation of the 2D plan-view model from the 3D model was not negligible
(3.6% of the 3D stop-band centre wavelength, and 44% of the 3D stop-
bandwidth, for our example).

Even if these discrepancies are considered to be quite large, an iterated
optimisation of the model to account for factors such as fabrication process
drifts (for example an optimisation that uses different equivalent refrac-
tive indexes or that adjusts dimensions in the equivalent geometries) may
improve the results for the 2D model bringing errors down to values which
can be considered tolerable for an initial design stage.

6. Conclusions

The properties of photonic wire Bragg grating structures have been stud-
ied. Their design, obtained as a generalisation of the full-width gap grating,
has been modelled and simulated – using 3D FDTD algorithm. Various
kinds of stop-band have been identified, with the lowest order band being
investigated in detail and showing the dependence of its width, position and
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Fig. 9. Schematic of the power flow within the PhW Bragg grating operating as a reflector.

maximum reflectivity according to the geometry. Even for small corrugation
levels, the reflectivity is large – thus enabling short reflector structures, while
the existence of geometries for which the interplay of multiple reflections
enhances transmission has been demonstrated. The main source of scatter-
ing has been identified as being the mismatch between the mode of the wire
and the Bloch mode of the grating. These results have been validated by
experimental demonstration of measured stop-bands in PhW Bragg gratings
fabricated on SOI material. Finally, in order to find modelling tools that
enable the rapid realisation of approximate initial designs, the accuracy of
two distinct 2D reduced computational models based on the effective index
method has been studied. Our results show that only a 2D plan-view model
is required for initial approximated studies, since it reproduces all the essen-
tial features found in the spectra of full 3D models.
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Appendix

In order to isolate the behaviour of the PhW Bragg grating when used
as a reflector, a calculation similar to the transfer matrix formalism can
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be performed. The whole structure is divided into three blocks: the input
wire, the grating and the output wire. They sustain guided and radiative
modes for which the coupling is evaluated at their interfaces through over-
lap integrals (correlation) (Bienstman and Baets 2001). Figure 9 exempli-
fies the structure and the following power flow description: the guided input
power (I ) is converted from a wire mode into a forward propagating Bloch
mode, causing some coupling to radiative modes (i.e., losses, L1); the for-
ward and backward Bloch modes couple together without losses, and the
power which reaches the end of the grating is attenuated by a factor TG,
which stands as the transmittance of the isolated grating. The mode con-
version into the output wire waveguide causes further losses (L2), resulting
in the total detected output power T . At the same time the power reflected
by the grating (RGIG = (1 −TG)IG), is back-coupled into a wire waveguide
mode, resulting in the detected reflectance R.

Within this model, the reflection that is directly produced by the conver-
sion of the wire waveguide mode into the grating Bloch mode (and vice-versa)
is neglected at both interfaces. This assumption is quite reasonable for small
filling factors when the shape discontinuity is smaller – and proves to be still
valid for larger ff (Palamaru and Lalanne 2001; Sauvan et al. 2005).

The following relationships can therefore be written:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R +T +L= I

IG = I −L1

T =TGIG −L2

R =RGIG −L3

L1 +L2 +L3 =L

L1 =αI

L2 =αTGIG

L3 =αRGIG

where α is linked to the value of the overlap integral between the wire and
grating Bloch mode (Palamaru and Lalanne 2001).

The equations can be solved and the transmittance and the reflectance of
the isolated grating are found to be:

{
TG =T/(R +T )=T/(I −L);
RG =R/(R +T )=R/(I −L);
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Krauss, T.F., B. Vögele, C.R. Stanley and R.M. De la Rue. IEEE Photonics Technol. Lett. 9 176, 1997.
Lalanne, P. and J.P. Hugonin. IEEE J. Quantum Electron. 39 1430, 2003.
Noda, S., M. Imada, M. Okano, S. Ogawa, M. Mochizuki and A. Chutinan. IEEE J. Quantum Electron.

38 726, 2002.
Palamaru, M. and P. Lalanne. Appl. Phys. Lett. 78 1466, 2001.
Palik, E.D. Handbook of optical constants of solids Academic Press, San Diego, 1998.
Sauvan, C., G. Lecamp, P. Lalanne and J.P. Hugonin. Opt. Expr. 13 245, 2005.
Taflove, A. Computational electrodynamics – The Finite Difference Time-Domain Method Artech House,

Norwood, 1995.
Van Thourhout, D., P. Dumon, W. Bogaerts, G. Roelkens, D. Taillaert, G. Priem and R. Baets. Proceed-

ings on 31st European Conference on Optical Communications (ECOC), Glasgow, 25–29 September
2005, 2, 241, 2005.

Zhao, C.Z., G.Z. Li, E.K. Liu, Y. Gao and X.D. Liu. Appl. Phys. Lett. 67 2448, 1995.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


