NARX-based nonlinear system identification using orthogonal least squares basis hunting

Chen, S., Wang, X.X. and Harris, C.J. (2008) NARX-based nonlinear system identification using orthogonal least squares basis hunting. IEEE Transactions on Control Systems Technology, 16, (1), 78-84. (doi:10.1109/TCST.2007.899728).


[img] PDF (manuscript)
Available under License Creative Commons Public Domain Dedication.

Download (294Kb)


An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, which places the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method is adopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance

Item Type: Article
ISSNs: 1063-6536
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Comms, Signal Processing & Control
ePrint ID: 264991
Date Deposited: 02 Jan 2008 09:14
Last Modified: 27 Mar 2014 20:09
Further Information:Google Scholar
ISI Citation Count:16

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics