Using String Kernels to Identify Famous Performers from their Playing Style

Saunders, Craig, Hardoon, David, Shawe-Taylor, John and Widmer, Gerhard (2008) Using String Kernels to Identify Famous Performers from their Playing Style. Intelligent Data Analysis, 12, (4)


Full text not available from this repository.


In this paper we show a novel application of string kernels: that is to the problem of recognising famous pianists from their style of playing. The characteristics of performers playing the same piece are obtained from changes in beat-level tempo and beat-level loudness, which over the time of the piece form a performance worm. From such worms, general performance alphabets can be derived, and pianists’ performances can then be represented as strings. We show that when using the string kernel on this data, both kernel partial least squares and Support Vector Machines outperform the current best results. Furthermore we suggest a new method of obtaining feature directions from the Kernel Partial Least Squares algorithm and show that this can deliver better performance than methods previously used in the literature when used in conjunction with a Support Vector Machine.

Item Type: Article
Additional Information: To appear
Divisions : Faculty of Physical Sciences and Engineering > Electronics and Computer Science
ePrint ID: 265198
Accepted Date and Publication Date:
Date Deposited: 23 Feb 2008 16:00
Last Modified: 31 Mar 2016 14:10
Further Information:Google Scholar

Actions (login required)

View Item View Item