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Abstract

This report considers the requirement for fast, efficient, and scalable triple stores as part of the effort to
produce the Semantic Web. It summarises relevant information in the major background field of
Database Management Systems (DBMS), and provides an overview of the techniques currently in use
amongst the triple store community. The report concludes that for individuals and organisations to be
willing to provide large amounts of information as openly-accessible nodes on the Semantic Web,
storage and querying of the data must be cheaper and faster than it is currently. Experiences from the
DBMS field can be used to maximise triple store performance, and suggestions are provided for lines of
investigation in areas of storage, indexing, and query optimisation. Finally, work packages are provided
describing expected timetables for further study of these topics.
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1 Introduction

This is a nine month progress report detailing my research into triple stores, specifically focussing on the
performance issues found in these storage engines and their potential resolution.

Resource Description Framework (RDF) is one of the fundamental languages produced by the W3C to
realise the Semantic Web vision (Berners-Lee, Hendler et al. 2001). RDF is a means for expressing
knowledge in a generic manner. It is fundamentally based upon the concept of triples, that is, statements
in the form of subject-predicate-object. This format allows the creation of an arbitrarily-shaped graph of
knowledge, and is used as a basis for other languages in the W3C’s roadmap such as RDF Schema
(RDFS) (Lassila, Swick et al. 1999) and the Web Ontology Language (OWL) (Patel-Schneider, Hayes et
al. 2003). It is designed to provide a flexible means to support simple data aggregation, discovery, and
interchange. The ‘layer cake’ of semantic web technologies can be seen in Figure 1.
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Figure 1: Semantic Web Layer Cake'

Since RDF triples do not enforce a limited structure upon data, RDF is ideal for applications where the
structure of data added to the store is not well known in advance, is liable to change rapidly, or where
there are many different structures being linked together, as found in data aggregation projects. Further,
the RDF Schema and OWL specifications built on top of RDF can allow the inference of new data from
that originally asserted into a store. Ultimately, of course, RDF provides support for the Semantic Web,
and the massive quantity of aggregated knowledge that this implies. The requirement for large-scale
storage of RDF data is clear. Triple stores are the database management systems (DBMS) of the
Semantic Web world, and exist to support bulk storage and querying of RDF data.

RDE(S) is experiencing use in e-science projects (Taylor, Gledhill et al. 2005) (Taylor, Gledhill et al.
2006), particularly in the area of bioinformatics, which often use RDF as a data interchange format.
Bioinformatics applications can produce extremely large amounts of data: the UniProt® dataset, for
example, sums around 262 million triples. The use of RDF in this area is sometimes limited to data
exchange rather than data storage, as this amount of data is impractical for performing fast queries under
current stores. Further, many faceted browsers, such as mSpace (Smith, Owens et al. 2005) and CS
AKTive Space (Shadbolt, Gibbins et al. 2004), use RDF as their knowledge base language. RDF offers a
data model that is significantly more flexible than that seen in previous models, which is useful in
situations where the structure of the data being produced is not well known in advance, or is liable to
change rapidly. In situations such as this working with existing databases can become challenging, due
to their expectation of consistent data structure.

While progress on producing language specifications has been swift, it takes time for supporting
technologies to mature: the most powerful triple stores as of writing are capable of storing around two
billion RDF statements, or in the order of tens of gigabytes of data (Errling 2006). However, pattern-
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match queries performed over much smaller datasets can produce unacceptable performance (Smith,
Owens et al. 2007), posing a significant challenge as datasets grow larger. This contrasts with
commercial relational DBMS (RDBMS) technologies which are capable of storing terabytes of data
whilst preserving real time query performance for many concurrent users.

This report describes the utility of the Semantic Web and its various related data representation
languages, the unusual problems that RDF brings to the area of data storage, the current state of the art in
terms of RDF storage technology, and goes on to describe how lessons learned from the RDBMS world
might be applicable to the problem of storing triples. Finally, we consider how the needs of this new
data environment can change the focus of storage optimisation.

2 Background & Research Motivation

This section describes the Semantic Web and some of its backing technologies, presenting the case for
supporting the development effort in the form of satisfying the need for advanced data storage
technologies.

2.1 The Semantic Web

The Semantic Web (Berners-Lee, Hendler et al. 2001) describes a large-scale effort to bring machine-
processable data to the World Wide Web. This is intended to allow machines to be able to ‘understand’
and simply traverse the web, and enable them to communicate with each other, even in situations where
they were not expressly designed to, through the power of shared understanding. The advantages that
can be found in this endeavour are extraordinary: in particular, the long-awaited potential of software
agents could be realised (Hendler 2001). Consider the following example:

Having decided to become healthier, I am undertaking a new fitness regime at the gym. As well as
regular exercise, my trainer has recommended me a more healthy diet plan. As a member of the gym, I
have complementary access to a large selection of recipes. Since I feel like trying something new, I ask
my agent (accessed through a PDA) to pick one for me. The agent, knowing the foods that I particularly
like and dislike, works on finding me a recipe. It can do this because metadata on the recipes is held in a
triple store. This allows the agent to query for recipes that use ingredients or cooking methods that I
might particularly enjoy. It then presents the best option to me for confirmation, along with a note that I
will need to buy more ingredients to be able to cook it. It sounds good, so I accept, and ask the agent to
tell me where I can get the items I need from. The agent, knowing that the weather is good and that I like
to walk, looks for shops in the immediate area, and suggests two in close proximity that between them
should stock everything that I need.

This example shows a variety of benefits, in the elimination of a great deal of drudgery from my life. Of
course, if I want to perform any tasks, such as picking the recipe myself, I can, but if I choose I can have
large parts of my life automated for me. This example is enabled by the intersection of two concepts:
intelligent agents and the semantic web. The agent learns about my preferences, and understands certain
concepts such as food, recipe, shop, and weather. Other services on the internet also understand some of
these concepts: the gym’s agent understands recipes, while the BBC’s agent might understand weather
(as well as the date and time that I want to know the weather for). The shops’ agents understand various
kinds of food and whether something is in stock. My agent is able to communicate through these shared
understandings to bring about the scenario described above.

Of course, the agents are the things that ‘understand’ the concepts. However, the process of sharing a
vocabulary such that agents can communicate about concepts they understand, and the mechanism for
publishing that data, are brought about through the Semantic Web. The Semantic Web has innumerable
other uses: researchers on the Semantic Grid (De Roure, Jennings et al. 2005) are using it to advertise the
availability of computing resources. E-Science researchers (Taylor, Gledhill et al. 2006) are using
Semantic Web languages to exchange and aggregate data. There are Semantic Web browsers such as
Tabulator (Berners-Lee, Chen et al. 2006) that offer individuals the ability to browse Semantic Web data
for themselves. Faceted browsers like mSpace (Smith, Owens et al. 2005) use Semantic Web data to
provide a rich browsing experience, releasing information that would have had to be painstakingly
manually collated previously. These are just a subset of the current uses of the Semantic Web, and the
potential uses of the future are limited only by the imagination - and the capability of the backing
technologies to support them.



The development of Semantic Web languages is proceeding apace: of the Semantic Web layer cake, as
seen in Figure 1, RDF, RDF-S, OWL, and SPARQL (SPARQL Protocol and RDF Query Language)
have reached a stable state. A simplistic explanation of these is that RDF provides the ability to express
data, SPARQL provides a mechanism for querying this data, while RDF-S and OWL add to the ability to
share concepts (for example, providing mappings from one concept to another), as well as infer new data
from that already present.

2.2 Data Representation

RDF is, as previously mentioned, the underpinning language for data expression in the Semantic Web
(Lassila, Swick et al. 1999). It is expressed in the simple manner of a triple, composed of subject,
predicate, and object. This is roughly analogous to the subject verb and object of a simple sentence
(Berners-Lee, Hendler et al. 2001): for example:

Subject: Alisdair
Predicate: Has Gender
Object: Male

This is expressed visually in figure 2.

Has Gender

Figure 2: Triple concept

RDF triples are built out of Uniform Resource Identifiers (URIs) and literals, as seen in figure 1. A URI
is a unique identifier that denotes a concept: for example, the URI for a dog might be
http://www.example.com/animals/dog. A literal is simply a string, such as “Alisdair Owens”, with
optional additions denoting language (such as English or French) and datatype (any supported by XML,
such as int and datetime). Ideally, a URI is unique (no other concepts have the same URI), and each
concept only has one URI to describe it. However, while uniqueness is relatively simple to ensure
through naming conventions, it is very likely that any concept will have more than one URI associated
with it, through the creators of the URI being unaware of the existence of others.

The use of URIs in RDF makes it easy to find documents that relate to information that I am interested in
and understand. For example, if I (or my piece of software) am looking for information about dogs, and

I know the URI http://www.example.com/animals/dog refers to the concept of a dog, I know that a triple
containing that URI is certainly relevant to me.

In an RDF triple, the subject and predicate are guaranteed to be URISs, as they must refer to concepts (if I

wish to talk about myself, it makes no sense to assert facts about the string “Alisdair Owens”, whereas it

does make sense to do so about my URI). The object can be either a URI or a literal. URISs are related to
each other through their expression in triples. This is shown in Figure 3.

http://www.example.com/people/Alisdair http://www.example.com/has-gender http://www.example.com/genders/male

Figure 3: RDF Triple

An RDF document is simply a set of RDF triples. As these triples refer to URISs, relationships between
concepts are described, and a directed graph of information is created. This is a natural way to describe
most information (Berners-Lee, Hendler et al. 2001). This is illustrated in Figure 4, where for simplicity
we use the prefix ‘ex:’ to replace ‘http://www.example.com/’. There is no limit to the structure of this
graph, beyond the need to express the data in triples format.



ex:organisations/UoS

ex:works-for

ex:people/Alisdair

ex:has-brother  ex:has-sister

ex:people/Sally

Figure 4: RDF graph

ex:has-gender ex:genders/Male

RDF, then, offers a great deal of power and flexibility. It offers the ability to specify concepts and link
them together into an unlimited larger graph of data. As a storage language, this affords several
advantages:

e RDF supports simple data aggregation: linking data sources together can simply be a matter of
adding a few additional triples specifying relationships between the concepts. This is
potentially much easier than the complicated schema realignment that might have to occur in a
standard data repository such as an RDBMS.

e The use of URIs offers the opportunity to discover new data, as the same URI is (conceptually)
used to refer to a concept, across every document in which that concept is contained. While this
ideal will usually not be the case, any degree of URI reuse is of benefit.

e  Since the data graph is unlimited, with no requirements for data to be or not be present, RDF
offers a great deal of flexibility. There are no requirements for tightly defined data schemas as
seen in environments such as RDBMSs, which is a significant benefit when the structure of the
data is not well known in advance (Taylor, Gledhill et al. 2006).

e RDF offers a single language for representing virtually any knowledge. This is useful in terms
of allowing reuse of parsing and knowledge extraction engines.

2.2.1 RDFS & OWL

While not the focus of this document, it is worthwhile to give a summary of the languages used to
perform inference on the Semantic Web. RDF Schema is an extension to RDF that adds some basic
constructs (Lassila, Swick et al. 1999). Most importantly, this includes classes and subclasses, which
allows statements about something’s fype. This means I could make statements such as “Greg has a type
of ‘Human’”, and, with an additional statement that a ‘Human’ is a subclass of the type ‘Animal’, infer
that Greg is an Animal. Further additions include property domains and ranges, allowing us to make
statements about the class of objects that can be inserted as the subject and object of particular properties.
Note that this does not restrict any data from being asserted: it merely allows reasoning to be performed.
For example, if | have a property ‘Plays Instrument’, which has a domain of ‘Musician’ and a range of
‘Musical Instrument’, and I assert the data ‘Greg Plays Instrument Trumpet’, it can be inferred that Greg
is a Musician, and Trumpet is a Musical Instrument. There are a variety of other useful inclusions, such
as the standardisation of the property ‘rdfs:label’ to describe human readable versions of a resource’s
name.

OWL adds much more wide ranging capabilities, aimed at providing computers with the ability to share
not just information, but vocabulary (Patel-Schneider, Hayes et al. 2003). This means that potentially,
even if computers do not share the same understood ontologies, they might be able to communicate by
expressing concepts and relations that they do understand. OWL adds extensive reasoning capabilities,
varying within the three sublanguages:

e OWL Lite, which offers minimal reasoning capabilities designed to support classification
hierarchies. This enables reasoners to work with OWL Lite ontologies and produce relatively
fast results.



e OWL DL, which offers a great deal of expressiveness, along with guarantees that all reasoning
will be both complete and computable.

e  OWL Full, which offers maximum expressiveness, with no guarantees that reasoning can be
concluded in finite time.

Clearly, for the purposes of reasoning these sublanguages become progressively more powerful and
harder to work with.

2.3 Data Extraction

Given a standard set of data representation languages, it is of clear use to have a standard mechanism for
extracting subsets of information from documents expressed in them. There are a variety of query
specifications created to accomplish this, with the SPARQL standard being the W3C’s recommendation
(Prud'hommeaux and Seaborne 2006). SPARQL, like other languages of its kind, works by allowing
users to specify a graph pattern containing variables, which is then matched against a given data source,
with all matching datasets returned. For example:

SELECT ?x
WHERE {
7x <http://www.example.com/has-gender> <http://www.example.com/male>

}
Figure 5: SPARQL Query

The query shown in Figure 5 would select all unique values ?x, where there is a triple that matches any
subject 7x, and the specified predicate and object (in this case, anything with a gender of male). The data
is returned in a standard XML-based format.

This can be built up into a pattern longer than one triple in length. In Figure 6, there are two constraints,
which ought to return any URISs representing a human male:

SELECT ?x

WHERE {
7x <http://www.example.com/has-gender> <http://www.example.com/male>
7x <http://www.example.com/has-species> <http://www.example.com/human>

}
Figure 6: SPARQL triple pattern

These query patterns are the fundamental operation in SPARQL, although there are of course
complications that aid usability, such as the ability to specify some parts of the pattern as optional, and
the ability to order the results. In general, though, SPARQL is a relatively simple language when
compared to SQL.

The benefit to be gained through the use of a standard query language is clear: potentially, a human or
computer could connect to any open data repository, make a very specific request for information, and
retrieve machine-processable data. This is in stark contrast to the web of today, which machines have a
great deal of difficulty traversing in a meaningful manner, and which even humans can have difficulty in
finding relevant information.

2.4 Triple Stores

Clearly, in the case of small datasets, it may be sufficient to simply statically store an RDF(S) file, and
allow clients to process the data as they wish. However, there will also be many occasions where a large
repository of data is in existence, and it is impractical to simply download and process it. Triple stores
are the DBMSs of the Semantic Web world, and allow a repository of RDF data to be queried in place,
using a language such as SPARQL.

While the purpose of triple stores is similar to that of conventional database systems such as the
dominant RDBMSs, Object-Relational DBMSs (ORDBMS) Object-Oriented DBMSs (OODBMS), RDF
graph storage and querying bears notable differences in terms of the structure of the data that is stored.
Whereas existing database systems largely require that the data structures that can be asserted into them
(the schema of the data) are defined prior to assertion of actual data (Date 1975), triple stores allow
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arbitrary assertion of knowledge in the form of triples. While the very concept of a triple is a data
schema in and of itself, it is extremely loose compared to that expected to be defined within previous
database systems.

There are important reasons why it is necessary to explicitly define schema in existing database systems:

e It defines what data is expected to be asserted into the system. Since most current databases act
as knowledge stores for a fixed set of applications, this is usually both reasonable and useful: it
prevents the assertion of data of an incorrect structure for those applications to use, and
preserves data integrity (Date 1975).

e It offers cheap, detailed information to the DBMS on how the data is structured: how it might
best be laid down onto disk, how queries can be optimised using knowledge of indexes, row
lengths, etc. (Date 1975) (Stonebraker, Held et al. 1976)

While the requirement for strict schema definition is usually of use in traditional database situations, the
situation regarding RDF storage is rather different: it is explicitly designed to be as unconstrained as
possible. As previously noted, this has advantages in terms of accessing arbitrary data sources on the
Semantic Web, interoperation between heterogeneous data sources, and situations where the data is of
unknown or constantly changing structure (Taylor, Gledhill et al. 2006). However, this generates
difficulties in terms of optimising stores such that they are capable of storing large numbers of triples,
and querying them in an efficient period of time (Carroll, Dickinson et al. 2004) (Smith, Owens et al.
2007). Current triple stores are restricted to storing orders of magnitude less data than relational systems
(Lee 2004).

As noted, an individual installation of a traditional DBMS product is likely to have a known set of
applications running upon it. Thus, the access patterns can be anticipated, and the database can be
optimised for those patterns through the use of indexes and other tactics. While arbitrary access is
supported, this can be massively slower than doing so through the predicted routes. In contrast, an open
data node (a store that is publicly accessible) on the Semantic Web might be used in a variety of
manners. It could be accessed in a completely arbitrary manner, as different users request different
information, or it might have a certain set of applications that perform the majority of data requests. It
might have to adapt to new applications suddenly adding a lot of load with a new shape of query that it
had not previously had to satisfy often.

Another significant difficulty for triple stores is the requirement for support for reasoning over RDF-S
data and OWL ontologies. Current triple stores pre-compute much of the entailment of RDF-S data
(forward chaining). This effectively determines all the new facts that might be determined by inference
and asserts them, leading to a relatively minimal impact upon query performance. It should be noted that
the number of triples that have to be stored increases, with the associated performance implications
(Harris 2005). It is often felt that a purely forward chaining environment would lead to an impractical
amount of data being asserted, but this is refuted by Broekstra and Kampman (Broekstra and Kampman
2003). They also note that a rarely considered side effect of forward chaining is the difficulty of
removing data — since the precomputed inferences need to be adjusted too.

The pre-computation of the full entailment of even OWL Lite data is complex and likely to result in an
explosion of the number of triples that need to be stored. Reasoning at the point of the query (backward
chaining) is potentially too expensive to support interactive-time query satisfaction. This problem is
largely outside the scope of this document, as we focus on the problem of storing and querying the RDF
graph, rather than performing efficient reasoning.

The difficulty of creating high speed triple stores presents a problem for the Semantic Web as a whole.

If we are to expect individuals or organisations to host data and allow users to query it, particularly in a
free or advertising supported environment, it has to be both feasible and cheap to store large quantities of
data with many concurrent users performing significant queries upon it.

3 Related Work

This section considers work directly related to the development of triple stores. Initially, it considers
existing database models and the work that has already gone into implementing them, with particular
emphasis on the pre-eminent storage paradigm, the relational model. This is instructive, as triple stores
are simply another case of DBMS, and all DBMS share common design concerns. It goes on to consider



the development that has gone into current triple stores, with reference to how previously existing ideas
are applied to these new storage engines.

3.1 Previous Database Systems

A database management system is a computerised record keeping system. This document distinguishes
between the database, which is the body of data, and the database management system which manages
that data. Database systems can perform operations on the database such as:

Add new file

Remove file

Insert data into file
Remove data from file
Retrieve data

Change data

The storage and processing of databases is one of the earliest uses of computer systems. Database
systems were created to enable such enormous tasks as tracking inventory data related to the Apollo
project. Early systems were designed for sequential access via tape drive, and were later adapted for
magnetic hard drive storage. Data was stored in a strict hierarchical or network-oriented manner (Date
1975).

What was notable about these database systems was that the manner in which they logically stored data
reflected the way in which in which it was physically stored on the hard disk. Changes to the way data
was physically represented (to improve performance, for example) necessitated changes to both the
dataset itself, to match the new database structure, and to the applications sitting on top of the database
such that they could physically traverse the data. These applications accessed the data in a procedural
manner, navigating from node to node to find the data that they needed. This mechanism was optimised
for the retrieval of individual pieces of data, rather than whole datasets matching particular criteria.

Clearly, this mechanism for data storage and management has significant disadvantages. Changes to the
DBMS could result in a lot of work modifying existing databases to fit, and modification of existing
applications to take into account the new data traversal paths they would have to take. Further, writing
queries was something that only a highly skilled professional would do, and while there was scope for
the fine tuning of queries to maximise performance, it relied on the programmer working out the optimal
manner in which to retrieve data. The hierarchical model also suffered particularly in instances where
data was being accessed in a manner which did not conform to the defined hierarchy. The modern
database market has evolved massively from this starting point, thanks in large part to the relational data
model, derivatives of which are pre-eminent in the DBMS market today.

3.1.1 The Relational Data Model

A radical diversion from early approaches was proposed by E. F. Codd in his paper A relational model of
data for large shared data banks (Codd 1970). In his approach, a mathematically complete data model
based on set theory and predicate logic is used to define the logical storage of data, and the interactions
that can be performed on it. This is known as the relational model. In particular, it emphasises the
separation of this data model from the way the data is physically stored: that is, the DBMS may choose
to lay the data down on disk in any manner, but the way in which the data appears to the user remains
consistent.

The relational model defines data in terms of relations, consisting of any number of fuples and attributes.
Relations are broadly analogous to tables, consisting of rows and columns. These terms are used
interchangeably in the rest of this document. These relations are (conceptually) unordered. Each tuple is
unique (since it makes little sense to assert the same fact twice). Data retrieval in the relational data
model differs significantly to the way it was performed in prior systems, primarily in that queries are
specified in a declarative language, which allows users to state what data they want to retrieve, without
forcing them to specify how to retrieve it. Generally, in relational systems it is the responsibility of the
DBMS to work out how to make the query run as fast as possible (Stonebraker, Held et al. 1976). The
component that performs this work is usually known as the ‘query optimiser’. This removes the burden
of optimisation from the application programmer, and allows the database system to be queried with a
much smaller level of expertise (Stonebraker 1980).



The relational model is designed to support operations that return a large number of results: queries that
perform operations like “retrieve all mechanics who have worked on a car containing part x”. This was a
relatively complex operation in previous data models, where each node would have to be separately
navigated to through hierarchies that may not have been designed for this kind of query. Relations can
have a variety of operations performed upon them, each of which produces a relation as an output. This
‘closure principle’ means that query commands can be chained. These include, in particular, select,
project, and join. These are explained below, and illustrated in figure 7:

Select: A selection (or restriction) is a simple unary operation that returns all tuples in a relation that
satisfy a particular condition. For example, one might select all tuples in a relation describing people,
where the value of the “Surname” attribute is “Owens”:

Project: A projection is a unary operation applied to a relation by restricting it to certain attributes. Non-
unique results are filtered out of the resulting relation.

Join: A join is a binary operation used to combine information in relations based on common values in a
common attribute.

ID Has-visited
1 Boston
_ 1 London
ID Surname |First Name 1 Lyon
1 Owens Alisdair 2 Boston
2 Owens Sally 2 Edinburgh
3 Smith Daniel 2 London
4 Livingstone Ken 2 New York
Table 1: Table describing individuals 3 London
3 Portsmouth

Table 2: Table mapping individual's
IDs to places they have visited

ID Surname |First Name Surname

1 Owens Alisdair Owgns

2 Owens Sally _ _Smlth
Livingstone

Result of selecting over the Surname
‘Owens’ on table 1. Result of projecting over
Surname on table 1.

ID Surname |First Name Has-visited
1 Owens Alisdair Boston

1 Owens Alisdair London

1 Owens Alisdair Lyon

2 Owens Sally Boston

2 Owens Sally Edinburgh
2 Owens Sally London

2 Owens Sally New York
3 Smith Daniel London

3 Smith Daniel Portsmouth

Result of joining table 1 and table 2 on the ‘ID’ column

Figure 7: Illustration of common database operations

3.1.2 Other Data Models

Since the relational data model gained dominance in the 1980’s, other models have also been created.
Perhaps the most heavily publicised challenger is the Object data model (Atkinson, Bancilhon et al.
1989). This is based on the familiar principles found in object-oriented programming, and indeed these
databases are often used as a persistence mechanism for application objects.



In the object model, a database designer creates ‘classes’, which are templates describing objects that can
be created. This object stores certain data, and has ‘methods’ that can modify or retrieve that data.
Object-based DBMS have amassed a body of criticism (Date 1975) due to their perceived slowness and
inflexibility: due to their very nature, it is difficult to perform arbitrary queries across these databases, as
each object is designed to support specific operations. While the object model is very much appropriate
for applications, which use the objects for pre-defined, specific purposes, a DBMS is much more likely
to require more ad-hoc use. Some of the useful features of ODBMSs have been incorporated into many
commercial databases, in a hybrid model called the Object Relational Model. We will not consider this
to a great extent: there is little need for the complexity of objects in a system that models tiny discrete
data items such as triples.

There are a many other models in existence. Increasingly common are Data Warehouses (DWs) and
Data Marts. These are often, as in the majority of triple stores, built as a layer on top of SQL databases:
indeed, SQL now provides explicit support for them. DWs are built for specialised applications such as
business decision support, which often require complex, unpredictable queries over massive quantities of
batch-updated data (Chaudhuri and Dayal 1997). Warehouses may be constructed as an aggregate of
many smaller operational databases, and are a very large task to construct: it is very important to define a
data schema that effectively models business processes and captures the right information. Query
performance is much more important than ability to process writes, and a lot of data (such as aggregate
figures) is precalculated to save work. OLAP technologies, for example, offer the ability to prevent work
being repeated inside the DBMS when asking several related questions at once (Chaudhuri and Dayal
1997).

Finally, a common model used by applications for data persistence is simple key/value pair storage, as
evidenced in Berkeley DB (Olson, Bostic et al.). This allows arbitrary data assertion and retrieval,
assuming it conforms to this simple model.

In general, most models work on a presumption that data will be asserted in a well-understood manner.
Table 1 offers a brief overview of the differences between current models.

Intended Use Expected Data Structure Queries
RDF Arbitrary knowledge Triples, potentially no Unknown level of query
representation greater repeating structure  predictability
Relational Application support, Tables, predefined Mostly predictable
knowledge base structure queries, but includes
arbitrary query support
Object Application support Objects, predefined Mostly predictable
structure queries, may include
some arbitrary query
support.
Data Warehousing | Decision support, Tables, predefined Limited query
(various) statistics, knowledge structure predictability
base.
Berkeley DB Application support Key/value pairs Unknown level of query
predictability, relatively
simplistic query support.

Table 1: Database model comparison

3.1.3 Implementing a DBMS

Most of the issues described in this section are relevant to most forms of DBMS, but information is
drawn largely from work on relational DBMS, since there is a large body of work in this area, and it is
considered more relevant to triple storage than other highly developed models such as the object data
model. It should be notes that a large proportion of the design considerations listed in this section are
relevant to all forms of databases. There are a host of important issues to consider (Date 1975)
(Hawthorn and Stonebraker 1986) (Stonebraker 1980):

e  What is the optimal manner in which to store the data, both on disk and in memory? Are we
looking to optimise for small database footprint or performance? If the answer is performance,
are we most interested in read or write performance?

e How will the DBMS support multiple users?



o How does the DBMS resolve issues such as allowing simultaneous reads and writes to
the database?
e How can it efficiently satisfy a query expressed in a declarative language?
o Can the work be distributed across multiple processors or processor cores?
¢ Do we wish to distribute the database over multiple machines? If so, how can this be
accomplished, and what benefits can be derived in terms of performance, scalability, and
reliability?

This section considers some of these issues in detail, omitting distribution over multiple machines as an
area for future study if it is chosen to pursue work in that area:

3.1.3.1 Storing Data

Clearly, one of the most important considerations is how to represent the database on the machine(s) on
which it is to be stored. This has a large effect on such factors as:

e Retrieval performance
e  Write performance
® Space

There is often a requirement for trading off between these points, and we choose where to focus
depending on the expected usage profile of the DBMS. Physical representation is also heavily dependent
upon storage mechanism (such as RAM, hard drive, or even flash memory). The vast majority of
database systems run on machines with a limited amount of main memory and a large hard drive, and it
is on this standard that we will focus.

Storing data in RAM is a relatively simple matter: RAM has the ideal characteristics of constant access
time combined with fast retrieval for any piece of data. This means that there is no requirement for
pieces of logically contiguous data to be placed next to each other, making RAM extremely easy to work
with: one might simply use hashing algorithms (for example, hashing the key of a table) to determine a
random position in memory for a piece of data, and the data could then be retrieved in constant time.
Contiguous pieces

The difficulties in working with RAM are that it is limited in size and not persistent. While some
observers (Stonebraker, Madden et al.) propose that in future it will be practical to store most current
databases in main memory, this is certainly not currently the case. Further, lack of persistence means
that it must be possible to reconstruct the database into RAM from a persistent store (usually a hard disk)
in case of failure. The combination of these limitations result in most databases using RAM for storage
of metadata, working data, and cache, leaving the actual dataset stored on hard disk.

Unfortunately, while the speed of computers has continued to rise dramatically, the performance of hard
disks has not kept pace (Stonebraker, Madden et al.). The speed of data transfer off the disk is quite
slow, and writing is slower again. Even more critically, there is a seek time associated with travelling
from one block of data to another non-sequential block in the order of 10ms. This storage medium is a
major limiting factor in both read and write performance in any DBMS.

In practise, most modern (O)RDBMSs store their data in a relatively simple fashion, writing it to disk
row by row, starting with row metadata. Order is often loosely maintained. This means that if one
wishes to add a new record to the database, it can be accomplished in a single write. If there is an
expectation of an approximately equal number of reads and writes, this is a very sensible approach:
writing to disk is an inherently slower operation. DBMSs of this form are usually considered ‘write
optimised’.

Optimising for writes in this fashion can have a significant impact on read performance, however. This
is caused by several issues:

e Data order may not be maintained. Since reordering data to keep it contiguous is very
expensive, and this would be a regular requirement when data is added, maintaining strict order
might be considered too expensive. This, however, can mean that additional disk seeks are
required when retrieving data. Further, it may make join operations much more expensive.
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e Row-orientation means that when we perform a select based on a single column, we still have to
read the entirety of each row into memory. This results in greater data transfer and more
memory use, and is particularly damaging on wide tables.

If, however, we expect our database use to be heavily read-biased (for example, in applications such as
data warehousing), we might choose to optimise for reads. Characteristically, a read-optimised DBMS
will store its data in columns: that is, each column of data will be written to disk contiguously. This
benefits read performance massively when working with specified columns over a larger table, as
irrelevant columns can simply be ignored. Further advantages can be gained, in that it is easier to
perform compression, reducing time taken to read from disk (Stonebraker, O'Neil et al. 2005).

It should be noted that attention must be paid to the operating system when attempting to ensure that data
is written in a particular order (Stonebraker 1981). File systems for modern OSs are designed to support
simple file creation, deletion, and modification, and in doing so may create data in a non-contiguous
manner. While it will of course present the data as contiguous to any application accessing it, there will
still be a requirement for performance-sapping seeks when travelling between blocks of data. This is
highly undesirable behaviour in the specific case of a database, and should be avoided where possible.

3.1.3.2 Indexing Data

Storing data in an optimal manner for writing or later retrieval is all very well, but queries will still
perform slowly if there is a requirement to scan through every row to find relevant pieces of information.
To mitigate this problem, databases are indexed on columns of data (Date 1975). This process creates a
data structure that, for a column or set of columns, quickly returns the location of specified data items
within those columns.

A commonly used index for RAM-based storage is the hash map. Using a hash map, one might take the
hash of a piece of data, and then store in a memory position corresponding to that hash a pointer to the
location of that piece of data in the database. This is an O(1) operation, and since RAM can retrieve data
from any position in constant time, extremely fast.

Unfortunately, it is often impractical to store indexes in RAM, and as soon as the index does drop out of
memory, hash indexes demonstrate less desirable characteristics. Hash indexes do not, of course,
guarantee that there is any proximity on disk of logically ordered data (for example, sorted order). This
means that if we were to perform a query that acts on a range of values, a disk seek would likely be
required for each different value, creating massive efficiency issues. For this reason, when indexing
outside of memory, hash indexes are used only in situations where queries are operating on discrete
specified values, not over a range.

When attempting to store data on disk, data is usually indexed using B-trees (Comer 1979) (or variants
such as B+ or B* trees). B-trees are self-balancing tree structures where each node can have multiple
child nodes. This format is very useful for block-based storage such as hard disks, if we size the nodes to
correspond with the size of a disk block: in a disk, the cost of getting to a node is high (since there will
be a disk seek for each node traversal), but the cost of examining data within the node is low, since the
entire node is read into memory in a single read. The B-tree’s characteristic wide nodes and shallow
depth are well suited to this application. The B+tree variant is particularly common, and modifies the
structure such that all actual data is stored in the leaf nodes of the tree. This offers the significant
advantage that the data can be stored separately to the index, making it simple to index on several items
in a single table without duplicating data. As shown in figure 8, it is possible to create links between leaf
nodes in the B+tree, easing the process of scanning sequential items. While the B-tree and its variants
are excellent indexing structures for disk-based storage, they do not usually fill up each node with data,
leading to significant amounts of wasted space. This is inefficient for memory-based storage, and other
data structures are preferable for this application (Wood, Gearon et al. 2005). If data is stored in sorted
(or near-sorted) order on an index, it is referred to as ‘clustered’ on that index.
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A further alternative for disk-based storage is the bitmap index. This is traditionally used for low-
cardinality attributes such as ‘Gender’, or ‘Country’, but has been shown to be applicable even to
columns with a high degree of unique values (Date 1975). A bitmap index simply creates a bitmap for
each unique value that an item in a column could be set to. Each bitmap contains a bit for every item in
the attribute, showing whether the field contains that value or not. Compressing the bitmaps using Run
Length Encoding (RLE) based mechanisms is usually very simple and worthwhile.

Each bitmap in a bitmap index, once compressed, is quite small, and tractable to load into memory.

They can be quickly scanned to find desired matching pieces of data, and bitwise operations can be
performed on bitmaps related to different columns in a table, speeding the performance of complex select
queries. While bitmap indexes in general offer excellent read performance, they may be inefficient in
terms of space required when indexing columns with a high degree of uniqueness. Further, they are
more computationally complex to create and maintain than B-tree or hash based indexes, and
demonstrate poor characteristics in terms of locking granularity.

3.1.3.3 Operations

As noted, the three most common operations in (O)RDBMS are select, project, and join. The efficiency
of all three of these operations is impacted significantly by the size of the dataset, the level of uniqueness
of the data, the availability of indexes, and whether the dataset is in sorted order.

Select is, in ideal conditions, an extremely fast operation. If a relevant index is available, it is possible to
simply navigate directly to an item, and retrieve all subsequent tuples containing that data value. In this
case, select scales linearly with the number of items that have been selected, and at worst logarithmically
with overall table size, depending on what sort of index is used. Retrieval is complicated if the data is
not clustered on the index: in this case, if no index is available, the operation scales linearly with overall
data size. This can quickly become prohibitively expensive on large tables.

Projection is fundamentally a brute-force algorithm, restricting a table to certain columns, and removing
all duplicate values. Clearly, as the size of the data being projected over increases, the cost of projection
increases in linear fashion. If data is in sorted order, little memory is required to perform the operation —
otherwise, it is necessary to remember previously seen values.

Joining can be an expensive operation, involving as it does two different tables. There are a variety of
algorithms, depending on the state of the data as regards sorting. This ranges from the very basic brute
force algorithm, with a scaling of O(n”) with the size of the data being examined (particularly large if no
indexes are available), to more useful techniques, such as merge, sort/merge, and hash joins (Date 1975):

e  Merge joins assume that both tables are sorted in order on the column that is being joined on.
With this being the case, a simple scan of both tables can perform a join in linear time with the
amount of data being joined, if the join is one to many, or near linear if it is many-many.

e Sort/Merge simply sorts the tables as required, then performs a merge join on the resulting
data.

3 http://www.ianywhere.com/images/whitepapers/1003010_1.gif
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e Hash joining also performs a single scan over each table. It creates a hash table on the first
relation, with a pointer to the corresponding tuple on disk. When scanning the second table, it
compares against that hash table to produce the joined table. This technique scales in linear
fashion with the amount of data scanned, and does not require tables to be sorted to work
efficiently (although, of course, sorting will ensure that less seeks have to be performed). It is,
however, likely to be slower than merge join, since operations such as hashing require a degree
of computational expense. Further, it is less tractable to hold all the intermediate data on disk if
no memory is available.

3.1.3.4 Querying Data

As noted, in early DBMS data retrieval was performed through procedural coding mechanisms.
Programmers defined exactly what path through the database was taken, and exactly how data was to be
retrieved. In the leap from these systems to RDBMS, a switch was made to declarative query languages:
that is, the agent specifying the query merely specifies what data is desired, not how to retrieve it.
Working out how to retrieve the data is the job of the query optimiser and is, as (Youssefi and Wong
1979) notes, of critical importance: a bad query execution plan can potentially cause data retrieval to be
orders of magnitude slower than it ought to be.

Automatic query satisfaction is not a trivial task. However, while a programmer may intuitively know
the most efficient manner in which to process a query, this is by no means guaranteed, and requires
significant insight and expertise. An automatic query optimiser can evaluate many different plans before
settling on one with a low cost, and can do so without the input of a knowledgeable human. As noted by
C.J Date, there are four steps to query optimisation (Date 1975):

Cast the query into internal form.

Convert to canonical form.

Choose candidate low-level procedures.
Generate query plans and choose the cheapest.

E e

The first two stages essentially transform the query from a textual representation such as SQL into an
internal form that is easier for a machine to process, performing trivial optimisations such as eliminating
irrelevant statement ordering on the way. Step 3 is more complex, and involves working out low-level
operations that can satisfy parts of the query. This attempts to produce worthwhile operations by
considering such information as physical data structure on disk, availability of indexes to speed the
operation, and so on. Each potential operation will have an associated cost calculated for it, at the
minimum specifying number of disk accesses required, but possibly also including information such as
memory and CPU usage. This data may be estimated where hard figures are not available or easily
calculated. Depending on whether the operation has prerequisites for other operations to be performed
first, it may well be possible to perform them simultaneously across multiple processor cores, processors,
and disks to enhance performance.

Finally, step 4 involves the creation of a set of potential plans from the procedures generated in step 3.
Clearly, there could be overwhelmingly many plans produced if there were a significant set of candidate
procedures generated, so a heuristic to create only plausible plans is of great use in this situation.

While this overview gives a broad explanation of query processing, the implementation of these steps is
quite difficult. SQL, the standard for most modern RDBMS, is extremely complex, and the creation of a
high-quality optimiser for most cases is a difficult task, accomplished in a wide variety of manners. The
cost of operations is usually calculated from statistics stored for each table, and the columns within them.
Examples of this include cardinality of the table as a whole and the number of pages it occupies, as well
as the number of distinct items in each column, and average values for each column. These statistics are
quite simple, but can make a significant difference to the creation of an optimal strategy. Since they are
so small, they can be stored in memory and access with great ease.

The creation of procedures for step 3 might come about through a variety of processes. One example,
created for the Ingres database, is called query decomposition (Youssefi and Wong 1979). This
mechanism consists of two operations: ‘detachment’” and ‘tuple substitution’. Detachment breaks
portions of the query with just one variable in common with the rest of the query. Once a stage has been
reached where no more detachment can be applied, tuple substitution substitutes real data one piece at a
time into one of the variables in the remaining query. Detached queries can be answered in any order, or
even simultaneously, since they are independent of the rest of the query. By answering detached queries
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in an optimal fashion, the working set of data that can be substituted in during tuple substitution is
reduced, providing improved performance.

3.2 Existing Triple Stores

Current triple stores are developed in a variety of styles. There are developments such as widely
distributed peer-to-peer stores such as RDFPeers (Cai and Frank 2004), but we largely focus on the most
common kind of repository: those that are situated on a single computer (or as a cluster), and behave
much like the conventional DBMSs of today.

It is notable, in fact, that most current stores are actually based upon existing DBMS technologies: 3Store
(Harris 2005), Virtuoso (Erling and Mikhailov 2006) and D2R Server (Bizer and Cyganiak 2006) are
layers on top of existing DBMS, as are the best performing backends for other stores such as Sesame
(Broekstra, Kampman et al. 2003) and Jena (Wilkinson, Sayers et al. 2003). This approach certainly
appears to make sense: existing DBMS technologies have been refined and optimised over many years,
are stable, and relatively simple to develop on top of. This section will spend time considering whether
this approach is worthwhile in the long term. Stores such as Redland (Beckett 2002), Sesame and Jena
also have in-memory backends, while Kowari (Wood, Gearon et al. 2005) has its own dedicated data
storage layer.

In the following subsections, we consider the developments made in some of the most popular triple
stores currently in existence, making an attempt to focus on those that offer varying storage paradigms.

3.2.1 3Store

3Store (Harris 2005) is fast C library that runs on top of the MySQL RDBMS. It is a triple store of

moderate performance, known to store at least 30 million triples with reasonable performance on simple
. 4

queries”.

3Store uses a simple schema in which to store the graph shape (as quads, since it adds another field to
denote provenance, or ‘model’) consisting of:

Model Subject Predicate Object
64 bit int 64 bit int 64 bit int 64 bit int

Figure 9: 3Store triples table (Harris 2005)

Each subject, predicate, and object field contains a hash value, the actual text of which is discovered by
joining to another table, keyed on the hash value, which contains information such as the lexical
representation of the data, as well as integer, floating point and datetime representations stored for the
purposes of performing comparisons between literals.

The answering of SPARQL queries is a relatively simple matter: the SPARQL is translated into an SQL
query that the RDBMS can answer. For example, if one wished to answer the SPARQL query in Figure
5, 3Store might perform the following SQL upon the triples table:

SELECT subject
FROM triples
WHERE predicate=[hash of <http://www.example.com/has-gender>]
AND object=[hash of <http://www.example.com/male>]
AND model=0
Figure 10: SQL produced by 3Store

Clearly, additional SQL is required to determine the lexical representation of the hashed values that
would be returned, but the mechanism is adequately illustrated. In the case of additional constraints in
the SPARQL query, 3Store simply performs joins back onto the triples table. 3Store relies on the
MySQL query optimiser to optimise the SQL it produces.

This schema offers a significant degree of flexibility, by virtue of the fact that any representation of
triples is stored in a generic fashion, without requirement for schema or index customisation. There is no

4 http://www.aktors.org/technologies/3store/
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limitation upon the structure of the graph, except for the amount of data that MySQL can efficiently
process.

The approach of a long triple table stored in a relational database is common in the world of triple stores.
However, while it is relatively simple to implement, and provides a moderate level of performance, it
should be noted that RDBMS generally expect a somewhat normalised schema to afford efficient
indexing and provide the query optimiser with information.

3.2.2 Kowari

Kowari (Wood, Gearon et al. 2005) differs from most triple stores in that it implements its own custom
Java-based backend. It uses AVL trees to index RDF statements stored in flat files. In much the same
way as 3Store, it separates the conceptual shape of the graph from the physical representation of the
URIs, into a ‘Statement Pool’ and a ‘String Pool’ respectively.

Kowari, like 3Store, stores statements as quads including provenance information. However, it stores the
statements six times, corresponding to the six different ways in which an RDF triple can be ordered
(SPO, SOP, etc.). This enables Kowari’s indexing structure, and also provides efficient disk access,
since there is no need for the disk to seek to multiple locations when retrieving all triples which mention
specific URIs.

Kowari indexes its Statement Pool using Adelson-Velskii and Landis (AVL) trees, a self-balancing
binary structure. There are six trees, corresponding again to the possible orderings of a triple. Tree
depth is kept small by having each node in the tree represent a block of triples, making it fast to traverse
and increasing the likelihood of keeping the index in memory.

Kowari offers performance broadly comparable to 3Store (Taylor, Gledhill et al. 2006).

3.2.3 Jena

Jena (Carroll, Dickinson et al. 2004) is a Java API designed to support the creation and manipulation of
Semantic Web data. In contrast to most of the other stores mentioned, Jena is intended to provide library
level RDF support for applications, rather than acting as a network-available knowledge store. Initial
iterations supported RDF, but subsequent revisions have added RDF-S and limited OWL support.

Jena offers a variety of mechanisms for storing data (Wilkinson, Sayers et al. 2003): as well as the usual
RDBMS backends, it offers in memory and Berkeley DB backends. Berkeley DB (Olson, Bostic et al.)
is a low level embedded DBMS, offering simple key/value pair storage. It is primarily intended for
application data persistence, but offers reasonable performance under Jena. There is innovation to be
found in the RDBMS level storage as well, however. As well as a simple triple table, it offers a
mechanism known as Property Tables (Wilkinson 2006). Instead of storing the triples in one long list, it
is possible to specify separate tables for properties that relate subject-value pairs to each other. In the
case of properties with a maximum cardinality of one, it is even possible to store multiple properties in
the same table. This is illustrated in figures 11 and 12.

Subject First Surname | Height
name Incm
<Alisdair Alisdair Owens 185
Owens>
<John Smith> John Smith 192
<Melissa Melissa Arnold NULL
Arnold>

Figure 11: Property table containing many properties with a cardinality of O or 1
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Subject JobTitle
<Alisdair Owens> PhD
Candidate
<John Smith> PhD
Candidate
<John Smith> <Research
Assistant>
<Melissa Arnold> | <Research
Assistant>

Figure 12: Property Table for one property with a cardinality over 1

In this schema, details such as first name and surname have a maximum of one value, whereas an
individual may have more than one job. As soon as the property has a cardinality of greater than one, it
has to be split out into a separate table as seen in Figure 12. A crucial feature of this schema is that to
avoid extreme complexity, a property may only appear in one table.

While property tables are shown to have performance advantages (Wilkinson 2006), determining the
table layout to use is a difficult problem (Abadi, Marcus et al. 2007): ideally, it is important to store
subjects and values that tend to be accessed together in a single table, allowing the use of selectivity
rather than joins in the querying process. However, it is also important to make sure that the table is as
densely populated as possible, as excessive populations of NULL values, and the storage requirements
thereof, can overwhelm the benefits gained through the use of a better schema. While steps have been
taken in an attempt to perform this work automatically (Ding, Wilkinson et al.), it is still largely a
complex manual task.

3.2.4 D2R Server

D2R Server (Bizer and Cyganiak 2000) is not strictly a triple store per se, but rather a layer that maps
SPARQL queries onto an existing RDBMS schema. This makes publishing the wealth of data stored in
relational databases around the world relatively easy, as it allows the database to be accessed as if it
natively stored RDF. This approach offers considerable advantages: data can be stored for internal
consumption by applications in a traditional RDBMS fashion, with the associated benefits of
performance and guaranteed data integrity, while also being published for the consumption of the wider
Semantic Web. There is also no need to maintain separate versions of data in SQL and RDF formats,
and no need to run an entirely new database system to store RDF: just a relatively simple application
running on top of the RDBMS.

Clearly, this different approach has significant benefits over and above those offered by pure triple
stores, but it is worth considering situations where it is disadvantageous:

e The ability to assert data outside of a defined schema is lost.

e As previously mentioned, relational databases are usually optimised for specific access patterns.
If arbitrary SPARQL access is allowed through D2R, it is likely that data access patterns will
vary in an unpredictable manner. This means that many queries may be very inefficient.

e  Changes to the schema of the database necessitate changes to the D2R mapping, increasing
maintenance costs.

If it is expected that the D2R server will experience significant use, it would be advisable to analyse
queries that are likely to be performed, and ensure that indexes are created to support these: indeed, this
is a function that could potentially be automated through analysis of queries actually being performed on
the database. This would significantly improve the performance of this mechanism of RDF storage for
the purposes of acting as an accessible node on the Semantic Web.

3.2.5 Virtuoso

Virtuoso Universal Server is a high performance DBMS with the ability to store a variety of data such as
XML, RDF, and web server applications. At its core it is an Object-Relational DBMS (ORDBMS) with
other data items translated to fit within this model. The creators of Virtuoso claim to be able to process a
LeHigh University Benchmark (LUBM) (Guo, Qasem et al. 2006) of over a billion triples effectively,
although relatively little study is made of query response times.
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Virtuoso uses a familiar model for storing its RDF data (although it also offers a D2R-like translation
mechanism) (Erling and Mikhailov 2006): the shape of the graph is stored as a long list of triples, as seen
in applications like 3Store, and indeed many other stores. The ideas that differentiate Virtuoso from the
pack, allowing it to process such large quantities of triples, are centred around the minimisation of
storage space required per triple, and the use of bitmap indexes (Errling 2006). Since it is only possible
to store quantities of triples in the low millions in the memory available in standard computer systems of
today, the designers of Virtuoso concluded that it was inevitable that hard drive storage would be
necessary, and that a low storage footprint per triple would minimise the problems associated with the
slow transfer rates of this medium.

A low space usage per triple is accomplished through a variety of means, including splitting triples into
prefix and local parts, storing each prefix uniquely. Further, bitmap indexes are used to significantly
reduce the storage required for the indexes and speed up queries, particularly for datasets where there is a
relatively low level of unique URIs.

3.2.6 Vertical Partitioning

Vertical Partitioning (Abadi, Marcus et al. 2007) is a recent innovation with its foundations in the idea of
Property Tables. Abadi et al. note that there is a great deal of complexity in determining the correct
schema when considering the tables containing properties with a cardinality of O or 1. They further
consider the fact that in traditional RDBMS that store data on disk row by row (‘row oriented’), the
amount of data that has to be read per row increases greatly as the table gets wider. Since it is so difficult
to work with the traditional property table model, they propose instead the use of ‘Vertical Partitioning’.
This is equivalent to storing all data in the model illustrated in Figure 12: a separate table for each

property.

Although this approach loses a major benefit of Property Tables, in that many joins are still required to
answer queries, the denormalisation of the data into many separate, sorted tables reduces the depth of
indexes, eliminates the existence of NULLSs, and allows the use of fast merge joins.

The authors champion the use of C-Store (Stonebraker, O'Neil et al. 2005), a column oriented DBMSs
where data is stored on disk column by column to store RDF data. On the surface, this appears to have
limited value, since the tables are so thin that the amount of extraneous data loaded is minimal, but
several advantages are noted, including:

e  Tuple headers are stored separately. Given that the headers are so large in most RDBMS, they
tend to overwhelm the storage requirement for the data itself.

e  Column oriented data compression: since data in an individual column is likely to have a high
repeating factor, having the data stored column-wise on disk aids data compression, reducing
the time spent reading data from disk.

The authors submit a further innovation in ‘Materialised Path Expressions’, which are in essence the
joining of multiple properties to appear as one in the database. Data such as ‘The authors of books
written in 1860’ can thus be precalculated, saving work on queries that utilise these paths.

The combination of the vertical partitioning schema and the use of a column-oriented DBMS appears to
offer significant performance gains, with the authors claiming orders of magnitude improvements over
previous stores. It should be noted, however, that C-Store, as a heavily read-oriented DBMS is known to
be slow at inserting data after the initial write. The authors make no study of the stores’ relative
performance on data inserts.

3.2.7 Space Filling Curves

The TriStarp® project has utilised space filling curves to store and index data in a non-RDF triple store.
A space filling curve is essentially a continuous curve that fill up any given square or cube (or even a
hypercube of any dimension), assuming that object is constructed of discrete units. Space filling curves
are usually repeating patterns that are constructed iteratively. Well-known examples of these are Z-order
and Hilbert curves (Lawder and King).

Space filling cubes can be applied to triple storage and indexing. If we take RDF as a three dimensional
storage problem (ignoring, for now, provenance), we can imagine it as a cube, with each dimension

* http://www.dcs.bbk.ac.uk/TriStarp/
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being one of subject, predicate, and object. An RDF triple is a point within the cube. The fact that RDF
has more three dimensions is a problem when attempting to store it contiguously - in a one dimensional
manner. Space filling curves can be applied to this problem: the curve passes through every point in the
cube (or every triple, in this case). If we store the triples on disk in the order in which they are traversed
by the curve, then we have a one dimensional representation of our three dimensional structure. A good
curve will keep spatially related data items somewhat close to each other on disk.

Indexing of this structure can occur through a tree-based system in curves such as the Hilbert curve
(Lawder and King). The repeating structure is evidenced at every level of construction of the curve, and
this repetition can be used to form a tree-based index into the curve.

Storing and indexing via space filling curves has the important property that no one dimension is
dominant, as is the case with one dimensional indexing techniques such as B-trees. It is possible to
retrieve data by any combination of the three dimensions (for example, fixing subject and property and
searching for all related objects, or fixing object and searching for all related subject and properties).
The particular dimensions that are supplied make no theoretical difference to query time (although if two
dimensions are supplied, this will clearly be quicker than if only one is).

Space filling curves are of special use in range selections over more than one dimension. Traditional
DBMSs perform poorly at this task, since it is necessary to scan all data items that satisfy one of the
ranges, and then restrict the resultant output by the other specified ranges. In the case where only broad
ranges are required, or data is of low cardinality, this is extremely inefficient. Using space filling curve-
based techniques, a volume is designated for retrieval, the points at which the curve intersects that
volume computed, and all of those points retrieved.

There appears to be little evaluation of the performance of space filling curve based techniques as
applied to triple graphs in the TriStarp system.

3.2.8 Distributed Stores

Triple stores such as RDFPeers (Cai and Frank 2004) and YARS?2 (Harth, Umbrich et al.) allow triples to
be stored over a widely distributed network of computers. YARS?2 is particularly notable, with studies
showing it functioning with a 7 billion triple dataset.

YARS2 is a heavily read optimised store, using six different indexes into six data orderings, supporting
full retrieval of RDF quads. The index type used is called a ‘sparse’ index, which is an in memory index
into a sorted and blocked data file. To retrieve data, a binary search is performed upon the index, and the
closest block of data is retrieved. To enable it to stay in memory, the index gets less specific as the
dataset gets larger. This results in near-constant retrieval time with respect to index size, as disk seeks
are minimised, and the major cost is the disk seek rather than the amount of data retrieved: if we assume
that a disk seek takes 10ms, and the disk reads at SOMB/s, it is possible to read S00KB of data in the time
a seek would take. It should be noted, however, that very large reads will use up significant amounts of
main memory, and may flush useful data out of the operating system hard disk cache.

In many distributed stores, distribution of triples occurs via a hash of the triple or some part of it, using a
hash function that is known to all participating stores. This lightweight mechanism allows any store to
know where any given triple in the system can be found. YARS2, for example, uses a hash of the first
part of the quad, modulated by the number of machines in the store. This mechanism can keep closely
related data clustered on a single machine (which reduces the amount of time-consuming communication
between machines), but can be disadvantageous when considering data orderings that are predicate-first
(Battre, Heine et al.). The solution used by YARS?2 is to randomly distribute predicate-first orderings,
and flood queries that require this ordering to all machines. It is not clear how the hash function will
continue to work with addition or removal of machines.

4 Lessons Learned

This section considers the lessons that can be learned from the implementation of existing DBMSs, and
how they can be applied to the problem of storing and querying RDF data, as well as the ways in which
this problem requires new solutions to produce acceptable performance.
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4.1 The RDF Data Model

In some ways, the storage of RDF data is extremely complex: its relatively unstructured nature does not
lend itself to storage in anything but the most broad of data structures, and this inhibits high performance
retrieval. However, combined with the simplicity of SPARQL, this does offer certain advantages. In
creating a DBMS to store RDF, while we do not know the conceptual structure of the data that might be
asserted, we do have strong knowledge of the data structure that we will be storing it in — for example, a
triple table, or a vertically partitioned structure. Despite the unpredictable nature of the data, the manner
in which we are to store and retrieve that data can actually be actually far more predictable than it is in a
standard (O)RDBMS. Assuming we discount the standard property table model as overly complex, there
is no need to offer arbitrarily wide tables, support for three-valued logic, duplicate rows, or objects.

While these generalised models of the structure of arbitrary RDF data are very difficult to optimise for
high performance retrieval, they do offer the opportunity to focus, without having to deal with the
massive complexities that, for example, SQL based DBMSs have to overcome. With a triple store, there
is prior knowledge of the way the data will be stored at code-time, as well as the fact that most of the
operations in any query will be selections and joins, and we can heavily optimise these operations, in
particular ensuring that joins exhibiting linear or near-linear behaviour are used. Thus, there is in many
ways less complication to the process of storing and performing query optimisation over RDF data.
Further, such issues as the unnecessarily large (for the purposes of RDF storage) tuple headers in general
purpose DBMSs could be completely eliminated in a dedicated store.

While the relational model is perfectly capable of modelling RDF data, it is questionable as to whether it
is advisable to continue using conventional RDBMSs as storage engines. These tend to be optimised for
write operations, and even in read-optimised engines, issues remain due to the fact that the RDF is being
stored through two layers of logical model: the RDF layer, mapping on to the relational layer, which
finally maps on to physical storage. The characteristics of most applications of (O)RDBMS and those of
RDF storage are radically different: triple stores’ fixed, thin tables require the storage of a great deal of
data-centric information to allow accurate query optimisation, for example. This is not the case with the
majority of (O)RDBMS use cases, where more schema-centric optimisation is simple and fruitful.

A clear illustration of the issues that can be created by the application of standard (O)RDBMSs to the
RDF storage problem comes from considering a step most triple stores use: storing URIs and literals as
fixed length hashes rather than the variable length strings that they truly are. Keeping rows at a fixed
length provides improved performance, and the hashes are usually much smaller than the URISs they
replace, reducing the amount of data that has to be transferred to and from disk. Unfortunately, this also
destroys any notion of meaningful ordering. This means that if we wish to specify a range of values,
many more disk seeks will be required to satisfy them than if the data were in truly sorted order. This is
a negligible issue when considering the subject and predicate, as range queries are quite unlikely (and
usually have little meaning) over URIs, but such an operation could not be considered unlikely over
literal-containing objects. A specialised triple store might be able to account for this and order data
appropriately, but this is unlikely to be simple in a general-purpose (O)RDBMS. Berkeley DB appears
to offer an attractive alternative as a backend, with its ability to store arbitrary data structures, but there
appears to be little scope for optimisation once the basic triple store model (such as that found in Jena)
has been implemented.

While it might be considered unwise to recreate the many years of optimisation that have gone into the
creation of existing DBMS, the need for very specialised behaviour to extract worthwhile performance
from stored RDF informs the author’s opinion that high performance triple stores will either have to
move away from existing DBMSs, or be built on DBMSs that have received significant customisations to
optimise them for storage of RDF data.

4.2 Storage

One of the lessons that is apparent from the review of existing database systems is the importance of the
manner in which data is stored. While RAM is both simple to work with and fast, it is still too rare a
commodity for it to be possible to hold all of a store’s data in main memory, although this may change in
the future. The ability to work with secondary storage, usually hard disks, is an essential feature for
almost any triple store. Particularly notable is the manner in which the issue of secondary storage access
almost dominates other concerns, due to the failure of secondary storage to improve in performance in
line with the other components within the modern computer.
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Upcoming technologies like Flash memory exhibit behaviour more in line with that of RAM, having
very short access times, and may well result in changes to the way in which DBMSs store and access
data. For the foreseeable future, however, hard disks continue to be the dominant technology. The
importance, then, of storing data in a manner suited to this underlying storage mechanism cannot be
overestimated:

e When attempting to optimise data assertion performance, it is important to minimise the amount
of data written to disk. This includes reordering of data: for example, if we wish to keep data in
sorted order on disk, it is expensive to perform an insertion.

e When attempting to optimise data retrieval performance, it is important to minimise the amount
of data that is read from the disk. This does not necessarily mean that the data footprint should
be small: if the data is stored in several representations, we need only read from the one that will
allow us to retrieve the data is the quickest time. It is useful to maintain data in sorted order,
contiguously on the disk, as this will greatly reduce either the amount of data that has to be read,
or the number of seeks that have to be performed.

e  For both cases, it is important to read or write the data as contiguously as possible to prevent
slow disk seeks.

As can be seen, optimising for read performance tends to compromise write performance, and vice-versa.
This effect is seen in the rest of the DBMS world. General purpose (O)RDBMS tend to be row oriented,
and optimised for fast writes. For purposes where the query performance of these DBMSs is insufficient,
column stores or even more exotic data storage mechanisms may be used. It should be noted, however,
that inserting data in a triple store that performs significant levels of pre-computed reasoning will require
write and read activity from the underlying storage, so the case for write vs read optimising is not so
clear cut as it is in the area of (O)RDBMSs. Further, the current read performance of triple stores is poor
enough that in datasets that are unlikely to experience great change, read optimisation would be highly
advisable.

With this said, a further point to note is that column storage is of questionable benefit, once the store is
being created solely for RDF storage. While (Abadi, Marcus et al. 2007) showed some significant and
well-justified performance improvements when using a column store over a write-optimised database
such as Postgres, many of these benefits were by virtue of the fact that the underlying store, C-Store, was
read optimised, not that it was column-oriented. Such facts as C-Store’s storing all data in sorted order
meant that very fast merge joins could be performed, rather than the slower operations such as sort-
merge that Postgres would have to perform. Given that in a large proportion of cases it will be necessary
to read the entirety of a triple anyways, it is unlikely that column orientation will be a great deal faster
than row in equally read-optimised DBMSs: particularly, use of a column store may tend to result in
more disk seeks.

It should be noted that while the separation of the conceptual model of the graph by creating hashes from
the text of URIs and literals bears many advantages, particularly in the way it makes each row in tables
describing the graph small and fixed in size per tuple (and thus quick to access), it also causes significant
problems in terms of creating additional disk accesses. At least one disk access will be required in the
translation of every unique URI or literal in the results set back to its textual form. This is a crippling
burden on queries that return a lot of results. However, complex queries that may result in a lot of data
being processed, but have a small result set, benefit massively from the hashing approach. This issue
might be mitigated by a variety of means:

e  Storing URI prefixes in memory, and the rest of the URI directly in the table. If the URI is over
a certain small fixed width, a hash could still be used.

e Column-oriented data compression.

e  Storing the hash and plain text of URIs/literals against a hash of each of the URIs they are
connected to. This would mean that simple queries that produce a lot of results could require
much fewer disk accesses, as related data would more often be available in a somewhat
contiguous manner. This method would significantly increase storage requirements, however.

Finally, it is important to optimise the use of what main memory is available. One might choose to cater
for the specific case by using caches for single queries, or for the general case by storing more metadata
on the structure of data in the store to give hints to the query optimiser. This will be discussed further in
the following subsections.
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4.3 Indexing

The indexing requirements of triple stores differ from those of most (O)RDBMS applications, although
some (O)RDBMS do offer a great deal of flexibility in this regard. As noted in section 3.3.1, it is likely
that most queries specifying subjects or objects will be related to a single URI, or a discrete set of them.
In this case, the B+tree’s advantage of providing fast range queries is of limited interest, as a range is
unlikely to be specified. A hash-based index could provide indexing at a constant cost per URI, likely
much less than that required by a tree method. For regularly accessed data, this is a very good candidate
for caching. As a secondary index, however, B+trees may be of use: if we consider the query:

SELECT ?z WHERE {?x has-gender ?z}

Let us assume that ?z has a small cardinality, while ?x has a very high cardinality. While we could use a
hash-based index to find all uses of ‘has-gender’, we could still be left with a very large number of
results to consider, perhaps having to perform an expensive projection over the column holding all
possible ?z. Using a tree index, though, it would be very easy to answer. While we are unlikely to have
arange query over the entire table, we are very likely to have to deal with queries that request all objects
for a certain property (in effect a range of the entire sub-index). In the case above, if we attempt to do
this by scanning the actual data, or projecting over the object column, this could take a very long time.
Accessing the information through a tree index would be much easier: since we are looking for all unique
pieces of data, and the index lists only the unique pieces of data with no repetition, much less
information has to be scanned. It is notable that this type of query can perform very poorly on 3Store,
despite it being based on a RDBMS that uses B+trees for indexes. This is likely to be a query
optimisation issue.

Another mechanism that is clearly worth investigation is bitmap indexing. Virtuoso, despite having an
otherwise normal triple table storage mechanism, manages to store billions of triples using this method.
It should be noted that this method does have significant performance implications if we expect writes to
be performed regularly.

Finally, the sparse index structure used in YARS?2 is of interest. It supports prefix lookups, where the
index can be queried by only part of the string: this could be of great use in object-centric orderings,
where partial-text and range queries are likely to be a regular feature. The major disadvantage of this
index type is the large memory footprint it entails, through both the index itself and the large block sizes
used as the index scales up. This index type may also be of great use as a secondary index for a primary
hash index: much smaller sub-indexes could be loaded into memory as needed.

It is very much worth considering the implications of caching on the indexes generated for the triple
store: these stores, with their potentially large join operations, are likely to make heavy use of whatever
indexes are available, and the caching of upper levels of a tree-based index (for example), or regularly
used triples, could save many disk accesses over just a single query. It should be noted that in practise it
is quite possible that the operating system disk cache would provide this functionality to some extent
anyway, but it would be unwise to rely on this.

4.4 Operations

As noted, unlike most SQL products, triple stores cannot necessarily expect certain queries to be
performed, or certain ones to be excluded (although preventing extremely expensive queries from being
run may be a necessary step in some situations). In particular, it is by no means unlikely that SPARQL
queries will cause a great deal of data to be worked with, even if they are quite simple in appearance.
This being the case, it is extremely important that operations such as select, join, and project scale in a
manner that does not cause large stores to become prohibitive.

In practise, ensuring that data is sorted and clustered is quite attractive. Joins are regular operations in
triple stores, and can be extremely expensive. It is important, if possible, to keep data in sorted order and
as clustered as possible, maximising the possibility of merge joins being possible.

The availability of sorted data means that it can be accomplished in linear time with a fast algorithm, the
merge join. Further, if all data is sorted and stored in contiguous fashion for each possible ordering,
there are no unnecessary disk seeks. In this case, with an appropriate indexing mechanism, triple stores
really could perform in an effective manner for large datasets.

-21 -



In practise, however, this rigid scheme is likely to cause problems for a system that experiences even
relatively rare writes. This mechanism would mean storing information six times over, and moving a
vast quantity of data to accommodate every write, to ensure clustering. While it is the opinion of the
author that triple stores should focus to some degree on read optimisation, since the emergence of
reasoning systems will likely call upon read performance even when writing, this is excessive. There are
a variety of compromises that might be enacted:

e  Vertical partitioning has many excellent characteristics. Its implementation requires only two
sorted orders to perform at peak efficiency. It should be noted, however, that this scheme
complicates any situation involving more than one property, or where the property is unknown.
This is a relatively rare scenario, but it is by no means inconceivable that one might run a query
where a subject is given and no other data, hoping to retrieve all data that a source has on that
subject. Storing the data in additional forms (even an additional triple table format) might
mitigate this issue to some extent.

e  The Subject-Object-Predicate and Object-Subject-Predicate orderings are so rarely required as
to be virtually useless. These orderings could be eliminated.

e The Predicate-Object-Subject and Predicate-Subject-Object orderings could be implemented
only as unclustered indexes, rather than physical data orderings. This would provide some of
the required functionality — queries such as that mentioned in section 4.3 could still be easily
answered through index work alone.

e Data clustering is largely only important on the secondary part of orders that do not have objects
as the primary concern, due to the unlikelihood of range queries on URIs. This allows data to
be split along the boundaries of the primary parts of these orders, with no performance penalty
for the vast majority of queries. It is further important to note that if we use URI/Literal -> hash
mappings, for object-centric orderings it is important to maintain order based on the plain text,
not the hash.

e Data could be divided horizontally, and clustering allowed to break along these lines. The size
of each cluster could be varied as required, and if intelligently placed cause relatively little
performance degradation.

e Newly written data could be stored in a small write-friendly store, and batch-updated into the
main database as necessary. To prevent unnecessary disk reads, the data could be mirrored in
memory if possible. Deletions could be accomplished in a ‘lazy’ fashion, by simply marking
data to be ignored, for purging at a later date.

4.5 Query Optimisation

SPARQL, although having a superficially similar syntax to SQL, is very different. It is very much
simpler, and operates at a higher level: SQL makes it possible to provide hints to the query optimiser as
to the most efficient manner in which to retrieve the data, whereas SPARQL does not. Further, there are
differences in the manner in which each language is used: as noted, (O)RDBMSs are generally used with
by a fixed application pool, where the vast majority of queries can be anticipated and optimised for.
SPARQL, on the other hand, is expected to afford general-purpose access to data, while maintaining
reasonable performance.

Another difference between designing a query optimiser for SPARQL queries and SQL is the relative
lack of clues available in RDF storage schemas. Relying purely on this small amount of information will
result in a poor data traversal strategy, so there is a clear imperative to optimise based on the data items
in the database, not just on its schema. An example of where this might be vitally important can be
found in (Barabasi and Bonabeau 2003): in the case of a scale free network being formed by the RDF
graph, it might be extremely important to know that certain nodes have an overwhelmingly large number
of connections when compared to the rest.

With these points in mind, lessons can be learned from the world of existing DBMS on how to construct
a query optimiser:

e Jtis important to know the fastest way to perform an individual segment of a query: a store
should be aware of the indexes that are available to be used.

e Generally speaking, it is important to perform the segments of a query that are most selective
first: these most reduce the working set, or the set of data that is of interest.

e Knowledge of the underlying data structure is important. There might, for example, be an index
on a particular column, but when considering when to run the query segment that this index is
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related to, it is also useful to know information like whether the data is clustered on that index.
If it is not, access might still be quite slow.

e  Plans do not have to be final: it is perfectly reasonable to iterate and construct a new query plan
after each segment of the plan has been performed. This allows new information brought about
by the results returned to refine the plan.

e [If operating in an environment where writes are at all likely to occur, the query optimiser should
be aware of locks on the database, and work in such a manner as to avoid waiting on locks
where possible.

A dedicated query optimiser for a triple store would probably be somewhat simpler than that for an SQL
DBMS, due to the simplicity of SPARQL. We have prior knowledge that most of operations will be
selections and joins, and of the structure of all data, at code-time. It is quite possible that we will know
the status with regards to sorting, as well. With a large variety of metadata to aid good decision-making,
a query optimiser that produces worthwhile results could be implemented.

5 Future Work

There is the potential for a great deal of work in the area of RDF triple storage. There are a host of use
cases: distributed, peer to peer stores aggregating a large quantity of data from related institutions,
clustered stores designed to maximise performance from a single data node, and smaller stores that fill a
role similar to that taken in the RDBMS world by such products as MySQL and Postgres, operating
highly efficiently on limited resources. These stores might be read or write optimised: a knowledge base
might often be full of virtually static information, but a store might also be implemented as support for
an interactive application, or as a local cache of knowledge on an individuals computer, with information
likely to change regularly.

This report has chosen to focus on issues that affect triple stores of all types, and will offer a solid
background for future research should there be a decision to specialise further into areas such as
distributed stores. Despite the recent improvements shown by stores such as Virtuoso and YARS2,
which offer multiple-billion triple storage, there is a clear need for stores that can handle RDF more
efficiently. In section 4 we explored improvements that could be made to existing triple stores with
reference to previous database research, and there is a clear opportunity to make RDF storage and
retrieval a more feasible operation.

In the future I plan to examine the various subtopics described in this report (in particular storage,
indexing, and query optimisation) and work on producing specialised systems to test ideas such as those
described in section 4, in order to improve RDF storage.

5.1 Pre-Mini-Thesis Work Packages

The Pre-Mini-Thesis work will focus upon the development and testing of ideas mentioned in Section 4.
It is expected that there will be a significant need for prototype-level testing of both these ideas and those
implemented in previous systems in order to show which approaches are of value, and in what situations.
It is desirable to avoid a full scale implementation of these approaches, as this drains time, and does not
provide significant added value.

5.1.1 WP1 - Storage and Indexing

Work Package 1 focuses on analysing different mechanisms for storing and indexing RDF data, with
emphasis on discovering which approaches have value for a variety of different purposes (for example,
read versus write optimisation). This will involve prototype creation to test theories, in particular some
of those mentioned in Section 4, and it is expected that this work package will involve a brief skills
update to ensure that the author is capable of implementing these efficiently. This will focus on
sharpening skills in low level languages suited to the low level operations that may be necessary,
particularly C. It is expected that this work package will at the least provide a comparison of existing
techniques and why and when they are effective, and ideally will provide evidence for new ideas that
may speed up the process of storing and retrieving RDF data. It is expected that this work package may
overlap to some extent with Work Package 2, as a complete evaluation stage may require insight into
how the storage and indexing scheme affects the performance of operations.

Method (18 weeks total)

Further reading will be performed in this area to ensure that the author has as complete an understanding
as possible. Discover how other models have been tested: ideally it is desirable to avoid anything

-23 -



beyond proof of concept-level implementation. Packages that allow arbitrary backends (such as Sesame
and Jena) may provide some help in this regard.

Tasks

e Literature Search (2 weeks)
I will revisit literature in the area of storage and indexing, ensuring that I have a complete
understanding in this area.

e  Algorithm Selection (1 week)
I will select storage and indexing methods from my own ideas, and those that have already been
implemented in the RDF storage world for implementation. The implementation of modes of
storage and indexing from existing stores will provide a fair comparison base for new ideas.

e  Skills Update (3 weeks)
I will update my programming skills, particularly focussing on improving my knowledge of low
level languages such as C, to ensure my skill set is suitable to the implementation of these
prototypes.

®  Prototype Implementation (estimate 10 weeks)
Prototypes of the selected ideas will be implemented.

e Testing (estimate 2 weeks)
Tests will be devised to examine the efficacy of the selected ideas. There is potential for a
publication if these tests provide useful data.

5.1.2 WP2 - Efficient Operations

Work Package 2 considers mechanisms by which operations (such as selections and joins) can be
performed efficiently on stored RDF data. This package will build upon work performed in WP1,
considering in particular what operations are appropriate for the storage and indexing schemes
considered worthwhile in that work package. As noted, this package may overlap with WP1. The
package will provide information on how operations can be most efficiently performed, and how they
affect both read and write performance. This will inform further development on producing triple stores
for any purpose.

Method (12 weeks total)
Similar to that seen in WP1: a literature review around the area, followed by prototype generation and
testing.

Tasks

e Literature Search (2 weeks)
I will revisit literature in the area of efficient operations, ensuring that I have a complete
understanding in this area.

e Algorithm Selection (1 week)
I will select relevant operations for implementation. These will certainly include basic
operations like select and join, but may also include more exotic operations such as ‘find
neighbour’ if a space filling cube storage/indexing mechanism is implemented in WP1.

®  Prototype Implementation (estimate 7 weeks)
Prototypes of the selected ideas will be implemented.

e Testing (estimate 2 weeks)
Tests will be devised to examine the efficacy of the selected ideas. There is potential for a
publication if these tests provide useful data.

5.2 Post-Mini-Thesis Work Packages

In the final portion of my PhD, I expect to build upon the work created in WP1 and WP2. This area is
left somewhat open ended to allow for different directions based on the changing needs of Semantic Web
research.
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5.2.1 WP3 - Query Optimisation

Query optimisation is a massive item of consideration when attempting to optimise RDF storage and
retrieval. Since this area has been less exhaustively researched than others in the preparation of this
report, it is expected that there will be a significant amount of further reading required, prior to
experimentation with various methods of query optimisation. It is important to consider a variety of
issues, such as:

e  Effective multi-threading: There is a trend for multiple processor cores to be employed even in
basic computer systems, as increasing individual core speed becomes progressively more
challenging. Optimisers that can efficiently distribute load amongst these cores would be
advantageous.

e  Statistics and memory use: Which statistics can affect performance, and how can variable
amounts of memory be most efficiently used to speed up queries.

5.2.2 WP4 - Inference

While investigation into inference has not been the focus of this document, performance of reasoning
over stored triples is clearly important to the success of the Semantic Web. Research into means of
trading off levels of completeness and soundness to allow for queries being performed in a time scale
useful to a given end user would certainly be of interest.
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