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Abstract

A computer simulation model, can produce some interesting
and surprising results which one would not expect from ini-
tial analysis of the algorithm and data. We question however,
whether the description of such a computer simulation mod-
elling procedure (data + algorithm + results) can constitute
an explanation as to why the algorithm produces such an ef-
fect. Specifically, in the field of theoretical biology, can such
a procedure constitute real scientific explanation of biological
phenomena? We compare computer simulation modelling to
explicit mathematical treatment concluding that there are fun-
damental differences between the two. Since computer simu-
lations can model systems that mathematical models can not,
we look at ways of improving explanatory power of com-
puter simulations through empirical style study and mecha-
nistic decomposition.

Introduction
It seems possible that computer simulation modelling could
become the new modelling paradigm in biology. As mod-
ellers build transparent, tractable, computer simulation mod-
els their relaxed assumptions will, in comparison with tra-
ditional explicit mathematical treatments, make for con-
siderably more realistic models that are close to the data.
The ‘Virtual Biology Laboratory’ is proposed (Kitano et al.,
1997) where a cycle is applied through comparing computer
models with empirical evidence: the results from each pro-
cedure inspiring the direction of the other. Animals, such
as C. elegans, have been well studied using computational
models, e.g., (Bryden and Cohen, 2004). Indeed the forma-
tion of a complete model of the organism has been identi-
fied as a potential grand challenge for computing research
(Harel, 2002). However, a full exploration of the rela-
tionship between mathematical and computational models
in biology has not yet been achieved. Questions remain:
for instance, whether both forms of modelling can peace-
fully coexist, whether mathematical models should aspire
to the complexity of computational models, and conversely
whether computational models can ever be as precise as a
mathematical treatment.

In this paper we are mainly concerned with the scientific
modelling of biological systems, however we hope that the

findings can be applied more generally. Biological systems
are made up of many different subsystems at different levels.
Alife models often reside in the interface from one level to
the next and can become extremely complex, especially as
entities from any level can interact with entities from other
levels.

The discipline of computer simulation modelling allows
modellers previously unheard-of freedom to build and un-
derstand systems of many interacting parts. This new ex-
pressive freedom appears to have the potential to become
the new modelling paradigm in science, perhaps overriding
traditional techniques which use explicit mathematical treat-
ments. However, this freedom does not come without a cost:
as more and more detail is added computer simulation mod-
els can quickly become unwieldy and too complicated to un-
derstand.

How then can computer models contribute to the task of
producing scientifically acceptable explanations? The use
of a complex yet poorly understood model may be accept-
able as some sort of loose analogy. However, Di Paolo et al.
(2000) have argued that without a proper understanding of
the internal workings of a computer simulation model, it can
be impossible to say whether such a model makes a valuable
contribution to the scientific problem it is addressing. They
describe such problematic models as ‘opaque thought exper-
iments’, arguing the need for explanations of the phenomena
modelled. They suggest that modellers should use an ‘ex-
perimental phase’ in which manipulations are made to the
computer model, the results of these manipulations hope-
fully generating insights into the workings of the system.
Once the internal mechanisms are understood, the transpar-
ent model can then not only give new insights into the sys-
tem being modelled but can also become a powerful predic-
tive tool.

We question whether a computer simulation model can, in
and of itself, constitute a scientific explanation. For exam-
ple, one might produce a model in which individual organ-
isms are explicitly represented and a particular population-
level phenomenon appears to emerge. But this does not con-
stitute an explanation of how entities from one level of a bio-



logical hierarchy produce interesting phenomena at another
level. Di Paolo et al. (2000) argue that some explanation is
required above a basic description of the model and the sys-
tem it represents. In this paper we look further into what an
adequate explanation of a model’s mechanisms should en-
tail. We will compare the account that we construct with the
more basic position, sometimes seen in the artificial life lit-
erature, that a bare-bones description of a biological system
with a computer model that qualitatively produces similar
behaviour—with little or no extra analysis or explanation—
can constitute a scientific explanation of some phenomena.

Given the above picture we must also consider the tradi-
tional methodology of explicit mathematical treatment. By
explicit mathematical treatment we mean a model which is
complete and contains no implicit steps, the steps can be
logical statements and do not need to be formally written
using mathematical symbols. While computer simulation
models are fundamentally mathematical constructions, they,
in the way they are reported, contain implicit mathematical
steps rather than the explicit steps used by formal mathe-
matical models. An explicit mathematical treatment takes
logical axioms and specifies a number of clear explicit steps
that deductively generate some result. In this paper we com-
pare this traditional treatment with the new computational
approach.

Firstly we set the context, we look at a framework for
scientific modelling. Then, by looking at two examples of
a similar system, we identify some properties that charac-
terise an explicit mathematical treatment and which a com-
puter simulation is unlikely to share. Having established that
explicit mathematical treatment is the ultimate goal of any
modelling enterprise, we look at how computer simulation
models do indeed still have value. We look at how com-
plex and unwieldy computer simulations may be simplified
to more easily generate explicit mathematical treatments—
proposing that this can be done by decomposition into sim-
pler systems. Finally we set out, in an order of merit, the
various different modelling approaches discussed.

A framework for scientific modelling
To understand how modelling is important and relevant
within scientific investigation, we present a framework for
scientific investigation with the scientific modelling cycle
highlighted. Figure 1 presents a diagram of the framework.

The primary focus of scientific investigation is the build-
ing of a good conceptual model of the real world. Expla-
nations of the real world reside in the conceptual modelling
area of the framework, these are recorded in the scientific
corpus. The basic scientific process involves the submission
of concepts to the twin tests of empirical science and scien-
tific modelling. The main focus of the framework, however,
is on scientific modelling and the interface between a con-
ceptual model and a working model.

Both computer simulation models and explicit mathe-
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Figure 1: The cycle of enquiry in scientific modelling within
the context of scientific investigation.

matical treatments reside in the working model area of the
framework. We take a working model to be a determinis-
tic and completely specified model of a system. (Whereas
a conceptual model may remain vague in places, a working
model must be completely fleshed out.) Logical processes
are applied to the axioms and the results of this process are
recorded. Logical processes can include mathematical equa-
tions, logical deductions and computations. Working mod-
els produce results which are used to refine and update the
conceptual model.

Before we specifically look at the sorts of results that can
be generated by explicit mathematical treatments or com-
puter simulation models, we discuss the types of assump-
tions that can be used to generate a working model. An as-
sumption is essentially an abstraction from a more complex
system. There will be many abstractions from the real world
in the conceptual model (tested by empirical science) and
it will normally be necessary to make further abstractions
for ease of modelling. One of the main benefits of com-
puter simulation modelling (Di Paolo et al., 2000) is that
assumptions can be very easily added to or removed from
models to see if they are significant or important. Explicit
mathematical treatments tend to be more fixed in their as-
sumptions. The types of abstractions used by either explicit
conceptual models or computer simulation models can be
distinguished into two groups, reductionist and analogous
abstractions. We take inspiration for this distinction from
Bedau’s discussion of ‘unrealistic’ models (Bedau, 1999).

In order to highlight the important differences between
the use of computational and mathematical techniques in
building a working model, we must first consider the out-
comes of a successful working model for the broader scien-
tific project. The more valuable results generated by a work-
ing model will form some kind of explanation of why some
phenomenon is present in the conceptual model. Other,
less valuable, results include those that generate predictions.
With an explanation generated by a model to hand, an empir-
ical scientist can easily and quickly generate good empirical



experiments to test whether an explanation is valid or not. A
working model may indicate that some factors are more im-
portant than others for a particular phenomena. This may di-
rect empirical science toward a more fruitful direction. The
value of a result can depend not only on the type of working
model used to generate the result, but also the assumptions
used to generate the working model in the first place.

Competence and performance in scientific
modelling

The previous section has set out the tasks necessary before
embarking on a modelling enterprise: Once a conceptual
model has been chosen that builds a picture of what is known
about some real-world phenomenon, assumptions are then
chosen to simplify this conceptual picture into logical units
and axioms that can be built into a model. Up to this point
everything is quite similar between the two logical mod-
elling styles. Perhaps it is natural to assume that since both
modelling techniques are analytical, the style of the results
will also be quite similar?

To answer this question we must consider a thought ex-
periment based on a specific example which can easily be
understood and modelled by either a computer simulation
model or an explicit mathematical treatment. The Lotka-
Volterra system is a mathematical treatment of a predator-
prey system. Two equations model the dynamics of the sys-
tem:

dx
dt

= Ax−Bxy (1)

dy
dt

= −Cy+Dxy (2)

where x is the prey, y is the predator and A,B,C,D are con-
stants. This system famously generates oscillations between
the predator and prey populations. This mathematical treat-
ment can be considered alongside an individual based com-
puter simulation model of the same phenomenon.

A typical example system might be as follows. In a com-
puter simulation model, individuals may have a location on a
spatial grid moving at random each turn. If a prey individual
encounters some food in its square it will receive an energy
bonus, if it encounters a predator it will be eaten with the
predator receiving an energy bonus. If either a predator or
prey individual’s energy level goes above a threshold then
it will reproduce, and if any individual’s energy level goes
below a threshold, it will die.

Without wanting to go into too much detail, we assume,
for the purposes of argument, that the computer simulation
has very similar dynamics to the mathematical system. That
is, both systems will make the same predictions about any
particular predator-prey system to which they might be ap-
plied. The two systems can now be compared against each
other and we can review our initial question concerning the

nature of the scientific explanation that may be derived from
each modelling enterprise.

To answer that question we draw on a distinction intro-
duced by Chomsky between competence and performance
(Chomsky, 1986). Chomsky’s approach considers whether
the linguistic corpus can be used as a source of empirical evi-
dence for linguistic enquiry. He distinguishes between com-
petence (our internal unconscious capacity for language) and
performance (actual instances of language production). Re-
garding linguistic inquiry, he argues that we should take
this distinction into account considering models of linguistic
competence above models of linguistic performance.

We use Chomsky’s distinction to shed light on the differ-
ing styles of scientific explanation that are likely to follow
from the use of computational versus mathematical treat-
ments of a particular problem. From this point of view, the
computer simulation model must merely be considered as a
performance of a scientific explanation, whereas the explicit
mathematical treatment can be considered as having compe-
tence (an innate capacity) as a scientific explanation.

Simulation runs have the same sorts of problems as those
Chomsky identifies for linguistic performances. They are
subject to faults (in code as well as in run-time conditions)
and each simulation model is merely a single data point and
may not reveal the complete potential of a system. In a sim-
ilar way, it is possible to hide flaws in the performance from
the audience. Simulations can be set up so that the data
points presented make the best possible case for whatever
it is the modeller is trying to argue.

Alternatively, explicit mathematical treatments, assuming
they are done correctly, are analytically complete: flaws in
the system are immediately obvious. In addition, mathe-
matical treatments are not limited to some narrow range of
parameters but provide universal coverage of all variables
included in the model. These two properties were identified
by Chomsky as arguments in favour of looking at linguistic
competence over linguistic performance.

Furthermore, explicit mathematical treatments have more
powerful identity conditions than do computational models.
By this we mean that one mathematical treatment can au-
tomatically be established as the same as, or different to,
another treatment, just by comparing the logic. Computer
simulation runs, on the other hand, may produce similar re-
sults for the same problem, but have very different underly-
ing explanations. The opposite can also occur, in that two
computer simulations may be driven by the same underlying
process without this being obvious to an observer.

Mathematical treatments are more reusable than computer
simulation models. Some give good clean results which can
instantly be applied to systems, others benefit from the ease
with which they can be written down in full and passed on.
Such models can then be used as logical axioms for other
models with their competence passed on. In contrast, al-
though computer models can certainly be transferred from



one author to another their results are rarely used, in prac-
tice, as axioms for other models.

One might argue at this point that we can distinguish
the code for a computer simulation model from an indi-
vidual execution of the code. The argument continues
that a simulation run is merely a performance of the code,
the code itself has competence. To answer this point we
look at the style of computer model chosen in the Lotka-
Volterra example above. It was chosen specifically so that
the code would demonstrate an emergent phenomenon (Be-
dau, 1997). There are only two cases possible here. Either,
without an execution of the code its macroscopic function
is opaque, or, if the macroscopic function is deducible from
the code, then this deductive process would necessarily form
an explicit mathematical treatment. If this deductive process
is impossible, any explanation generated must be teased out
by analysis of simulation runs.

At this point, we are left with a conundrum. If com-
puter simulation models are viewed as mere instances (per-
formances) rather than as systematic explanations (having
competence), how can they be of use to science? The answer
is that there are many areas, identified especially in the AL-
ife field, which do not yet yield to mathematical modelling
but in which simulation models can already be produced.
Such simulation models not only have scientific power as
proofs of concept and for generation of insights for perform-
ing empirical science, but they can also have some explana-
tory power (Di Paolo et al., 2000).

When considering a complex simulation in which there
is no explanation of the effects produced, some explanation
can be deduced by performing experiments on the simulated
system in the same way that one would do for an empirical
investigation. In this mode of enquiry a control simulation
is generated in which some important phenomenon does not
happen. This is normally done through some manipulation
of the system. The control simulation is compared with the
untampered system and the results are used as evidence that
the changes made by the manipulations are part of the ex-
planation of the phenomenon.

The above procedure is very similar to the normal mode
of empirical science. A conceptual model can be built of the
working model system and this conceptual model acts as an
explanation. We will now look further into how this form of
explanation relates to an explicit mathematical treatment.

Analytic explanation versus synthetic explanation
To attempt to understand the difference between an explana-
tion generated through the use of a working model in explicit
mathematical form and an explanation generated by exper-
imental manipulations of a computer simulation model, we
consider a distinction used by the logical positivists—that of
analytic and synthetic truths.

According to Frege’s reworking (Frege, 1980) of Kant’s
original distinction, an analytic truth is one that can be de-

duced through logical laws alone. A synthetic truth is one
which needs some other means, generally empirical investi-
gation, to establish its truth or falsity.

We use this distinction to identify modes of truth for
explanations generated by a working model. As pointed
out previously, we assume all working models are using
the same assumptions, i.e., they start from the same set
of logical axioms. We distinguish between an analytic
explanation—one which follows logically from the initial
assumptions—and a synthetic explanation—one which must
be determined by some other means.

Naturally an explicit mathematical treatment is in itself an
analytic explanation. However, empirical experiments done
on a computer simulation can only form synthetic explana-
tions. These synthetic explanations require validation in the
same way empirical science must be validated. The evidence
backing up these validations relies on measurements taken
from performances and is thus open to disconfirmation, re-
production and revalidation.

There is an ongoing debate about the analytic/synthetic
distinction, some arguing that it is not a black and white dis-
tinction but more a question of degree (Quine, 1953). While
Quine’s arguments are concerned with statements about the
real world rather than statements about a closed set of log-
ical axioms, we agree that our distinctions of explanations
should not be black and white. A working model can, like
a biological system, be large and complex. Some parts of
such a system will yield to explicit mathematical treatment,
whereas with other parts we may have to rely on empirical-
style experiments of the kind discussed by Di Paolo et al.
The final explanation generated through such a process will
consist of a mixture of analytic and synthetic statements.

In the next section we present an account of how systems
can be decomposed into smaller parts to identify explicit
mathematical treatments. Successful mathematical treat-
ments will render the resulting explanations more analytic
in the way we have just described.

Decomposition of systems
A system can become hard to analyse when it is made up
from many inter-dependent subsystems. In fact, the identifi-
cation of subsystems is a good first step when tackling such
a complicated system. However, this is rarely simple. When
subsystems are inter-dependent it is not possible to manipu-
late one subsystem independently without affecting another:
both subsystems, at the same time, affect the overall system.
The situation becomes increasingly difficult when the sub-
system’s components are not mutually exclusive from each
other.

Simon (Simon, 1996) describes a ‘nearly decomposable
system’ as being one in which components are independent
in the short term, but dependent in the long term. This is a
useful way to divide a system up and this has been expanded
further (Watson, 2005; Polani et al., 2005) considering mod-



ular dynamical systems. Watson introduces a concept called
modular interdependence to describe a system with modules
that are decomposable but not separable. A hierarchy can be
formed from subsystems and it is easy to see how complex
behaviour can be generated. This hierarchical perspective is
a valuable decomposition of a complex system. If it is possi-
ble to divide up a set of microscopic entities into subsets this
will allow us first to tackle the mechanisms of the subsets,
before understanding how they interact with each other.

In the next section we consider a more general perspec-
tive for decomposing systems. Rather than breaking up the
set of microscopic entities into subsets, we consider a more
arbitrary way of decomposing a system into subsystems that
contain a simplified version of the dynamics of the supersys-
tem.

Mechanistic subsystem
We propose information theoretic definitions of a mechanis-
tic subsystem and interdependence in mechanistic subsys-
tems. This style of definition has been used in (McGregor
and Fernando, 2005) to formalise hyperdescriptions. We
then go on to discuss how these definitions relate to our in-
tuitive notions of these concepts before looking at examples
in the next section.

Define a system S as being a set of mathematical en-
tities, their interactions and their parameters. Take a de-
scriptor function d(S) = M that will map the system S
to a set of descriptors M. Define the entropy of a ran-
dom variable X as H(X) = −

∑
x∈X p(x) log p(x), the con-

ditional entropy between two random variables X and Y as
H(Y |X) = −

∑
x∈X p(x)

∑
y∈Y p(y|x) log p(y|x) and the mu-

tual information as I(X ;Y ) = H(Y )−H(Y |X).
Take a system S1, such that d(S1) = M1. Then, S1 is a

mechanistic subsystem of S if

S1 ⊂ S (3)
H(M1|M) = 0 (4)
I(M1;M) > 0 (5)
I(M1;M) < H(M) . (6)

The mechanistic subsystem S1 is a constrained version of
its supersystem S. The constraints can take place in the pa-
rameter space, the number of entities, the nature of the enti-
ties, or their interactions. We list the Equations [(3) to (6)]
and describe their meaning: (3) S1 is a subset of S; (4) all
information in M1 is predicted by M; (5) M1 and M share
some information; (6) there is infomation in M that is not
predicted by the information shared by M1 and M.

The information theoretic definition presented includes
many of the important concepts of a mechanistic subsystem.
However a useful mechanistic subsystem should have two
further properties. Firstly, it should be transparent, i.e., it is
possible to understand why and how it produces its macro-
scopic effects. Secondly, its macroscopic effects should be

of interest when compared to the macroscopic effects of the
main system. We need to avoid specifying macroscopic sub-
systems that are either equally complex to the main system
with only some neglible reduction, or are so simplistic that
they are of no analytic value.

Following on from this definition of a mechanistic sub-
system, we draw on Polani et al.’s definition (Polani et al.,
2005) of a system that is decomposable but not separa-
ble to identify how two mechanistic subsystems can be in-
terdependent. Take a system S and two mechanistic sub-
systems S1 and S2, the subsystems are interdependent if
0 < I(M1;M2) < min [H(M1),H(M2)]. The two subsystems
are neither independent nor completely dependent.

With this approach identified, we can see how it is possi-
ble to break up a complex system of many interacting parts
into simpler mechanistic subsystems.

Examples of Mechanistic Subsystems
We consider, as an example, the spatial embedding of repro-
ducing agents. Space has been shown to be an important fac-
tor in the maintenance of cooperation in a population (Boer-
lijst and Hogeweg, 1991; Di Paolo, 2000). The common
feature of these models is that two regimes are considered.
The models are considered and analysed in a non-spatial en-
vironment before being placed in a spatial environment. The
non-spatial treatment is a mechanistic subsystem of the spa-
tial treatment. In this treatment agents are thought to be
in a perfectly mixed spatial environment, a special case of
the spatial component. A comparison of the interactions of
agents in the spatial and non-spatial environments demon-
strates how cooperation is increased. The mechanistic sub-
system (the non-spatial model) functions primarily as a con-
trol in these experiments.

A different model (Bryden, 2005b) considers collective
reproduction in amoebae. This non-spatial model demon-
strates that cells that reproduce individually must reproduce
more slowly to maintain high energy reserves for periods of
low resources. By reproducing collectively during periods
of low resources, individuals can avoid the need to repro-
duce slowly and can dominate periods of high resources by
reproducing more quickly. The model is complex and it is
not easily apparent why this is occurring. A mathematical
treatment (Bryden, 2005a) analyses a mechanistic subsys-
tem of the main model only considering individuals that re-
produce individually. This treatment shows that, when there
is a greater cost to individual reproduction, the rate of dec-
imation, at times of low resources, will be proportionately
greater than the rate of growth at times of high resources.
Reproducing more slowly will decrease the cost of repro-
duction, and so the mathematical analysis explains why this
occurs in the full model.

A further model (Bryden, 2005c) considers the effects of
space on the individual reproduction mechanistic subsys-
tem: agents in the model live and reproduce on a spatial



grid. This model can be broken up into two mechanistic
subsystems, firstly a non-spatial subsystem with individuals
reproducing [as treated by (Bryden, 2005a)] and secondly a
spatial subsystem without individuals reproducing. Results
indicate that the spatial effects increased the frequency of
both periods of high resources and periods of low resources.
The mathematical model has shown that this would increase
the tendency for individuals to conserve resources and repro-
duce more slowly. This is an example of a system that com-
bines two interdependent mechanistic subsystems (a spatial
and a reproductive system) that interact with each other to
produce a macroscopic phenomenon.

Away from the field of agent based modelling, we con-
sider models based on neural biological systems. Neural
systems have extremely complex dynamics, which are re-
sistant to mathematical analysis. However, the use of linear
stability analysis has proved useful in identifying mechanis-
tic subsystems which can be used as building blocks within
larger systems. For example, a system of coupled oscilla-
tors, based on the FitzHugh-Nagumo model, has been anal-
ysed as a mechanistic subsystem (Buckley et al., 2004). This
analysis demonstates how, when the oscillators are linked to
a simple gas net, the system can produce temporally distinct
oscillations. Much other work continues into the identifica-
tion of simple oscillatory models, such as that done in Cen-
tral Pattern Generators (CPGs) (Marder and Bucher, 2001).
CPGs can work as mechanistic subsystems within models of
animal locomotion systems.

In this section we have demonstrated how a complex sys-
tem that does not yield to explicit mathematical treatment
may be simplified into mechanistic subsystems which are
more likely to yield to explicit mathematical treatment. We
can observe from the examples chosen that the working
models arrived at through such a process consist of both syn-
thetic and analytic explanations.

The process of simplification identified above is not the
only way of making simpler models. By choosing differ-
ent assumptions and approaching a conceptual model from a
different perspective it is also possible to open up a system to
explicit mathematical treatment. With computer simulation
it is increasing easy to change the assumptions of a model
and get a feel for how the system changes. This sort of ap-
proach is invaluable as a tool for the sort of lateral thinking
needed when generating an explicit mathematical model.

Discussion
While this paper has argued that an explicit mathematical
treatment will provide a superior explanation of a scientific
phenomenon to an equivalent computer simulation, it must
be made clear that the overrarching goal of the scientific
modeller is to build better models which explain important
phenomena which are not as yet understood. To this extent
computer simulation is still a crucial part of the modellers
toolbox. The ease with which models can be produced with

computers is extremely valuable. Furthermore, not only can
these early efforts lead to some important scientific results,
but they can also point towards new directions for mathe-
matical models. We list below, in increasing order of merit,
different styles of working models and explain how valuable
each one is in generating scientific explanation. By starting
with models at the beginning of the list and progressing up
the list, models can become better explanations of scientific
phenomenon.

• A description of an opaque computer simulation and some
vague rhetorical statements that it consists of an explana-
tion of what it is trying to model. We have argued that this
approach is merely setting down a procedure for produc-
ing a performance of explanation of some phenomenon.
However, this approach can still yield a proof of concept
for some topic under debate, or generate insights for em-
pirical experiments.

• The same computer simulation as before, but this time
complete with well documented source code, parameters
and other data that can easily be tested by other users and
reused in new simulations. While this approach does not
yet produce a competent explanation, it allows for more
simple reproduction of the model which will help others
develop it further.

• An opaque computer simulation (with well documented
source code) with some manipulations and simulation
runs that demonstrate how various attributes of the model
explain various phenomena. We have argued that this ap-
proach can yield a competent explanation of sorts, but
this is merely a synthetic explanation and is not logically
grounded.

• An opaque computer simulation (with well documented
source code) that has been decomposed into mechanistic
subsystems. Some subsystems have been treated mathe-
matically. Such a working model can also yield a compe-
tent explanation of sorts, this explanation is more analytic
than in the previous case.

• An explicit mathematical treatment. Such a working
model yields a competent fully analytic scientific expla-
nation.

As set out above, clearly the best option is to produce an
explicit mathematical treatment. However this is rarely sim-
ple, and in many cases mathematics is not yet mature enough
to approach this goal. Since we must live in the real world,
science must answer questions about systems that cannot be
yet modelled by mathematical approaches. Computer simu-
lation modelling provides us a working methodology for ap-
proaching these complex or complicated systems and mak-
ing important steps toward understanding them.

Further to this, it is important to note that computer sim-
ulation models can extend already established mathematical



treatments. By extending or relaxing the assumptions made
in the purely mathematical treatment, the new model will
rely on the mathematical treatment as a mechanistic subsys-
tem but may produce new results or important insights on
the mathematical model (Harris and Bullock, 2002). Since
computer simulation models lend themselves to more accu-
rate, relaxed assumptions, when explanations become avail-
able they are more likely to be of value to the conceptual
model under question.

What is important is that scientific models progress up the
order of merit listed. A novel modelling approach that iden-
tifies a new style of working model may have value even
if it merely provides a performance of some scientific ex-
planation. Such a system can be experimented with and
decomposed into mechanistic subsystems and the standard
of explanation will improve. This is one of the benefits of
computer simulation modelling in that it gives us tools to
break down a problem so that we can get closer to an ex-
plicit mathematical treatment through an iterative process.
Computer simulation models can be thought of as provid-
ing tools for developing imagination and lateral thinking in
modelling approaches.
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