UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science and Mathematics
School of Electronics and Computer Science
Intelligence, Agents and Multimedia Group

Dependable Systems and Software Engineering Group

A mini-thesis progress report submitted for tranfifem MPhil to PhD

Supervisor: Hugh Glaser
Supervisor: Dr Les Carr
Examiner: Dr Nicholas Gibbins

On the practical modeling of conceptual overlap
among multiple facets in ontology domain concepts

by Benedicto Rodriguez-Castro

December 14, 2007

Page 1 of 55

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

Faculty of Engineering, Science and Mathematics
School of Electronics and Computer Science
Intelligence, Agents and Multimedia Group

Dependable Systems and Software Engineering Group

A mini-thesis progress report submitted for tranffem MPhil to PhD

by Benedicto Rodriguez-Castro

This report presents a study on the practical niodebf the conceptual overlap that
might exist among the multiple facets that defingoaticular ontology domain
concept. The notions of conceptual overlap andtface defined, together with their
relation to scenarios of multiple inheritance intaogy models. Starting from the
notion of avalue partition, a terminology of ontology modelling constructs is
introduced that allows the characterization of tiypes of conceptual overlap with
respect to the domain concept being examined: nateand external. These
considerations makeexplicit some of theimplicit modelling decisions taken
previously in the field of ontology modelling. Itsa puts forward, a methodology to
address this problem in a structured manner coegred a series of steps which
include a specific entry and exit criterion. Thenctbution of this research is proven
with the modelling of the conceptual overlap in tRault” ontology domain concept
that is part of the ReSIST project.

Page 2 of 55

Table of Contents

Table Of CONIENLSiii s 3
IS o) T[S 4
TRESIS ..t —————————— e aaaaaaaes 5
O 1 170 Yo L8 [d 1o o PO PPPPPPPP PPN 6
1.1. The RESIST PrOJECT .cceeeeiiiiiiiiii s s e e e e e e e e e e e e eeeeeeaeeeesbmmmnnesnnee 10
2. Related RESEAICH........coi it 11
2.1. ONtology MOAEIIINGuueiiieee e 11
2.1.1. Ontology Design Patterns (ODPS)cccccviiivveveiiiiiiiieieeee e eee e 2.1
2.2. Multiple INheritance (MI)uueeeei e 13
2.3. ONtology EVAlUALIONccceee e e 13
3. MEBENOTAS. ... et e e e e e e e e e e e e e e e e aaaarae 15
Step 1. Define the domain CONCEPLuuu e eeeeee 15
Step 2. Develop different ontology models to repn¢she domain concept 20
3.2.1. Modelling internal oVerlap...........cccce e eeeeiieeeeeir e 26
3.2.1.1. Model 1. USiNg OWL CIaSSES.iccemmmeeeeeeieiiiiiiiiiiaae e e e 26
3.2.1.2. Model 2. Using OWL Properties with subtygkations. 28
3.2.0.2.0. VariationN 1 ...oeeeeeiiieee e ettt e e 30
3.2.1.2.2. VAlNAtION 2 ...eeevviiiiiiiiiei e ettt 30
3.2.1.3. Model 3. Using OWL Properties without syplet relations. 31
3.2.1.3.1. Variation 1ccoiiiiiiiieiei sttt ettt 31
3.2.10.3.2. VAAtiON 2 ..oveeiiiiiiieee ettt aeeas 32
3.2.1.4. Summary of internal overlap models.........cccoeeevviiiiiiiiiiiiiiiiiiiin, 33
3.2.2. Modelling external OVerlapcccemaiieeeeeeieiieeeeeeei e 33
3.2.2. 1. MOAEL A e — 33
3.2.2.2. MOAEI B .. 34
3.2.2.3. MOAEI € .. st 35
3.2.2.4. MOAEI D .. e 36
3.2.2.5. Summary of external overlap MOdelS coeeevvvvviiiiiiiiiiieeeeeeeeeee 36
Step 3. Populate same set of individuals in all@ed................cccoeoeiiiiiiinennn, 37
Step 4. Define a suite of user questions for ale®...................ccceeeevrviiinnnnns Q.4
Step 5. Select an evaluation framework for all f®de.............cccooeeiiiirien, 43
Step 6. Analyze results for all Models ... eeeeeeeiiiiiiiiie e 44
A, CONCIUSIONS ...ttt e e e e e e e e e e e e e eeeeeaeeeeeeeeseeennnnns 44
5. FULUIE WOTK ..ot s+ttt ettt e e e e e e e e et bbnese e e 46
ACKNOWIEAGMENTS. ...t e ee et 48
RETEIEINCES ...k ettt ettt e e e e e e e e e e s se st et e e e e e eeaaaaeeeas 48

Page 3 of 55

List of Figures

Figure 1. Representation of internal conceptuatlape..............cccccvvviiviciiinnnnnnn. 8..
Figure 2. Representation of external conceptuallape...................ccceevvvvvvvnnnnnnns 8.
Figure 3.The elementary fault classes [Avizienialgt2005]...........cccevvviiiiiriniennnn. 16
Figure 4. Matrix representation of the classes arhloined faults [Avizienis et al.,
12001 TP 17
Figure 5. Tree representation of the classes ofbowed faults [Avizienis et al.,
12001 PP 17
Figure 6. Extended version of Figure 4 in [ReCBR05].covvvvveriiiiiiiiiiieeeeenn. 1.2
Figure 7. Extended version of Figure 3 in [ReCRO5].covvviiiiiiiiiiiiiiiieeeenn. 1.2
Figure 8. Extended version of Figure 4 in [NOy, ZD0...........cviviiiiiiieiiieeeeeeee, 22,
Figure 9. Venn-style diagram illustrating the cqptoaf “value class hierarchy”. 23
Figure 10. The Fault domain concept Value Clasgsatiby is part of the Domain
Concept Space and the Value Space in the over8liISReontology.ccccceeee. 26
Figure 11. Example of Model 1. ..o e eee e 28
Figure 12. Example of Model 2 Variation 1. ..o 30
Figure 13. Example of Model 2 Variation 2. ..cceeoovveveveeiiiiiiiiiiiee e 31
Figure 14. Example of Model 3 Variation 1. ..o 32
Figure 15. Example of Model 3 Variation 2. ..ccee.ooovvvevveeiiiiiiiiiiiee e 32
Figure 16. Comparison of proposed ontology modaisrternal conceptual overlap.
.. 33
Figure 17. Model A for external conceptual ovenleng Model 1........................... 34
Figure 18. Model B for external conceptual ovetamg Model 1. ... 35
Figure 19. Model C for external conceptual overdamg Model 2 Variation 1........ 36
Figure 20. Comparison of proposed ontology modmisekternal conceptual overlap.
.. 37

Page 4 of 55

Thesis

This work investigates the development of a setnedasurable and practical
guidelines for ontology modelling using the OWL daiage to represent conceptual
overlap among multiple facets in domain conceptshi context of the Semantic
Web.

This set of measurable and practical guidelineslavallow ontologists to develop an
ontology model that would outperform comparable didates for a particular
application driven parameter according to a relevaraluation framework to be
applied.

To test this hypothesis, different practical apph®s to model a commonly agreed
domain prone to a high degree of conceptual ovexidijoe proposed and measured
against an evaluation framework that will show adages and disadvantages of
every model when compared with each other.

Page 5 of 55

1. Introduction

The original idea at the beginning of this PhD pamg was to evaluate and
understand the current state of Knowledge Techimedpgpecifically ontologies and
Ontology Engineering and assess if these techredogpuld be applied to the field of
Software Engineering to assist development teamisnproving the quality of the
artefacts delivered along the software developmentess. However, the evaluation
of the current state of Ontology Engineering, urezed new areas of research interest
linked to some of the difficulties encountered whérvllowing any of the
methodologies available to create ontologies.

Ontologies have emerged as one of the key compemeeided for the realization of
the Semantic Web vision [Berners-Lee et al., 2@01] they bring with them a broad
range of development activities that can be groupéa what is called Ontology

Engineering. A detailed overview of what is an ¢odyy, including the evolution of

its definition in the literature, can be found iecgon 1.2 of [Gomez-Perez et al.,
2004].

Ontology Engineering practices present many siitiggr to those in the Software
Engineering field and there have been differeniptateons of software engineering
principles to the ontology engineering domain [Behez-Lopez et al., 1997].

Below is a list of the most common ontology engrnreg practices and a brief
description of the work that each one of them é&ntgbomez-Perez et al., 2004]
[Fernandez-Lopez, 2002] [Fernandez-Lopez et aB7LL9This list is not intended to
be exhaustive given that new ontology engineerictiyities continue to appear as
ontologies and the applications they are usedké®p on evolving.

* Requirements specification. Similarly to its Softev&ngineering counterpart, the
main deliverable of this activity is an ontologyjoerements document.

» Conceptualization. This activity produces a congabimodel of the ontology,
starting from a glossary of terms that containsrédevant domain knowledge for
the ontology.

* Implementation. It constitutes the actual codingtlté ontology into a formal
ontology language that is machine-readable, su¢hea8/eb Ontology Language
(OWL), [Dean and Schreiber, 2004].

* Evaluation. This activity could be seen as the fiiion and Validation tasks
performed in the Software Engineering disciplinbeTidea is to corroborate that
the delivered ontology meets the requirements € laalt for.

* Documentation. It is an important task that takiesg throughout the ontological
engineering process in order to understand thé baiblogy and enable potential
future re-use. However, lack of guidelines on hovgénerate this documentation
has been a challenge for ontologists when undedatis activity, [Skuce and
Lethbridge, 1995].

Page 6 of 55

* Evolution and maintenance. This practice deals wille repercussions of
modifications made to a deployed ontology in theliaptions and systems that
the ontology operates. Management of change.

* Modularization. It studies how the constructiorlasfe ontologies can be realized
by combining self-contained, independent and rdaeskbowledge components
[D’Aquin, Schlicht et al., 2007].

» Extension. In situations when an ontology is redysemay be necessary to add
new classes, properties, or other functionalitgdapt it to new requirements. The
process of adding or expanding the capabilitiearobntology is also referred to
as ontology extension.

» Specialization or refinement. It could be viewed the contrary process to
ontology extension. In this case, the ontology fiomality that is not relevant to
meet its requirements is subtracted.

* Pruning or winnowing. It is characterized by taihgy, simplifying, or shrinking
an ontology with respect to the needs of the appbio that is using it [Ehrig et
al., 2004] [Alani et al., 2006].

* Integration. It deals with the question of how amidether to use all or part of
ontologies that already exist [Uschold et al., 1996

* Merging. It examines similarities and differencesvieen source ontologies and it
aims to produce a single ontology resulting frone ttombination of all the
sources [Noy and Musen, 2000].

* Mapping or alignment. Like in the case of ontolaggrging, ontology mapping
also involves looking at links between existingadogies to make them consistent
with one another, although here, the sources irgbWill be kept separately [Noy
and Musen, 2000].

* Reasoning. This activity deals with the study of thferring capabilities of the
produced ontology.

Out of all these aspects of ontology engineerihgs teport primarily focuses in the
ontology conceptualization task described abovej an the opportunities for
improvement in the current state of the art methmgles.

The first part of the conceptualization consistsdaveloping a glossary of terms

representative of the target domain, obtained durine preceding knowledge

acquisition phase. At this point, the constructodrihe model for the ontology starts

and it is at this point that ontologists will hateesolve different modelling issues to

convert the glossary of terms into an ontology nhoéler example, what terms in the

glossary should be modelled as classes? What tshuosld become properties,

property values, or instances? This is the spesiéip in the conceptualization process
that this research is intended to focus on [NoyMiGuinness, 2001].

Page 7 of 55

Another level of complexity that will be consideradvolves domain concepts that
present a high degree of conceptual overlap amounigjphe facets used to define
them. Ontology creation methodologies provide sguoneelines on how to approach
this design step however they do not seem to peoeitbugh level of detail. This
deficiency could lead ontology designers into mgkincorrect modelling choices
relying on a subjective interpretation of the pesbl The aim of this research is to
explore this aspect of the ontology creation intdegnd try to propose a set of
practical and measurable guidelines that couldstssitologists in solving this issue
in a more deterministic, reproducible and objecthamnner.

Facet N produces a
class hierarchy not
exhaustive and highly
coupled

Facet 2 produces a
class hierarchy not
exhaustive and not
disjoint

Facet 1 produces a
class hierarchy
exhaustive and pair-
wise disjoint

Domain Concept to
be represented

Domain Concept

Figure 1. Representation of internal conceptual ovéap.

Conceptual overlap refers to the intersection thgists among the considered
definitions of a concept. Two types of conceptuartap are identified: internal and
external conceptual overlap.

_______ The relationships between b inC B
(< = 3~ <~ Domain Concept B, C and %’;ﬂi"]? otncep
S -4 Arepresent external 1 W ace
1

| conceptual overlap considered n its
representation

- -

-~ -

Domain Concept C
with 2 facets
considered in its
representation

- -

Domain Concept A with 2
facets considered inits 00~ | S~I—=—=—<--
representation

Figure 2. Representation of external conceptual oviap

Internal conceptual overlap refers to the inteisacimong the definitions considered
within the same ontology domain concept. Each de&imis normally linked to a
facet that exists of the concept, (Figure 1).

Page 8 of 55

External conceptual overlap refers to the intersadhat could occur among two or
more distinct ontology domain concepts due to tkistence of certain relationships
among them, (Figure 2).

A facet represents a criterion that would rendehierarchical taxonomy of the
concept. When multiple facets are taken into actdbe result is a poly hierarchical
taxonomy of that concept. This notion of facet et the definition of “value
partition” introduced in [Rector, 2005].

When there is overlap among the facets, the payahthical taxonomy will exhibit
scenarios where certain terms will overlap eaclerodicross the taxonomies involved.
Multiple inheritance provides a view of such scémailhe expression multiple
inheritance in this context, refers to the situatiwhere a term in the developed
ontology is subsumed by two or more different term¢he ontology. In the case of
ontology development using the OWL language thigasion could apply to both
OWL Classes and OWL Properties.

It is important to note the distinction between riceptual overlap” and “multiple
inheritance”. Throughout this report conceptual riage is considered an ontology
design problem while multiple inheritance is viewaesdone of the possible approaches
to address and illustrate this problem, but notoihilg one.

To obtain a better idea of the multiple inheritateredscape for the ontologies in the
Web, Figure 2 in [Wang et al., 2006] shows the shajclass hierarchies for the 1275
ontology files in the survey, (688 OWL and 587 RDd#tfologies).

Out of the 688 OWL ontologies, 122 were Directegy@ic Graphs (DAGS), (17.7%)

and 64 were multitrees (9.3%). This gives a totéd ©o were most likely some type
of conceptual overlap modelling in their class &iehy is taking place. In the inferred
ontology this number goes up to 30.2%.

In the case of RDFS ontologies, out of 587 incluthethe survey, a total of 77 (13%)
had a DAG (6.8%) or a multitree (6.3%) as the shadpbkeir class hierarchy.

The combined result is that about 20% of all org@e on the Web (considered in the
survey) include some type of multiple inheritancedelling scenario. This value

seems too low based on how common multiple inhes@abccurs in the real world. A

possible interpretation for this could be due tack of best practice guidelines on
how to model this problem, which in turn could kamusing ontology developers to
find creative ways to circumvent it.

On a similar study [d’Aquin, Baldassarre et al.02]) surveys indicate that the

number of ontologies and their presence in theitiomdl Web increases rapidly

according to the latest figures. The number of O&vid RDF-S ontologies available
online is approximately 6200 and 1700 respectivEhese numbers are in the order
of nearly ten times larger in the case of OWL ocogats and more than double for
RDF-S when compared to the survey in [Wang et2@l06] about a year earlier. The
latter reported 688 and 587 OWL and RDF-S ontokgespectively.

Page 9 of 55

This seems to indicate that since the adoptioh®fQWL specification language as a
W3C standard in 2004 [Dean and Schreiber 2004], dhtology development
community has been active and embraced the lage$indlogy available in a
detriment to its RDF-S predecessor. More imporjanti brings an interesting
guestion to the forefront. How are these ontolodiegng built? What modelling
problems and challenges are ontology developensgamnd what approaches are they
taking to solve them?

The rest of this report is organized as followsctlea 2 presents an overview of the
main research areas in connection to the probleimgbdiscussed here. Section 3
describes the methods employed and the rationafendethem to address the
problem. Section 4 outlines the conclusions gathémem this effort and Section 5
does the same regarding the lines open for funtivexstigation.

1.1. The ReSIST Project

The contribution of this research is put into piactwith the modelling of the
conceptual overlap in the “Fault” ontology domaamcept that is part of the ReSIST
project. ReSIST stands for Resilience and Surviigbin Information Society
Technology (IST) and it is a Network of Excellen®oE) project funded under the
Sixth Framework Programme of the European Unior§(B€, 2006).

One of the objectives of the ReSIST project is teate a Knowledge Base (KB)
application in the domain of resilient computingaripy inspired by the features
demonstrated by the semantic web application CSi¥&Space [Glaser et al., 2004]
[Shadbolt et al., 2004] and with many of the sagwiirements.

The aim of the ReSIST Knowledge Base (RKB) is tovte an application to the
end-user that could serve as a portal to browsesaarcth all type of information in
the field of resilient computing: projects, peopl@stitutions, publications,

communities of practice, courses, etc. Meeting éhosquirements requires the
development of an ontology fit for purpose in themdin of resilience and

survivability in computer systems that will havel® built from scratch.

Further information of the main components and rtetgies being used to develop
the ReSIST KB application can be found in [Glaserlg 2007] [Anderson et al.,
2007] [Millard et al., 2006].

! http://www.resist-noe.org/

Page 10 of 55

2. Related Research

Reiterating from the previous section, the problgmodelling conceptual overlap
among multiple facets of ontology domain concepis lse seen as a specific problem
scenario within the broader activity of ontologynceptualization. Its solution
involves several areas of research among which,dbthem stands out. These are:
ontology modelling, more specifically ontology dgsipatterns, multiple inheritance,
and ontology evaluation. This section outlines ldiest developments and role of
these four topics in the target of this research.

2.1. Ontology Modelling

There are several methodologies and approachasltbdmtologies from scratch that
address the topic of ontology conceptualization amore specifically ontology

modelling. A comprehensive survey of the most rah\is provided in [Fernandez-
Lopez et al.,, 2002]. However, these methodologies bt provide enough

information at the specific level of detail. Theyok at ontology conceptualization
and modelling in broader terms, from a higher lgaispective, or from the point of
view of what role in the overall ontology enginegyilifecycle it plays and what

dependencies it has with other engineering aawitDifferent methodologies provide
different levels of detail on how ontology concegization can be performed, but
none of them discuss in depth the modelling probdaimect of this research (or its
possible solutions) [Gomez-Perez et al., 2004] figtt and King, 1995] [Gruninger

and Fox, 1995] [Sure and Studer, 2002]. Additignathe methodologies referenced
above are dated prior to the adoption of OWL byW&C as the preferred ontology
modelling language for the Semantic Web, and tbeeeimodelling elements specific
to OWL are not taken into account. This is an intgatr shortcoming, given that this
research intends to solve the issue of conceptadkiting in the context of OWL.

There is however, an example of previous work thamines ontology modelling

issues at the level of detail required for thissegsh. This is [Noy and McGuinness,
2001], which in turn, bases part of its rationaletbe principles of object-oriented
modelling [Rumbaugh et al., 1991]. In this casetep by step methodology is put
forward to develop an ontology. Each step detdils most relevant modelling

decisions to be made. In their considerations fhagt out that there is not a single
correct way or methodology for developing ontolagik is always and necessarily an
iterative process and the best approach differ midipg on the application that one
has in mind.

An alternative approach to ontology building isgmeted in [Good et al., 2006]. The
authors opted for a team of volunteers untrainedhmm principles of knowledge
engineering to develop a specific ontology in thedival science domain. Volunteers
are guided by protocol to create and developedotitelogy consisting of a web-
based interface.

[Prieto-Diaz, 2003] shows an interesting approattbwlding an ontology using
principles of faceted classification. However, thmeethod requires the use of a
postulated ontology which is not built using thethoel itself. This is not a trivial
prerequisite and hence it only addresses our muylakeds partially.

Page 11 of 55

In summary, there are several ontology constructn@thodologies available in the
literature, however except for [Noy and McGuinne2801], they do not provide

enough detailed information about the ontology ephgalization and implementation
phase. None of them treat the activity of ontologyceptualization in the context of
the OWL Semantic Web modeling language and norteesh addresses the specific
problem of modeling conceptual overlap in the ted®scribed in this report.

2.1.1. Ontology Design Patterns (ODPs)

Within the area of ontology modelling there is actiaty that is receiving a
significant amount of attention, possibly due te greceding success achieved in the
field of software engineering. This activity is dgspatterns [Gamma et al., 1995]. A
design pattern would be the ideal artefact for tiwelling guideline this research
would like to propose to address the specific pwblof conceptual overlap under
study. Related work in ontology design pattern thas been considered includes
[Blomqvist and Sandkuhl, 2005] [Suarez-Figueroaakt 2007] [Gangemi, 2005]
together with the documents released as part ofMbdd Wide Web Consortium
(W3C) Semantic Web Best Practices and Deploymentkivgg Group (SWBPD-
WG)? [Noy, 2004] [Rector, 2005] [Noy and Rector, 20{Bgctor and Welty, 2005].

[Blomgvist and Sandkuhl, 2005] proposes a clasgifim scheme for ontology
patterns in Ontology Engineering composed of figeels, which are from top to
bottom: Application Patterns, Architecture Patteri@esign Patterns, Semantic
Patterns, Syntactic Patterns. It also providesief beview on the status of maturity
and adoption of each one of them in the ontologielbgment field.

[Suarez-Figueroa et al., 2007] also talks of ormgplpatterns at different levels in this
case in the context of networked ontologies. Itinggiishes three: Logical ODPs,
Architectural ODPs and Content ODPs. In broad tetrogical ODPs are equivalent
to the modeling elements provided by OWL or to cositions of them. Architectural
ODPs are equivalent to Logical ODPs or compositbrthem and characterize the
structure of the ontology determining “how an oagy should look like”. A basic
example of Architectural ODPs would be a “taxonomlyastly, Content ODPs are
made of Logical ODPs instances or composition @nthand attempt to solve a
specific domain modeling problem. THearticipation, Role-Task, Design-Artifact
ODPs introduced in [Gangemi, 2005] can be seexanles of Content ODPs.

Based on these two classification schemes of ogyopatterns, the solution to our
modeling problem, on one hand would include elesyé&um the Design, Semantic
and Syntactic Patterns described in [Blomqvist &addkuhl, 2005] and on the other,
would fall into the Content Design Patterns as gmé=d in [Suarez-Figueroa et al.,
2007].

Special mention deserve, the documents releaséuebfyemantic Web Best Practices
and Deployment Working Group of the W3C. They pdevan analysis of different
ontology modeling problems at the precise levetlefail intended by this research
and they are discussed in the context of OWL asntipdementation tool. Particularly
[Noy, 2004] and [Rector, 2005], given that theimooon approach to represent

2 http://www.w3.0rg/2001/sw/BestPractices/

Page 12 of 55

property values as anonymous individuals will beeom central piece to the
conclusions claimed by our work which are discusedtle following section.

In summary, to the best of our knowledge, the afeantology design patterns does
not address the issue of conceptual overlap amipdications when it occurs among
multiple facets of an ontology domain concept. Ehexr no evaluation of different
plausible approaches to tackle the problem either.

2.2. Multiple Inheritance (Ml)

Another topic of research involved in the modellofgconceptual overlap is multiple

inheritance. Multiple inheritance is often the mostmmon manifestation of

conceptual overlap and it has a theme of extenssgearch in the field of object-

oriented design and programming. However, thereareal differences between the
field of object-oriented application design andadogly construction that condition to

what extent the findings in the object-orientedagégm can be extrapolated to the
ontology modelling world. A good discussion regaglihe differences between the
two disciplines takes place in [Knublauch et alQ0& which covers ontology

development from an object-oriented developer poiview.

A very informative analysis regarding the need Ntirin object-oriented languages,
and in the C++ language particularly, takes placigCargill 1991] and [Waldo 1991].

Cargill claims no need for MI based on the lackaof example that will prove the
need for it and it provides comprehensive mechamiimat do not require Ml to

achieve the same functionality. Waldo on the othmand, identifies three different
types of Ml:.implementation, interface anddata. According to this distinction, Cargill

is solely referring toimplementation MI. At the same time, Waldo provides a
compelling example ointerface and data MI that cannot be addressed by Cargill
alternatives which sustains the need for the featuthe C++ language.

Unlike in the case of C++, the Java object-oriergejuage opted for not allowing
multiple inheritance across classes. In Java, ssatan only inherit behaviour and
implementation from a singlparent class. However, Java introduces the concept of
interface conformance. Java interfaces could be seen amabstasses, (where no
implementation is provided). Java allows classamfmement or conform to multiple
interface classes, which in turn can provide certipport for the type of multiple
inheritance labelled by [Waldo, 1991] aderface MI. [Tempero and Biddle, 2000]
provides an overview of different implementatioeheiques to simulate Ml in the
Java language and the limitations that still exi$tse M| simulation is achieved by
combiningsingle inheritance, delegation andinterface conformance.

As stated in the introductory section, this repegards multiple inheritance as one of
the possible implementations in which the problénmodelling conceptual overlap
in ontology domain concepts can be representedhdiuhe only one. In other words,
an ontology exhibiting multiple inheritance among terms implies existence of
conceptual overlap, while conceptual overlap ddasecessarily implies that multiple
inheritance has to exist in the resulting ontology.

2.3. Ontology Evaluation

Lastly, ontology evaluation is also needed in ordehave a framework where the
performance of the proposed ontologies to solveptioblem can be measured. It is

Page 13 of 55

important to note however, that ontology evaluatmibroad research area in itself, is
not a research objective in this report. Instead itsed as a supporting tool to allow
the analysis and comparison of the proposed ongatoadelling options.

There are several approaches in the field of ogjokvaluation such as: application
usage, decision criteria definition, use of a gstdndard, data-driven and logical
consistency. The rationale behind these approashm#side the scope of this report
and the reader is referred to [Vrandecic, 2006]cWigrovides a concise overview of
the methodologies, together with the most relewanrks within each one of them.

The initial framework for ontology evaluation uskdthis report is derived from the
documents released by the W3C Semantic Web Besti¢as and Deployment
Working Group. These documents address evaluatibnomtology modelling
decisions at the content design level using thaiteslogy in [Suarez-Figueroa et al.,
2007], which fits the purpose of this research. Tifamnework and the rationale
behind it, is covered in detail in the next section

Page 14 of 55

3. Methods

This section introduces a methodology to undertdke problem of modelling
conceptual overlap in ontology domain conceptssiractured manner.

The methodology comprises several steps which @timed below:

Step 1Define domain concept to be modelled

Step 2Develop different ontology models to representdbmain concept
Step 3Populate same set of individuals in all models

Step 4Develop a test suite of user questions for all neode

Step 5Select an evaluation framework for all models

Step 6Analyze results for all models

Essentially, different ontology models are proposedepresent the ontology domain
concept and an evaluation framework is selecteddgétermine the model that
optimizes the desired evaluation parameter(s).

Every step identifies the entry criteria to proceath the activities involved in such
step and the exit criteria to progress onto thé aeg. Consequently, the entry criteria
of any given step, matches the exit criteria ofpitsdecessor [CMMI Product Team,
2006].

Step 1. Define the domain concept

In this step, the ontology modeller has to identifg domain concept subject of the
model and the different facets that will be consede

Every facet produces a hierarchical classificati@®cause of the presence of
conceptual overlap among the facets, certain tevowdd appear in multiple nodes of
the classification hierarchies obtained.

This elicitation process results in a closed vo&alyuof all the relevant terms
involved in the representation of the domain cohcep

The classification hierarchies and the closed voleap of terms determined by them
are the required entry criteria for the differentaogy models to be proposed in step
2.

In the case of ReSIST, the target domain concepeteepresented is the concept of
Fault as defined in [Avizienis et al., 2005]. Figar3, 4 and 5 illustrate the different
classification of the concept of “Fault” that shdue captured in the ontology for
ReSIST. The background rationale of the figureshm context of dependable and
secure computing can be further studied in [Aviiest al., 2005].

Page 15 of 55

Development faults

— [occur during (a) system development, (b) maintenance during the use phase,
Phase of creation and (c) generation of procedures to operate or to maintain the system]
or occurrence Operational faults

[occur during service delivery of the use phase]

Internal faults

: [originate inside the system boundary]

—— System boundaries ——
External faults

— [originate outside the system boundary and propagate errors into
the system by interaction or interference]

Natural faults

" [caused by natural phenomena without human participation]
—— Phenomenological cause
Human-Made faults

[result from human actions]

Hardware faults
[originate in, or affect, hardware]

—— Dimension

Software faults
Fa u ItS [affect software, i.e., programs or data]

Malicious faults

_— [introduced by a human with the malicious objective of causing harm to the system]
— Objective

Non-Malicious faults
[introduced without a malicious objective]

Deliberate faults
[result of a harmful decision]

Non-Deliberate faults
[introduced without awareness]

—— Intent

Accidental faults
[introduced inadvertently]

— Capability Incompetence faults

[result from lack of professional competence by the authorized human(s),
or from inadequacy of the development organization

Permanent faults
[presence is assumed to be continuous in time]

—— Persistence

Transient faults
|presence is bounded in time]

Figure 3.The elementary fault classes [Avizienis etl., 2005].

Figure 3 shows the first level of the tree diagravhjch is referred to as the eight
basic viewpoints. The eight basic viewpoints leadtie elementary fault classes
shown in the second level of the tree.

The cited publication also notes that if all congtions of these 8 elementary classes
were possible, the total number of combined faalsses would be 256. However not
all combination occur in reality and Figure 4 andllGstrate the 31 most likely
combined fault classes as a tree and a matrixseptation respectively.

Page 16 of 55

[Development Faults
Operational Faults

[Internal Faults
External Faults

||
Natural Faults P
I,

Hurnan-MadeFauIts‘====ITT-[=| IITIT-ITT-e--====
[Hardware Faults ® o o o 5 & & 5 o o 0 6 0 o & @ o
Software Faults IIII- --IIIII-}
[Non-MaIiciousFaults oo LA e e S S ——s—s—o oo
Malicious Faults *—e - -
[Non-DeIiberate Faults-e—e s e e o s o s o o o o o
Deliberate Faults *—eo . A o

[Accidental Faults
Incompetence Faults

Transient Faults |
/%%7 8] o] 10 11] 12{ 13) 1a[15[16| 17] 18) 19) 20] 20 22 23 24) 29 26 2 28 29| ;| 3

Software Logic Hardware Production’ Physical | lPhysical Intrusion Viruses Input
Flaws Bombs Errata Defects Deterioration Interference Attempts & Worms Mistakes

[Permanent Faults . *—eo—o . .

Examples

Figure 4. Matrix representation of the classes ofambined faults [Avizienis et al., 2005].

Faults
|
[|
Phase of creation or occurrence Development Operational
System boundaries Internal Internal External
Phenomenological cause Human-made Natural Natural ~Natural Human-made
Dimension Software Hardware Hardw Hardw Hardw Hardware Software
| l ‘ | l
| | | | | | |
Objective Non Mal Mal Non Non Non Non Non Mal Mal Non
Malicious Malicious Mal Mal Mal Malicious Malicious
|
|] —— — —
Intent Non Del Del Del Non Del Non Non Non Non Del Del Del Non Del
Del | Del Del Del Del Del Del
Capability Acc Inc Acc Inc Acc Inc Acc Inc Acc

T Ny 4T

Persistence Per Per Per Per Per Per Per Per Per Per Per Per Tr Per Tr Tr Per Tr Tr Per Tr Per Tr Tr Per Tr Per Tr Tr Per Tr
2 3 4 8§ 6N 7 8 s 9 8)

Acc Inc Acc Inc Acc Inc Acc Inc
T

Development Faults Physical Faults Interaction Faults

Mal: Malicious Del: Deliberate Acc: Accidental Inc: Incompetence Per: Permanent Tr: Transient

Figure 5. Tree representation of the classes of cdimed faults [Avizienis et al., 2005].

From figures 3, 4 and 5, four different facets bé tFault domain concept are
identified:

Page 17 of 55

* The 8 elementary fault classes

* The 3 major partially overlapping groupings

* The 9 illustrative examples of fault classes

 The 31 likely combined fault classes out of 256 sgas combined fault
classes

Each facet renders a different hierarchical clasdibn that can be seen as four
different classification hierarchies superimposéthe domain concept of Fault. The
four classification hierarchies are outlined below:

Classification 1:

* Faults eight basic view points
o Phase of creation or occurrence
= Development faults
* Faulttype 1, ..., Fault type 11
= Operational faults
* Faulttype 12, ..., Fault type 31
0 System boundaries
= Internal faults
* Faulttype 1, ..., Fault type 13
= External faults
* Fault type 14, ..., Fault type 31
o Phenomenological cause
= Natural faults
* Faulttype 11, ..., Fault type 15
= Human-made faults
* Faulttype 1, ..., Fault type 10
* Fault type 16, ..., Fault type 31
o Dimension
= Hardware faults
* Faulttype 9, ..., Fault type 23
= Software faults
* Faulttype 1, ..., Faulttype 5
* Fault type 24, ..., Fault type 31
o Objecive
= Malicious faults
* Fault type 5, Fault type 6
* Fault type 22, ..., Fault type25
= Non-malicious faults
* Faulttype 1, ..., Faulttype 4
* Faulttype 7, ..., Fault type 21
* Fault type 26, ..., Fault type 31
0 Intent
= Deliberate faults
* Faulttype 3, ..., Fault type 6
* Fault type 9, Fault type 10
* Faulttype 19, ..., Fault type 25
* Fault type 29, ..., Fault type 31

Page 18 of 55

Non-deliberate faults
* Fault type 1, Fault type 2
* Fault type 7, Fault type 8

* Fault type 11, ..., Fault type 18
* Fault type 26, ..., Fault type 28

o Capability

Accidental faults

* Fault type 1, Fault type 3, Fault type 7, Faulet@

* Faulttype 11, ..., Fault type 16

* Fault type 19, Fault type 26, Fault type 29

Incompetence faults

* Fault type 2, Fault type 4, Fault type 8, Fauletyj

* Fault type 17, Fault type 18
* Fault type 20, Fault type 21
* Fault type 27, Fault type 28
* Fault type 30, Fault type 31

o0 Persistence

Classification 2:

Permanent faults
 Faulttype1l, ..., 12

. Fault type 14, 17, 20, 22, 25, 27, 30

Transient faults

» Fault type 13, 15, 16, 18, 19, 21, 23, 24, 26,228 31

* Faults three major groups
o Development faults

Fault type 1

Fault type 11

o Physical faults

0]

Fault type 6

Fault type 23

Interaction faults

Classification 3:

Fault type 14

Fault type 31

» Examples of nine known fault classes
Software flaws faults

(0]

o

o

Fault type 1, ..., Fault type 4

Logic bombs faults

Fault type 5, Fault type 6

Hardware errata faults

Fault type 7, ..., Fault type 10

Production defects faults

Page 19 of 55

= Fault type 7, ..., Fault type 11
o Physical deterioration faults

= Fault type 12, ..., Fault type 13
o Physical interference faults

= Fault type 14, ..., Fault type 21
o0 Intrusion attempts faults

= Fault type 22, ..., Fault type 24
o Viruses and worms faults

= Fault type 25
o Input mistakes faults

= Fault type 26, ..., Fault type 31

Classification 4:

» Thirty-one most likely combined faults
o Faulttype 1
o Fault type 2
o ...
o Fault type 31

The terms in the 4 classifications form a closedabmlary. The classifications and
the closed vocabulary are the required entry caiterdevelop the ontology models of
the Fault domain concept in the next step.

Step 2. Develop different ontology models to represent the
domain concept

This step creates the proposed models that wilidegl in the evaluation. Each model
represents a different approach to characterizedheeptual overlap existing in the
target domain concept.

Some definitions will be reviewed and some ternmogglwill be introduced that will
be useful to understand the rationale and founddaehind the candidate models.

The starting point will be the documents releasgthlk Semantic Web Best Practices
and Deployment Working Group. Two of them in parfdéc are of special
significance: [Rector, 2005] and [Noy, 2004].

[Rector, 2005] introduces the concept of “valugtifan” as a modelling technique to
represent features, attributes, or modifiers thascdbe other concepts in the
ontology. In its definition, a class in the ontojogs partitioned by a group of
subclasses if:

a) The subclasses are mutually exclusive

b) The subclasses completely exhaust the parent class

For example: In Figure 6, (which corresponds toeesion of Figure 4 in [Rector,
2005] with additional annotations), the class “Hedalue” is partitioned by the
classes “Poor_health value”, “Medium_health valugid “Good_health value”
according to the definition stated earlier. In otverds, the three subclasses represent
a “value partition” of the parent class.

Page 20 of 55

~

HealthYalue

I
|
\ 1
! | |
: | I —_———— === —
: Co 7 A
1 Lo II Domain ‘I
! i 1 Class | |
| exhaustive i .
i 1 1 | Hierarchy
{owhunionCf) |
: I 1 1 (DCH) |
|
[B | 1
: Patrwise Disjoint 1 1 I |
: [| 1
| | I | 1
Poor_health_ Medium_ Good_ 1
‘\ walue o heath_vzlue health_value |
o - I /
N e e e e o e e e e e e e o = _-
. . ‘u- s-::-me'v"au.!iFrmn\ S —— 4
Value Partition Class Hierarchy ! has Ihealth_smtus \
(VPCH) :

Figure 6. Extended version of Figure 4 in [Rector2005].
Using an anonymous individual as the value for thproperty “has_health_status”.

Value Partition Class Hierarchy
(VPCH)

nas health] status
BE'S‘HEVE'lIJEEFm

a— |

Madium_hoalth value Good health value

s health stalus HeaithyPerson

Health_Value

|ohns
naalth

Domain Class Hierarchy (DCH)

Faor_haaith_valua

Domain Concept Space (DCS)

Figure 7. Extended version of Figure 3 in [Rector2005].
Venn-style diagram illustrating the concept of “valie partition”.

Alternatively, Figure 7 shows another view of tlaeng scenario from Figure 6. Both
figures depict the idea of using an anonymous idd& that belongs to one of the

Page 21 of 55

classes in the “value partition” as the value f@raperty in the ontology. This value
is used to describe a specific attribute of the @iontoncept that participates in the
property. See specifically Pattern 2, version fRector, 2005].

[Noy, 2004], on the other hand, presents differantelling alternatives to the usage
of a class as a property value. This situation wagur when a generic hierarchy of
classes is used to annotate other classes ordudigi in the ontology. Out of the five
approaches presented in the document, it is phatiguinteresting approach 4
because it also employees anonymous individuatpudify the value of a property
for a domain concept in the ontology. However, tloeument does not place any
restriction on the structure or properties thatgleeric class hierarchy may posses.

For example: In Figure 8 (which corresponds to isiea of Figure 4 in [Noy, 2004]
with additional annotations), the generic classanhy formed by “Animal”, “Lion”
and “AfricanLion” is used to provide the value fdre subject of “books about
animals”, which is the domain concept the ontologgnds to represent. Figure 9 is
just a Venn-style diagram representation of theehodFigure 8.

To further discuss the repercussion that the pdisth between pattern 2, variant 2 in
[Rector, 2005] and approach 4 in [Noy, 2005] in tBpresentation of an anonymous
individual as a property value, the following tenmiogy is introduced:

Generic Class Hierarchy (GCH):
The term Generic Class Hierarchy (GCH) refers tp kierarchy of classes
with any hierarchy structure or shape among itssga and with or without
conceptual overlap. For example: a single classs®t of classes organized in
a list, a tree or a directed acyclic graph struetur

_______________ \ Lion"

) N\

| \ : 1 1 Domain
I : | : I Class
: b | !' Hierarchy
! Lo ol | (DCH)
! ! dft !
[;o] o B s -
I I 1 — = rdf:type
1 I 1 Lions: Life in
I I 1 the Pride”
: —— N
| rdfs:subclassOf ﬂ:’-ti“p‘e "The African
: I
: I
: I
I

t Unidentified Lion(s) | N
L] 1 I

! deigubject
N P reftype 1
Value Class Hierarchy ™. " :
(VCH) | Unidentified African | I
! Lion{s) | |
4 |

Value Space (VS) 1 Domain Concept Space (DCS)
D e - ————m—— - - >

Figure 8. Extended version of Figure 4 in [Noy, 204.
Using an anonymous individual as the value for thproperty “dc:subject”.

Page 22 of 55

1 “The African
--------------- | /%/dedsrumw/ Lion”
Unidentified meNaluesFrom

|_—

|

, s T TS TTTEETT > 1 // - T TT--=-=-== RN
Animal \‘ : , Book ‘I
I | |
/ Lion \ | : 1 fBookAbou'rAnimaIs\ |
IS ases s aT AT s : | 1 1 1
\ Unidentified 14 [dg:subject | “Lions: Life 1
\ Lion(s) ! I someNaluesFrom in the Pride” '
________________ | I I
| I 1 1
| 1 1
1 |
1 |
1 |
|
1

-
N

African Lion(s)

— e o =

/
1
[
1
[
1
[
1
[
1 / AfricanLion \
[
1
[
1
[
1
[
1

K / I Domain Class
\ k / | Hierarchy (DCH)
N _ y :
Value Class Hierarchy 1
(VCH) :
< m oo YalueSpace (V)) . Romain Concept Space (DCS) _ _ _

Figure 9. Venn-style diagram illustrating the concpt of “value class hierarchy”.

Domain Class Hierarchy (DCH):
The term Domain Class Hierarchy (DCH) refers to aagneric Class
Hierarchy (GCH) that contains the classes corredipgnto the domain
concepts that the ontology is intended to repregemt example: in Figure 6
and 7 the DCH depicted is the GCH formed by thecepts “Person” and
“Healthy Person” and in Figure 8 and 9 the DCH dia is the GCH
determined by the concept “Book About Animals”.

Value Class Hierarchy (VCH):
The term Value Class Hierarchy (VCH) refers to @gneric Class Hierarchy
(GCH) that is used to provide values to propertigese domains are the
individuals of other classes in the ontology adraef in approach 4 of [Noy,
2004], (depicted in Figure 8 and 9).

Value Partition Class Hierarchy (VPCH):
The term Value Partition Class Hierarchy (VPCH)ersfto the parent class
and subclasses that are part of a “value partitiam”defined in pattern 2
variant 2 of [Rector, 2005], (depicted in Figurar& 7).

Domain Concept Space (DCS):
The term Domain Concept Space (DCS) is the sedfoime ontology that
contains the Domain Class Hierarchy(-ies) of tholmgy. See Figure 6 and
8.

Value Space (VS):

Page 23 of 55

The term Value Space (VS) is the section of thelogly that contains the
Value Class Hierarchy(-ies) of the ontology. SeguFe 8 and 9.

Value Partition Space (VPS):

The term Value Partition Space (VPS) is the sectibrthe ontology that
contains the Value Partition Class Hierarchy(-@sihe ontology. See Figure
6 and 7.

From these definitions, it can be inferred that:

A VPCH is a particular case of VCH, given that tfeemer meets all the
characteristics of the latter, plus the restrictigoroper of a “value partition”.
However, the vice versa does not apply.

Similarly, every VPS is also a VS but the reciptaoglication does not hold for
the same reasons.

This characteristic is important because it allthesfollowing conclusions:

Premise 1:

The Value Partition Class Hierarchy in Figure 6ypldhe same role as the
Value Class Hierarchy in Figure 8. This is, bothssl hierarchies provide the
range for the property "has_health_status" andstdigect” in their ontologies
respectively using an anonymous individual as thepgrty value. (Even
though, “has_health_status” is a functional propettile “dc:subject” is not).

Conclusion 1:

A Value Class Hierarchy extends the “value pamitionodelling pattern as
described in [Rector, 2005] to any type of clasydrnchy. This is, a Generic
Class Hierarchy can also be used to act as a \Rdwigion Class Hierarchy
for a property in the ontology. (Despite a Gené&lass Hierarchy may not
conform to the definition of “value partition”).

Premise 2:

In ontologies that use value partitions, it is @dyonodelling practice to make
disjoint the class hierarchies that represent tieevpartitions (VPCHs), from
the class hierarchies that represent the domaiocepis (DCHSs), creating two
distinct spaces in the ontology model [Horridgeakt 2004] [Rector, 2005].
This is, the Value Partition Space and the Domaindgpt Space.

Conclusion 2:

(From Premise 1 and 2 it follows):

If a Generic Class Hierarchy (let's call it GCH4 used to act as a Value Class
Hierarchy, then it would be a good modelling preetio make GCHL1 disjoint
from the class hierarchies that represent the dom@ncepts in the ontology
(DCHSs).

For example: in Figure 8, the Value Class Hierarclgtermined by the class
"Animal” and its subclasses would be disjoint frahe Domain Class Hierarchy

Page 24 of 55

determined by the class "BookAboutAnimals”, creata disjoint Value Space and
Domain Concept Space in the ontology.

Premise 3:
Say two ontologies O1 and 02, with two Domain Clessrarchies DCH1
and DCH2 respectively.

Conclusion 3:
(From Premise 1, 2 and 3 it follows):
It is possible for a Domain Class Hierarchy (DClHiilan ontology (O1) to act
as a Value Class Hierarchy in another ontology (@) in that case:
a) DCH1 in O1 becomes the range for some property 2n (@sing an
anonymous individual from DCH1 as the property ealand also,
b) DCHL1 in O1 becomes part of the Value Space in QRdasjoint from
DCH2 in O2.

For example: this could be the case in Figure &afValue Class Hierarchy formed
by “Animal” and its subclasses was imported froseparate ontology where it acted
as a Domain Class Hierarchy.

Premise 4:
Say ontology O1, with two Domain Class Hierarchié3H11 and DCH12.

Conclusion 4:
(From Premise 1 follows):
It is possible for a Domain Class Hierarchy (DCHid act as a Value Class
Hierarchy for another Domain Class Hierarchy (DCHh2the same ontology
O1. In that case:
a) DCH11 in O1 becomes the range for some proper@®ln
b) DCH12 in O1 becomes the domain for that same prppeO1.
c) DCH11 in O1 causes the Value Space and the Domacept Space
of O1 to overlap.

For example: this could be the case in Figure Big@fValue Class Hierarchy was used
to represent the domain concept of actual animaladdition to act as a “value
partition” for the “BookAboutAnimals” class hierdrg via the property “dc:subject”.

These implications play an important role in thededs proposed for the ReSIST
concept of Fault because the Fault domain conaedReSIST serves a twofold
purpose, meeting the criteria in Conclusion 4, githeat:

* It represents occurrences of real world faults hie field of resilient and
dependable systems. In that sense, the model ienaaid Class Hierarchy
(DCH) in the Domain Concept Space (DCS) of the aN&eSIST ontology.

* It provides the values for certain properties whizsgge is a type of fault. In
that sense the model is a Value Class HierarchyHV@ the Value Space
(VS) of the overall ReSIST ontology. For example Fault domain concept
will supply the value for properties such as hagReshSubject (associated
with the concept of Publication), hasResearchistefassociated with the

Page 25 of 55

concept of Person) or hasSupportFor (associatddthat concept of Resilient
Mechanism), whose range is a type of fault or faultthe Fault VCH. (See
Figure 10).

This DCH and VCH duality reveals two scopes of @ptaal overlap taking place in
the overall ReSIST ontology with respect to thecamt of Fault:

Internal Conceptual Overlap:
It is the conceptual overlap inside the Fault DChloag the multiple
classification hierarchies of Fault. The scopehi$ tonceptual overlap can be
seen as “internal” to the Fault domain concept.

External Conceptual Overlap:
It is the conceptual overlap outside the Fault V@ith other DCH(S) in the
ontology (such as: Person, Publication, or Resilachanism). The scope of
this conceptual overlap can be seen as “exterodlid@ Fault domain concept.

P e e e e e e e S

/1 Value Space and
Scope of Internal Overlap

PN

Fault E ;

N

hasResearchInterest

—— -

- e e e e e e e

Domain Concept Space and
v Scope of External Overlap

o
c
=2
o
o]
=4
o
=4
<
<
<
e —————————

e e e e e e e e e e e e = e ==

Figure 10. The Fault domain concept Value Class Hiarchy is part of the Domain
Concept Space and the Value Space in the overall RIST ontology.

The rest of this section presents the ontology nsogeoposed to represent the
conceptual overlap in the Fault domain concept&bIST. The models are organized
in two groups. The first group addresses the iaeconceptual overlap in the Fault
domain concept, and the second addresses the axtemceptual overlap between
the Fault domain concept and other domain congeple overall ReSIST ontology.

3.2.1. Modelling internal overlap

The required entry criteria for all the internahceptual overlap models, are all the
classification hierarchies and the closed vocalputdrterms determined by them,
elicited in the previous step of this process.

3.2.1.1. Model 1. Using OWL Classes.

Model 1 is probably the most intuitive and stratfgrivard of all the models. The
principal design criteria followed to create Modedre:

Page 26 of 55

* Use the OWL Class to represent every term in thgetl vocabulary produced
in step 1.

 Use the class/subclass relation between OWL Classesecreate the
hierarchical structure of terms in all the classifions produced in step 1.

In our ongoing ReSIST example, the top class indbmain concept model is the
term “Fault”. The direct subclasses of “Fault” #ne terms that represent each one of
the four facets that produce the classificatiomarizhies in step 1: “Faults eight basic
view points”, “Faults three major groups”, “Examplef known fault classes” and
“Thirty-one most likely combined faults”, which iie actual OWL implementation
have been named as “BasicViewPointFault”, “Majon@reault”,
“NamedClassFault” and “NamedCombinedFault” respebt. The process repeats
for the rest of the terms in each one of the fdassification hierarchies.

Note that terms that appear in multiple classifarahierarchies due to the conceptual
overlap in the domain concept will be subsumed jtipile OWL Classes. This is
the case of the terms “Fault type 17, “Fault tyge .2, “Fault type 32", 7, which in
the actual OWL implementation have been namedea®©WL Classes “FaultTypel”,
“FaultType?2”, ..., “FaultType32” respectively.

For example, the OWL Class named “FaultTypel0”,cvhiepresents the term “Fault
type 10", will be a direct subclass in the ontolaggdel of the OWL Classes created
from the following terms:

* From classification 1 in step 1:

o “Development Fault”,
“Internal Fault”,
“Human-made Fault”,
“Hardware Fault”,
“Non-malicious Fault”,
“Deliberate Fault”,
“Incompetence Fault” and
“Permanent Fault”

O O0OO0OO0OO0OO0Oo

* From classification 2 in step 1:
o “Development Fault” and
o “Physical Fault”

* From classification 3 in step 1:
o “Hardware Errata Fault” and
0 “Production Defect Fault”

* From classification 4 in step 1:
o “Thirty-one most likely combined faults”

Once all the terms and classification hierarchiagehbeen represented, the set of
OWL Classes in the ontology model will present #i@pe of a directed acyclic

Page 27 of 55

graph. This model represents the conceptual overae domain concept using
multiple inheritance for the OWL Classes involvex @an be in Figure 11.

N T Deliberate Fault K FaultType10
RN 3
rdfs:subclassOf . “~_ I
K - Incompetence Fault ' | rdf:type
N An Actual
@ ~- Permanent Fault ’ Fault Type
10

Combined Named
Fault
Development Fault
Major Group
Fault

Physical Fault
Hardware Errata Fault
Named Class
Fault
Production Defect Fault

Figure 11. Example of Model 1.

3.2.1.2. Model 2. Using OWL Properties with subtypeelations.

Model 2 can be seen analogous to Model 1 with auaeiation: using the OWL
Property instead of the OWL Class as the main nliadeklement. The principal
design criteria followed to create Model 2 are:

Use a single OWL Class to represent:
o0 The entire “Fault” Domain Class Hierarchy (which tinis case is
composed of only one class),
o The domain for all properties related to the “Fawalbncept in the
model and
0 The type for all “Fault” individuals.

Use the OWL Property to represent every other terthe closed vocabulary

produced in step 1 except for the domain concseglfitFault”.

Page 28 of 55

» Use the property/subproperty relation between OWipErties to recreate the
hierarchical structure of terms in all the classifions produced in step 1.

This design approach is sustained by the factahaOWL Property represents the
anonymous class formed by all the individuals wlaveh a relationship on that
property [Horridge et al., 2004]. While in Modeliddividuals are characterized by
the OWL Class(es) they belong to, in Model 2 they eharacterized by the OWL
Property(ies) they participate in.

In our ongoing ReSIST example, the top propertiethé hierarchy are the ones that
represent each one of the four facets that protheelassifications in step 1: “Faults
eight basic view points”, “Faults three major greyp“Examples of known fault
classes” and “Thirty-one most likely combined faultwhich in the actual OWL
implementation have been named as “hasBasicViewPanitt”,
“hasMajorGroupFault”, “hasNamedClassFault” and sKamedCombinedFault”
respectively. The process repeats for the resheftérms in each one of the four
classification hierarchies.

Note that terms that appear in multiple classifarahierarchies due to the conceptual
overlap in the domain concept will be subsumed bitiple OWL Properties. This is
the case of the terms “Fault type 17, “Fault type .2, “Fault type 32", which in the
actual OWL implementation have been named as the L OWRfoperties
“hasFaultTypel”, “hasFaultType2”, ..., “hasFaultTygeBespectively.

For example, the OWL Property “hasFaultTypel0”, ahhiepresents the term “Fault
type 107, will be a direct subproperty in the owigy model of the OWL Properties
created from the following terms:

* From classification 1 in step 1:

o0 “Development Fault”,
“Internal Fault”,
“Human-made Fault”,
“Hardware Fault”,
“Non-malicious Fault”,
“Deliberate Fault”,
“Incompetence Fault” and
“Permanent Fault”

O O0OO0OO0OO0O0Oo

* From classification 2 in step 1:
o “Development Fault” and
o “Physical Fault”

* From classification 3 in step 1:
o “Hardware Errata Fault” and
0 “Production Defect Fault”

* From classification 4 in step 1:
o “Thirty-one most likely combined faults”

Page 29 of 55

Once all the terms and classification hierarchiagehbeen represented, the set of
OWL Properties in the ontology model will presené tshape of a directed acyclic
graph as it happened in Model 1 with the set of ORVasses. This model addresses
the conceptual overlap in the domain concept usialjiple inheritance for the OWL
Properties involved.

To complete Model 2, two variations have been idiedtwhich are presented in the
following sections.

3.2.1.2.1. Variation 1
These additional design characteristics provideatian 1 to Model 2:

* Use the OWL Datatype Property to represent thegerm

* The range is the built-in XML Schema datatype xsdiean.

A
rdf:type rdf:type

An Actual Fault true
Fault Type 10

hasFaultTypel0

Figure 12. Example of Model 2 Variation 1.

3.2.1.2.2. Variation 2
These additional design characteristics provideatian 2 to Model 2:

* Use the OWL Object Property to represent the terms.

* The range of all these properties is the OWL Cld&sault”. This can be
achieved using two different approaches:
a) Using anonymous individuals as property values [Na®05].
b) Using the same individual as property domain angeavalue.

The use of an anonymous individual in option ajree& be redundant given that the
anonymous individual has an identical role to theividual that it is providing the
value for. This reason favours option b) where shene individual is used as the
domain and range for the property value.

In both variations, the transitive characteristicttte property/sub-property relation

allows an individual that participate in the prdgeto participate in its super-
properties as well.

Page 30 of 55

b) Fault
A

stype
1
Unidentified !) Gctual
1

Fault Fault Type 10

a)

An Actual
Fault Type 10

hasFaultType10 hasFaultType10
someValuesFrom

Figure 13. Example of Model 2 Variation 2.

Properties used as described in this model couldele@ asinary relations for the
individuals that participate in them. The propedtyesn’t relate the individual with
another individual in the ontology. Instead, it isates that the property for that
individual exists; it is true (Variation 1). Furtimeore, in the case of (Variation 2b)
properties could be seenraflexive given that they relate the individual to itself.

3.2.1.3. Model 3. Using OWL Properties without sulytpe relations.

Model 3 is identical to Model 2 with a key variatiothe hierarchical structure of
terms in the classifications from step 1 is notrespnted in the set of OWL
Properties. Therefore, the principal design citdallowed to create Model 3 can be
summarised as:

» Use a single OWL Class to represent:
o The entire “Fault” Domain Class Hierarchy (which tinis case is
composed of only one class),
o The domain for all properties related to the “Fawlbncept in the
model and
0 The class for all “Fault” individuals.

 Use the OWL Property to represent every term in dlosed vocabulary
produced in step 1.

* Organize the set of OWL Properties as a flat stinectDo not recreate the
hierarchical structure of terms in all the classifions produced in step 1.

This could be seen as the most basic model usegOWL Property as the main
design element. OWL Properties that in Model 2cieB a property/subproperty
relation are now at the same level in Model 3. Beeaof this reason, to represent the
same information for an individual in Model 3, #ie super-properties that in Model
2 can be inferred would have to be specificallyligop In this model, the conceptual
overlap in the domain concept does not translate scenarios of multiple
inheritance.

The two variations of Model 2 identified, applyNodel 3 as well.

3.2.1.3.1. Variation 1
These additional design characteristics provideatian 1 to Model 3:

Page 31 of 55

* Use the OWL Datatype Property to represent thegerm

* The range is the built-in XML Schema datatype xedtban.

rdf:type rdf:type

An Actual Fault
Fault Type 10

3.2.1.3.2. Variation 2

A

hasFaultTypel0
hasDevelopmentalFault
hasInternalFault
hasHumanMadeFault
hasHardwareFault
hasNonMaliciousFault
hasDeliberateFault
hasIncompetenceFault
hasPermanentFault
hasDevelopment
hasPhysicalFault
hasHardwareErrataFault
hasProductionDefectFault
hasNamedCombinedFault

true

Figure 14. Example of Model 3 Variation 1.

These additional design characteristics provideatian 2 to Model 3:

* Use the OWL Object Property to represent the terms.

* The range of all these properties is the OWL Classilt”.
a) Using anonymous individuals as property values [Na®05].
b) Using the same individual as property domain angeavalue.

The same rationale in Model 2 Variation 2 applieshis variation in Model 3 to
favour option b) over option a). Figure 15 onlypdes/s the latter.

b)

A

' hasFaultTypel0
hasDevelopmentalFault
An Actual Fault Type 10 hasInternalFault

hasHumanMadeFault
hasHardwareFault
hasNonMaliciousFault
hasDeliberateFault
hasIncompetenceFault
hasPermanentFault
hasDevelopment
hasPhysicalFault
hasHardwareErrataFault
hasProductionDefectFault

Figure 15. Example of Model 3 Variation 2.

Page 32 of 55

The process of selecting and attaching the appécpimperties for an individual in

Model 3 could be seen to render certain analogits\Web 2.0 or social Web tagging
systems worth exploring. However such analysisiat point is beyond the scope of
this report.

3.2.1.4. Summary of internal overlap models

Ultimately, this set of models provides differeethniques to represent the same
domain concept. Figure 16 shows how the models aoenp each other based on the
modelling elements they primarily use: class, prigpand subtype relations.

Classes Properties
Subtype Model 1 Model 2
relation
No subtype

relation Model 3

Figure 16. Comparison of proposed ontology modelsf internal conceptual overlap.

3.2.2. Modelling external overlap

The required entry criteria for all the externalhceptual overlap models are the
internal overlap models presented in the preceseagion and the additional domain
concepts that these interact with.

The external models in the following sections pdeva low-level view of the high-
level ontology design view shown in Figure 10.

The dashed arrow between classes in the figurgdrsection, indicate that there are
additional classes in the “rdfs:subclassOf” tramsitelation that have been omitted.

3.2.2.1. Model A

Model A uses Model 1 to represent the Fault dontaincept and Approach 4 in
[Noy, 2004] to represent the relations betweenRaelt domain concept and the rest
of domain concepts in the overall ReSIST ontoldggt trequires to use Fault as a
Value Class Hierarchy.

Page 33 of 55

Publication

7
-

—-—————

hasResee}chSu bject

1
1
1
1
1
1
1
! someValuesFrom “Article about
| rdf:type ! Dimension Faults”
! 1
Y N (U
|] Unidentified — \a
! Actual \ Dimension Fault(s) | !
, | Dimension Fault e ittt ! :
! 1
: 1 hasR hSubiect “Article about
i HardwareFault | nas esealrc ubjec Hardware Faults”
1 } . someValuesFrom
! 1
| rdfitype 1
- i
! i T 1 Person
: Actual ! Unidentified)
. | Hardware Fault 1 Hardware Fauli(s) 1 b 4
| | Semmmmmmss—------ 'y
. :
[AR hasResearchInterest rdf:type
'\ i Unidentified :‘ ?omeValuesFrom Tohm
\ \ Hardware Fault(s) 2 |~ /
SN, TTTTTTTm TS 1 e
Domain Concept Space
D >

Figure 17. Model A for external conceptual overlapusing Model 1.

3.2.2.2. Model B

Model B uses Model 1 to represent the Fault dontaincept and the “rdf:type”
property to represent the relations between thdt Bamain concept and the rest of
domain concepts in the overall ReSIST ontology tkqtire to use Fault as a Value
Class Hierarchy.

Model B overloads the interpretation of the “rdfi¢y property in the ontology
because it makes the individuals from the domaincepts external to Fault
individuals of Fault as well.

For example: In the case of a Publication individtlae “rdf:type” property is acting
as the “hasResearchSubject” property while in ¢hee of a Person individual
“rdf:type” is acting as a “hasResearchinterest’paemy. Figure 18 shows a scenario
for this example.

This model can be argued from a design point ofvMdecause this representation is
not true in the real world. A Publication or a Rerds not a type of Fault. It is
unintuitive to think of the individual “John” as ing a “LogicBombFault” or an
“InternalFault” simply because “John” has a reskamnterest in these types of faults.

Page 34 of 55

o e e e e e e e e e e e

7 \
) Value N Publication
\
\

A

rdf:type

“Article about
Internal Hardware
Faults”

——— - ——————

BoundaryFauIt

1

1

1

1

1

1

1

1

1

1

1

1

1 Actual
| | Dimension
| Fault
1

1

1

1

1

1

1

1

1

1

\

HardwareFault InternalFault

Actual
\ Internal
\ Fault

N e e e e e =

Figure 18. Model B for external conceptual overlapsing Model 1.

3.2.2.3. Model C

Model C uses Model 2 to represent the Fault dontaincept and the relations
between Fault and the rest of domain conceptséanotterall ReSIST ontology that
require using Fault as a Value Class Hierarchy.

Model C overloads the interpretation of the prapsrtdefined by Model 2. For
example, the property “hasinternalFault” appliedato individual of “Publication”
should be interpreted as the property “hasReseabje&”, while the same property
applied to an individual of “Person” should be met as “hasResearchinterest”.

In that sense, this model can be argued from @gesand point for the same reasons
as Model B as well.

However, a possibility to overcome this issue couwlohsist on making this

interpretation overload explicit in the model bysading “hasResearchSubject”,
“hasResearchinterest” (and similar properties endame role) as parent properties of
the top most properties defined in Model 2. Thengitve characteristic of the

property/sub-property relation would allow thenimterpret “hasinternalFault” (and

the rest of properties from Model 2) as type of sRasearchSubject”,

“hasResearchinterest”, etc, properties. Furthelyaisaof this design approach is
required.

Page 35 of 55

- ——

/ N f
/" Value @ \ Publication
A

-

Space X
1 rdf:type
1
1

Actual Actual ! “Article about
Dimension Internal : Internal Hardware
Fault Fault 1 Faults”

1

hasInternalFault

hasInterpalFault hasHardwareFault

hasDimensionFault Person

A

hasLogicBombFault rdf:type
1 hasInternalFault

\ I hasHardwareFault
\ John
\ N _ ’,

[

Figure 19. Model C for external conceptual overlapsing Model 2 Variation 1.

3.2.2.4. Model D

Model D uses Model 3 to represent the Fault donwancept and the relations
between Fault and the rest of domain conceptsénotterall ReSIST ontology that
require using Fault as a Value Class Hierarchy.

The use of Model 3 in Model D implies that the saoiservations made between
Model 2 and Model 3 can be extrapolated betweenéViGdand Model D.

In addition, the same issue of property interpretatverload considered in Model C
applies to Model D as well.

3.2.2.5. Summary of external overlap models

In summary, these are at the moment all the onyategdels developed to handle the
conceptual overlap among multiple facets considamettie domain concept at both
the internal and external scope. There might beughp additional models or
additional variations to the existing ones thatenawt been captured here. In such
case, they can be incorporated to this step ates tage while the rest of this
methodology can be reapplied to the new modelsoations as usual.

Page 36 of 55

Classes Properties

Subtype [Model B] [Model A] [Model C]

relation

No subtype

relation Model D

Figure 20. Comparison of proposed ontology model®f external conceptual overlap.

The set of all models proposed corresponds toritrg eriteria for step 3.

Step 3. Populate same set of individuals in all models

This step creates all the individuals for all pregd models. The individuals are
created based on the following design criteria:

* Populate at least one individual for every terntha classification hierarchy
obtained in step 1 in order to cover all typesnafividuals that the model can
represent.

* Populate the same set of individuals in all modelsorder to produce a
common ground in which models can be compareddb ether.

This approach allows the ontology designer to compehat it entails to populate
every type of individual in every model and thefeliénces across models when
representing the same individual.

Continuing with the example of the term “Fault Tyj@', what follows is the creation
of an individual, “FaultTypel0Ind”, across all mdgleising N3 notation [Berners-
Lee, 2000].

All examples below assume the following set of e already defined:

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-synt ax-ns#> .
@prefix xsd: <http://mwww.w3.0rg/2001/XMLSchema#> .
@prefix : <http://www.resist-noe.eu/ontologies/>

Model 1:

:FaultTypelOind rdfitype :FaultTypelO.

Model 2 variation 1:

Page 37 of 55

:FaultTypel0Oind rdf:type :Fault ;

‘hasFaultTypel0 “true™xsd:boo lean .
Model 2 variation 2a):
:FaultTypelOIind rdf:itype :Fault,
[a owl:Restriction;
owl:onProperty :hasF aultTypel0;
owl:someValuesFrom : Fault].
Model 2 variation 2b):
:FaultTypel0Oind rdf:type :Fault ;
‘hasFaultTypel0 :FaultTypelOind
Model 3 variation 1:
:FaultTypelOind rdfitype :Fault ;
hasFaultTypel0 “true™" xsd:boolean ;
hasDevelopmentalFault “true™ xsd:boolean ;
:hasinternalFault “true"M xsd:boolean ;
:hasHumanMadeFault “true”M xsd:boolean ;
:hasHardwareFault “true”™ xsd:boolean ;
:hasNonMaliciousFault “true™* xsd:boolean ;
‘hasDeliberateFault ~ “true™™ xsd:boolean ;
:hasincompetenceFault “true™" xsd:boolean ;
:hasPermanentFault “true"™ xsd:boolean ;
:hasDevelopment “true™" xsd:boolean ;
:hasPhysicalFault “true™™ xsd:boolean ;

:hasHardwareErrataFault “true
:hasProductionDefectFault “true

""Mxsd:boolean ;
"Mxsd:boolean .

Model 3 variation 2a):

:FaultTypelOIind rdf:itype :Fault,

[a owl:Restriction;
owl:onProperty :hasFaul
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasDeve
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasinte
owl:someValuesFrom : Fa

tTypelO;
ult],

lopmentalFault;
ult],

rnalFault;
ult],

Page 38 of 55

[a owl:Restriction;
owl:onProperty :hasHuma
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasHard
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasNonM
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasDeli
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasinco
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasPerm
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasDeve
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasPhys
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasHard
owl:someValuesFrom : Fa

[a owl:Restriction;
owl:onProperty :hasProd

nMadeFault;
ult],

wareFault;
ult],

aliciousFault;
ult],

berateFault;
ult],

mpetenceFault;
ult],

anentFault;
ult],

lopment;
ult],

icalFault;
ult],

wareErrataFault;
ult],

uctionDefectFault;

owl:someValuesFrom : Fa ult].

Model 3 variation 2b):

:FaultTypel0Oind rdf:type :Faul t;
‘hasFaultTypel0 :Faul tTypelOind ;
:hasDevelopmentalFault :Faul tTypelOind ;
:haslinternalFault :Faul tTypelOind ;
:hasHumanMadeFault :Faul tTypelOind ;
:hasHardwareFault :Faul tTypelOind ;
:hasNonMaliciousFault :Faul tTypelOind ;
:hasDeliberateFault :Faul tTypelOind ;
:hasincompetenceFault :Faul tTypelOind ;
:hasPermanentFault :Faul tTypelOind ;
hasDevelopment :Faul tTypelOind ;
:hasPhysicalFault :Faul tTypelOind ;
:hasHardwareErrataFault :Faul tTypelOind ;
:hasProductionDefectFault :Faul tTypelOind .

Page 39 of 55

At the end of this step, all ontology models undensideration have been populated
with the same set of individuals, meeting this wlag entry criteria to the following
step.

Step 4. Define a suite of user questions for all models

This step creates a set of user questions forralgsed models. The questions are
created based on the following design criteria:

* The same set of questions should be used in alelwod

* The questions should exhaust all different oveillagpscenarios represented
in the ontology.

* The questions should be able to retrieve differaumb-graphs at different
hierarchical levels from the classification hietdaes produces in step 1.

This approach allows the ontology designer to campehat it entails to retrieve
every type of individual in every model and thefeliénces across models when
retrieving the same individual. The rationale tasiderived from two practices:

» Ontology competency questions as described in [Bgen and Fox, 1995].

» Software unit-testing, in particular the notion path coverage analysis,
common in the traditional Software Engineering depment process [CMMI
Product Team, 2006]. An initial attempt to adapit-testing to the ontology
development field can be found in [Vrandecic angh@zemi, 2006].

In the case of ReSIST, there is an additional requent for the suite of user
guestions that should be met:

* Users questions that did not retrieve any resufisulsl be able to be
broadened to retrieve some results as close tmitied request as possible.

Models 2 and 3, based on properties, attempt teeaddhe difficulties in SPARQL to
retrieve hierarchy sub-graphs filtering out indivéds that otherwise will be part of
the set of results because of the transitive cheniatic of the “rdfs:subclassOf’
relation. These difficulties are a consequencdeflimitations in SPARQL to handle
the non-monotonic inference rule Negation as Fai{lsaFy.

% See Jena Semantic Web developers mailing list:

http://tech.groups.yahoo.com/group/jena-dev/meg2#§62
http://tech.groups.yahoo.com/group/jena-dev/ime$26866
http://tech.groups.yahoo.com/group/jena-dev/ime$26986
http://tech.groups.yahoo.com/group/jena-dev/ime$24883
http://tech.groups.yahoo.com/group/jena-dev/ime<$2a§28
http://tech.groups.yahoo.com/group/jena-dev/ime$22468
http://tech.groups.yahoo.com/group/jena-dev/me$$8@&5
http://tech.groups.yahoo.com/group/jena-dev/ime$26667

Page 40 of 55

Once again, continuing with the example of the téfawult Type 10", what follows
are instances of SPARQL queries that would retrtbeandividual “FaultTypel0Ind”
across all models.

All examples below assume the following set of pies already defined:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-synt ax-ns#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema# >
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX resist: <http://www.resist-noe.eu/ontologies />
Model 1:

SELECT ?ind

WHERE {

?ind rdf:type resist:FaultTypel0ind .

Model 2 variation 1:

SELECT ?ind
WHERE {
?ind rdf:type resist:Fault .
?ind resist:hasFaultTypel0 true

}

Model 2 variation 2a):

SELECT ?ind

WHERE {
?ind rdf:type resist:Fault .
?ind resist:hasFaultTypel0 ?x .
?x rdf:type resist:Fault

}

Model 2 variation 2b):

SELECT ?ind

WHERE {
?ind rdf:type resist:Fault .
?ind :hasFaultTypel0 ?ind

}

Model 3 variation 1:

Page 41 of 55

SELECT ?ind

WHERE {
?ind rdf:type resist:Fault .
?ind resist:hasFaultTypel0 true .
?ind resist:hasDevelopmentalFault true .
?ind resist:haslInternalFault true .
?ind resist:hasHumanMadeFault true .
?ind resist:hasHardwareFault true .
?ind resist:hasNonMaliciousFault true .
?ind resist:hasDeliberateFault true .
?ind resist:hasincompetenceFault true .
?ind resist:hasPermanentFault true .
?ind resist:hasDevelopment true .
?ind resist:hasPhysicalFault true .
?ind resist:hasHardwareErrataFault true .
?ind resist:hasProductionDefectFault true

Model 3 variation 2a):

SELECT ?ind

WHERE {
?ind rdf:type resist:Fault .
?ind resist:hasFaultTypel0 ?x .
?ind resist:hasDevelopmentalFault ?x .
?ind resist:haslinternalFault ?x .
?ind resist:hasHumanMadeFault ?x .
?ind resist:hasHardwareFault ?x .
?ind resist:hasNonMaliciousFault ?x .
?ind resist:hasDeliberateFault ?x .
?ind resist:hasincompetenceFault ?x .
?ind resist:hasPermanentFault ?x .
?ind resist:hasDevelopment ?x .
?ind resist:hasPhysicalFault ?x .
?ind resist:hasHardwareErrataFault ?x .
?ind resist:hasProductionDefectFault ?x .
?x rdf:type resist:Fault

Model 3 variation 2b):

SELECT ?ind

WHERE {
?ind rdf:type resist:Fault .
?ind resist:hasFaultTypel0 ?ind .
?ind resist:hasDevelopmentalFault ?ind .
?ind resist:haslinternalFault ?ind .
?ind resist:hasHumanMadeFault ?ind .
?ind resist:hasHardwareFault ?ind .
?ind resist:hasNonMaliciousFault ?ind .
?ind resist:hasDeliberateFault ?ind .
?ind resist:hasincompetenceFault ?ind .
?ind resist:hasPermanentFault ?ind .
?ind resist:hasDevelopment ?ind .

Page 42 of 55

?ind resist:hasPhysicalFault ?ind .
?ind resist:hasHardwareErrataFault ?ind .
?ind resist:hasProductionDefectFault ?ind

}

The definition of this set of user questions acrassnodels according to the design
characteristics outlined, meets the exit critesianbve on to the next step.

Step 5. Select an evaluation framework for all models

This step involves the selection and applicatioranfevaluation framework to all
proposed models. The application of the same etraludramework provides a
measure of how every model performs compared th etlter for the parameters to
be considered.

Ideally, the selection process would consist inng@ring all the different evaluation
frameworks available and choosing the one or thibsé¢ address the parameters
intended to be measured in the proposed modelsldyyt evaluation is a broad
research area in itself and the main approachethanfield are summarized in
[Vrandecic, 2006]. This examination remains as adpgy task and at the moment
postponed for future work.

For the purpose of this report the evaluation fraor& was derived from the
documents released by the World Wide Web Consor(M#8C) Semantic Web Best
Practices and Deployment Working Group (SWBPD-WIB) bringing together the
superset of all evaluation considerations madeutjitout the documents ([Noy,
2004] [Rector, 2005] [Noy and Rector, 2006] [Recnod Welty, 2005]).

The evaluation considerations made by the authanged from pattern to pattern and
from document to document. Therefore, for each tp@n evaluation category was
identified. The evaluation framework presented Welis made of the superset of the
main evaluation topics grouped by the categorieg belong to:

* Ontology creation:
o Simplicity. Intuitiveness of the model (using asdaas a value may
seem unintuitive).
0 Use of restrictions, light-weight or heavy-weighmtaogy.

* Ontology reuse:
o Consistency in the interpretation of the ontology.
o Interoperability with other applications.
o0 Interoperability with databases.

* Ontology maintenance and evolution:
0 Maintenance of custom logic needed in the appboato fulfil the
ontology goals.
0 Maintenance of possible duplication of conceptdréies.

* http://www.w3.0rg/2001/sw/BestPractices/

Page 43 of 55

o0 Maintenance of consistency between hierarchy o$selsa and (or)
individuals.

o Impact of modification to hierarchies, further p@oshing or alternative
partitioning of domain concept hierarchies.

* Ontology reasoning:
o Capability for applications using the model to mas
0 What can or cannot a generic Description Logicsoear infer?
o What would require knowledge of custom additiogji¢?
o Inference of transitive relations.

* Ontology expressivity: RDFS, OWL Lite, OWL DL, OWEull. At the
moment, OWL Full ontology models are not in the peof the ReSIST
project although this is might change in future kvor

There is an additional evaluation criterion dingdihked to step 4 that is not treated
in any of the documents from the SWBPD-WG whicHesisive in the context of the
ReSIST project:

* Ontology querying (knowledge extraction). The gsalo exercise the suite of
user questions developed during step 4 in all pegmntology models. This
will provide a framework for comparison of the chijsies to handle user
guestions across models.

In the case of ReSIST, the evaluation framework tbagvour functionality of the

application to the end user over correctness ofottelogy model. Therefore, the
results derived from the ontology querying effore arucial to determine which
model should be selected to model the domain carafefpault. This results and the
rest from the evaluation aspects presented abavéharexit criteria of this step and
the entry criteria for step 6 in this methodology.

Step 6. Analyze results for all models

This step requires all results derived from thelwatson framework in the previous

step of this methodology to be known and availaBlased on those results, the
expectation is that at least one of the candidatelegy models that participated in
the evaluation will exhibit the desired characterss with respect to a particular

evaluation parameter(s).

For ReSIST, the most decisive evaluation parametire performance of the models
with respect to the set of user questions definestap 4 of this methodology.

4. Conclusions

This report focused on the practical modelling nfobogy domain concepts that can
be defined according to multiple facets and theceptual overlap that occurs among
them.

Page 44 of 55

The notion of conceptual overlap and facet has kiefmed, together with their
relation to scenarios of multiple inheritance ire tbontext of modelling ontology
domain concepts.

A review of research areas relevant to the proldé¢mddressing conceptual overlap
has been presented. These include ontology mogelintology design patterns,
analysis of multiple inheritance in object-orientpdogramming languages and
ontology evaluation. Opportunities for improveménthe current methodologies to
address this specific problem have been identified.

Similarities have been elicited between two ontglogodelling design patterns that
share how they use anonymous individuals to prowite value for ontology
properties. These similarities allow expandingib&on of “value partition” to other
structures of domain concept hierarchies. A tertoigy is introduced to capture the
ontology modelling elements involved in this exiensof “value partition”. A series
of conclusions from certain characteristics amdmgsé elements are drawn. These
findings lead to the characterization of two typésonceptual overlap: internal and
external to the domain concept under studied. Tisedne occurs inside the domain
concept and the second occurs across the domagemoand additional concepts in
the ontology.

These considerations malkgplicit some of thamplicit modelling decisions taken
previously in the ontology development field. Owuntribution is proven with the
representation of the conceptual overlap in thaultFalomain concept that is part of
the ReSIST project.

It is also put forward, an ontology modelling meatbtongy to address this problem in
a structured manner. The methodology comprisesi@ssef steps. For every step, an
entry and an exit criteria has been defined thaukhbe met before starting or
finishing respectively such step.

As part of one of the steps in the methodologygesavalternative ontology models
have been presented to handle internal and exteomakptual overlap and different
guidelines have been provided to populate, queny,exvaluate the candidate ontology
models. In this sense, this methodology providegeaeric framework to compare
ontology models intended to represent the same itiocoacept that for the purpose
of this report is used to compare different altéues to address conceptual overlap.

® http://www.resist-noe.org/

Page 45 of 55

5. Future Work

Currently, there are prototypes developed of thermral conceptual overlap Models
1, 2 and 3 presented in section 4, available onlinea source code repository and
project management tdol

The prototypes have been developed using the’ Jemantic Web development
framework for Java, and they include full implensgitn of up to step 3 and partial
implementation of step 4 in the methodology disedsa section 4.

On that basis, the different lines open for futtesearch can be grouped mainly in
two. The first one deals with completing the renrajnsteps of the methodology
while the second would attempt to introduce enhaecgs to it.

Completion of the remaining steps, step 4 and be&yaould originate certain
subtasks which might lead to research paths ndoegso far such as:

Use the notion of path coverage analysis thatlisgfainit testing practices in

traditional Software Engineering to define the swf user questions in step 4
[Vrandecic and Gangemi, 2006]. The idea beingngiteng to cover as many
conceptual overlap scenarios across candidate smadgdossible.

Study the limitations of SPARQL to handle queriegolving Negation as
Failure (NaF) to retrieve sub-graphs from the taogegology models.

Survey of the current state of the art in ontolayaluation to identify the

evaluation method or methods, if any, that coulceimployed to measure the
candidate models against the parameter or parasndit@t want to be

considered in relation to the issue of conceptwarlap. The result of such
survey may well conclude that the current ontoleggluation tools are not fit
for the required purpose and the creation of newsomay have to be
considered.

The second line of further research focuses on rex@maents to the methodology
presented in section 4 that can be identifiediatgbint. These enhancements include:

Characterize the design criteria for a model tlwahlmines OWL Classes and
Properties to represent internal conceptual overlap

Characterize the design criteria of external cone@dmverlap models.
Identify what parts of the methodology are speciftc the problem of
conceptual overlap and what are generic to commatedogy models intended

to represent the same domain concept.

Formalize the characterization of the exit criteaiad entry criteria of the
different steps in the method.

® http://br205r-owlmi.ugforge.ecs.soton.ac.uk/
" http://jena.sourceforge.net/

Page 46 of 55

» Opportunities for automation of certain subtasksame of the steps in the
proposed methodology. Provided that the different@tiing design patterns
and the different entry and exit criteria are ch@azed in detail, an
application framework such as Jena could developetample the different
candidate ontology models, the creation of indisiduand the set of user
guestions.

An additional task worth considering that wouldghéb consolidate the principles
established throughout this report is the applicatof such principles to other
examples of domain concepts that meet the charstaterof conceptual overlap laid
out here.

In an attempt to foresee completion of the diffé@etivities within the time window
available for the completion of this PhD programieatative work plan for the
remaining year could look as follows:

By the end of April 2008, roughly 4 months aftee thnd of this report, the rest of
steps for the “Fault” domain concept in ReSIST #thdoe completed, and a full
iteration of the methodology presented should kexeted on the different candidate
ontology models. The results obtained should berdsxl and presented. This time
would provide about two months to find solutionghie obstacles outlined earlier in
defining a suite of user questions, and another ivemths to identify an ontology
evaluation tool as per the characteristics demamdstép 5 of the methodology.

By the end of July 2008, 3 months later, at leagd tadditional examples of
conceptual overlap in concepts from different doraahould be proposed and once
again, an iteration over the methodology to bestlehsuch domain concepts should
be carried out. The results from these additionangles should be contrasted
among each other and with those from the “Faulthdim concept.

The findings obtained along the process describdeslld serve as the basis to
document the final thesis due at the end of Dece2@@s.

Page 47 of 55

Acknowledgments

This work is supported under the ReSIST NetworExdellence, which is sponsored
by the Information Society Technology (IST) prigrin the EU Sixth Framework
Programme (FP6) under contract number IST 4 026IGE.

Additionally, we are thankful to the following pdepfor their comments and
feedback throughout this work: Hugh Glaser, Afrafr] lan Millard, Madalina
Croitoru, Harith Alani, Yannis Kalfoglou, AsuncicdBomez-Perez, Andy Seaborne,
lan Horrocks, Brandon Ibach, Bijan Parsia and ARaactor.

References

[ACM, 1998]
ACM (1998) The ACM Computing Classification Systexfersion valid in
2002, http://www.acm.org/class/1998/

[AKT, 2002]
AKT (2002) The AKT reference ontology.
http://www.aktors.org/publications/ontology/

[Alani et al., 2006]
Alani H, Harris S, O'Neil B (2006) Winnowing Ontgies based on
Application Use. In: Proceedings of 3rd Europeam>ic Web Conference
(ESWC), Budva, Montenegro

[Anderson et al., 2007]
Anderson, T., Andrews, Z., Fitzgerald, J., Rand®l),Glaser, H. and Millard,
l. (2007) The ReSIST Resilience Knowledge BasePioceedings of DSN
2007 - The 37th Annual IEEE/IFIP International Geneince on Dependable
Systems and Networks, Edinburgh, UK

[Avizienis et al., 2005]
Avizienis A, Laprie JC, Randell B, Landwehr C (20@asic Concepts and
Taxonomy of Dependable and Secure Computing. IEE&sSkctions on
Dependable and Secure Computing, 1(1):11--33

[Beckett, 2007]
Beckett D (2007) Turtle - Terse RDF Triple Languag@ November 2007.
http://www.dajobe.org/2004/01/turtle/

[Berners-Lee et al., 2001]
Berners-Lee T, Hendler J, Lassila O (2001) The sgimaveb. Scientific
American

[Berners-Lee, 2000]

Berners-Lee T (2000) Primer: Getting into RDF aman&ntic Web using N3.
http://www.w3.0rg/2000/10/swap/Primer

Page 48 of 55

[Berners-Lee, 1998]
Berners-Lee T (1998) Semantic Web Roadmap. Worlde/WWeb Consortium
(W3C) http://www.w3.org/Designlssues/Semantic.html/

[Blomqvist, 2007]
Blomqvist E (2007) OntoCase - A Pattern-based @qgtpl Construction
Approach. To appear in: Proccedings of OTM 2007:BBBE - The 6th
International Conference on Ontologies, DataBases] Applications of
Semantics, Vilamoura, Algarve, Portugal, NovemlieB@, 2007

[Blomqvist and Sandkuhl, 2005]
Blomqvist E and Sandkuhl K (2005) Patterns in Qogygl Engineering —
Classification of Ontology Patterns. In: Proc. ¢ Thternational Conference
on Enterprise Information Systems, Miami, USA, M205

[Brase and Nejdl, 2003]
Brase J and Nejdl W (2003) Ontologies and MetaftatalLearning. Springer
Verlag, pp 579-598

[Cargill 1991]
Cargill T (1991) The case against multiple inheri&a in C++. USENIX
Computing Systems, 4(1):69-82, Winter 1991

[CETIS, 2004]
CETIS (2004) UK Learning Object Metadata Core Dr@f2. Centre for
Educational Technology Interoperability Standartkiversity of Bolton.
Bolton, UK.
http://www.cetis.ac.uk/profiles/uklomcore/uklomcow®p2_may04.doc/

[CMMI Product Team, 2006]
CMMI Product Team (2006) "CMMI for Development, $an 1.2"
CMU/SEI-2006-TR-008, Software Engineering Instijuteéarnegie Mellon
University

[Connolly and Begg, 1998]
Connolly T, Begg C (1998) Database Systems: A RactApproach to
Design, Implementation, and Management. 2nd EdiseddWesley, Harlow,
England

[d’Aquin et al., 20073a]
d’Aquin M, Schlicht A, Stuckenschmidt H, Sabou MO®) Ontology
Modularization for Knowledge Selection: Experimeatsd Evaluations. 18th
International Conference on Database and Experte®ws Applications -
DEXA '07, Regensburg, Germany

[d’Aquin et al., 2007Db]
d’Aquin M, Baldassarre C, Gridinoc L, Angeletou Sabou M, Motta E
(2007) Characterizing Knowledge on the Semantic Weath Watson.
Workshop: Evaluation of Ontologies and Ontologydihstools, 5th

Page 49 of 55

International EON Workshop, International SemantWéeb Conference
(ISWC'07), Busan, Korea

[Dean and Schreiber, 2004]
Dean M, Schreiber G, (eds) (2004) OWL Web Ontolbggguage Reference.
W3C Recommendation

[Ehrig et al., 2004]
Ehrig M, Gabel T, Haase P, Sure Y, Tempich C, Veelk(2004) Use Cases.
SEKT: Semantically Enabled Knowledge Technologik3T-2003-506826
Project Deliverable 7.1.1.a

[Fernandez-Lopez et al., 2002]
Fernandez-Lopez M (ed) (2002) A survey on methaglekfor developing,
maintaining, evaluating and reengineering ontolegi@ntoWeb 1ST-2000-
29243 Project Deliverable 1.4

[Fernandez-Lopez et al., 1997]
Fernandez-Lopez M, Gomez-Perez A, Juristo N (198ZTHONTOLOGY:
From Ontological Art Towards Ontological EngineegrirSpring Symposium
on Ontological Engineering of AAAI. Stanford Uniggy, California, pp 33-
40

[Gamma et al., 1995]
Gamma E, Helm R, Johnson R and Vlissides J (19B8kign Patterns:
Elements of Reusable Object-Oriented Software, dumelr, 395 pages,
Addison-Wesley. ISBN 0-201-63361-2

[Gangemi, 2005]
Gangemi A (2005) Ontology Design Patterns for Sdmaweb Content.
Proceedings ISWC 2005, LNCS 3729, pp 262-276

[Glaser et al., 2007]
Glaser, H., Millard, I., Rodriguez-Castro, B. andffd, A. (2007)
Demonstration: Knowledge-Enabled Research Infragira (Poster). In
Proceedings of 4th European Semantic Web Conferémasbruck, Austria

[Glaser et al., 2004]
Glaser H, Alani H, Carr L, Chapman S, CiravegndHgli A, Gibbins N,
Harris S, schraefel, mc, Shadbolt N (2004) CS AkKHpace: Building a
semantic web application. In: Bussler C, Daviefehsel D, Studer R, (eds)
ESWS. Volume 3053 of Lecture Notes in Computer 18me Springer, pp
417-432

[Gomez-Perez et al., 2004]
Gomez-Perez A, Fernandez-Lopez M, Corcho O (2004jtolGgical
Engineering. Springer Verlag, London

[Good et al., 2006]

Page 50 of 55

Good, B.M., Tranfield, E.M., Tan, P.C., Shehata,, Nbinghera, G.K.,
Gosselink, J. and Wilkinson, M.D. (2006) Fast, ghead out of control: A
zero curation model for ontology development. Irciff@ Symposium on
Biocomputing, (Hawaii, USA, 2006), 128--139

[Gruninger and Fox, 1995]
Gruninger M, Fox MS (1995) Methodology for the dgsiand evaluation of
ontologies. In: Skuce D (ed) IJCAI95 Workshop orsiBaOntological Issues
in Knowledge Sharing. Montreal, Canada, pp 6.1-6.10

[Guarino and Welty, 2002]
Guarino N and Welty C (2002) Evaluating Ontologidakcisions with
OntoClean. In: Communications of the ACM, 45 (R)G1-65

[Holi and Hyvonen, 2005]
Holi M and Hyvonen E (2005) Modeling Degrees of @ae in Semantic
Web Ontologies. Proceedings of the ISWC Workshopddainty Reasoning
for the Semantic Web (Paulo C. G. da Costa, Katlgyhaskey, Kenneth J.
Laskey and Michael Pool (eds.)), CEUR Workshop €edmngs, Galway,
Ireland, Nov, 2005

[Horridge et al., 2004]
Horridge M, Knublauch H, Rector A, Stevens R, Wi©g2004) Practical
Guide To Building OWL Ontologies Using the Protégé/L Plugin and CO-
ODE Tools. Technical Report, Ed. 1.0, The Univgréif Manchester

[IEEE, 2002]
IEEE (2002). Draft Standard for Learning Object Midta. Sponsored by the
IEEE Learning Technology Standards Committee. |IEEE4.12.1-2002.
http://ltsc.ieee.org/wgl12/files/LOM_1484 12 1 vindi Draft.pdf

[Kingston, 2001]
Kingston J (2001) Ontologies, Multi-Perspective Miitig and Knowledge
Auditing. In: Ontologies Workshop at the Second r@am/Austrian
Conference on Atrtificial Intelligence (KI-2001)

[Knublauch et al., 2006]
Knublauch H, Oberle D, Tetlow P, Wallace E, (20863emantic Web Primer
for Object-Oriented Software Developers. W3C Wogk@roup Note 9 March
2006. http://www.w3.0org/TR/sw-oo0sd-primer/

[Manola and Miller, 2004]
Manola F, Miller E (2004) RDF Primer. W3C Recommatah.
http://www.w3.org/TR/rdf-primer/

[McGuinness, 2001]
McGuinness DL (2001) Ontologies come of age. Inndéé D et al (eds)
Spinning the Semantic Web: Bringing the World Witéeb to its Full
Potential. MIT Press, Cambridge, MA

Page 51 of 55

[Millard et al., 2006]

Millard I, Jaffri A, Glaser H, Rodriguez B (2006)slng a Semantic
MediaWiki to Interact with a Knowledge Based Infrusture (Poster).
Submitted to 15th International Conference on Kremlgk Engineering and
Knowledge Management. Podebrady, Czech Republic

[Motta and Sabou 2006]

Motta E, Sabou M (2006) Next Generation Semantid\&pplications. 1st
Asian Semantic Web Conference. Beijing, China

[Nilsson et al., 2003]

Nilsson M, Palmer M, Brase J (2003) The LOM RDFduirg — principles and

implementation. The 3rd Annual Ariadne Conferere21 November 2003,
Belgium

[Noy, 2004]

Noy N, (2004) Representing Classes As Property &&alan the Semantic

Web. W3C Working Group Note 5 April 2005. http://mww3.org/TR/swbp-
classes-as-values/

[Noy and Klein, 2002]

Noy NF, Klein M (2002) Ontology Evolution: Not th8ame as Schema
Evolution. In: Stanford Medical Informatics TechalicReport SMI-2002-
0926. Stanford, California

[Noy and McGuinness, 2001]

Noy N, McGuinness DL, (2001) Ontology developmel:1A guide to
creating your first ontology. In: Technical RepdfiSL-01-05, Stanford
Knowledge Systems Laboratory. Stanford, California

[Noy and Musen, 2000]
Noy NF, Musen MA (2000) PROMPT: Algorithm and Tdor Automated
Ontology Merging and Alignment. In: Rosenbloom Rukz HA, Porter B,
Dechter R, Sutton R, Mittal V (eds) 17th Nationaln@erence on Artificial
Intelligence (AAAI'00). Austin, Texas, pp 450-455

[Noy and Rector, 2006]

Noy N, Rector A, (2006) Defining N-ary Relations dme Semantic Web.

W3C Working Group Note 12 April 2006. http://www.va8g/TR/swbp-n-
aryRelations/

[Pan et al., 2007]

Pan J.Z., Lancieri L., Maynard D., Gandon F., CReand Leger A. (2007)
Knowledge Web Deliverable D1.4.2.v2. Success Stoaied Best Practices.
January 2007. Available at:
http://www.csd.abdn.ac.uk/~jpan/pub/TR/D142v2-fipdf

[Powers, 2003]
Powers S (2003) Practical RDF. O'Reilly & Assocg&atiSBN 0-596-00263-7

Page 52 of 55

[Prieto-Diaz, 2003]
Prieto-Diaz R (2003) A Faceted Approach to Buildidgtologies. In: IEEE
International Conference on Information Reuse amdegration. IEEE
Computer Society Press, pp. 458-465

[Prudhommeaux and Seaborne, 2005]
Prudhommeaux E, Seaborne A (2005) A SPARQL Quenguage for RDF.
W3C Working Draft. http://www.w3.org/TR/rdf-sparqiery/

[Rector, 2005]
Rector A, (2005) Representing Specified Values WLO "value partitions”
and “"value sets". W3C Working Group Note 17 May 200
http://www.w3.org/TR/swbp-specified-values/

[Rector and Welty, 2005]
Rector A and Welty C (2005) Simple part-whole relas in OWL
Ontologies. W3C Editor's Draft 11 Aug 2005.
http://www.w3.0rg/2001/sw/BestPractices/OEP/Simplé¥®hole/index.html

[Rector et al., 2004]

Rector A.L., Drummond N, Horridge M, Rogers J, Klauleh H, Stevens R,
Wang H and Wroe C (2004) OWL Pizzas: Practical Eepee of Teaching
OWL-DL: Common Errors & Common Patterns. Enrico Mot Nigel
Shadbolt, Arthur Stutt, Nicholas Gibbins (Eds.):gifreering Knowledge in
the Age of the Semantic Web, 14th International f€@nce, EKAW 2004,
Whittlebury Hall, UK, October 5-8, 2004, Proceedind.ecture Notes in
Computer Science 3257 Springer 2004, ISBN 3-5434@33

[Rector, 2003]
Rector AL (2003) Modularisation of domain ontolagiémplemented in
description logics and related formalisms includ®d@/L. ACM Press, 2003,
121-128

[Rector et al., 2001]
Rector AL, Wroe C, Rogers J and Roberts A (2001jablgling taxonomies
and relationships: personal and practical problemsloosely coupled
development of large ontologies. Proceedings of Emest International
Conference on Knowledge Capture (K-CAP 2001), Gstobl-23, 2001,
Victoria, BC, Canada. ACM 2001, ISBN 1-58113-380-4

[ReSIST, 2006]
The ReSIST Project (2006) Resilience and Surviitgbin Information
Society Technology (IST). IST 4 026764 NOE. httpwiv.resist-noe.org/
[Rumbaugh et al., 1991]
Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorenge(1991) Object-
oriented modeling and design. Englewood Cliffs, Nlmsey. Prentice Hall

[Shadbolt et al., 2004]

Page 53 of 55

Shadbolt NR, Gibbins N, Glaser H, Harris S, schelaefc (2004) CS AKTive
Space or how we stopped worrying and learned te ltre Semantic Web.
IEEE Intelligent Systems

[Shirky, 2005]
Shirky C (2005) Ontology is Overrated: Categoriegks and Tags. In:
[online] Clay Shirky's Writings About the Internet.
http://shirky.com/writings/ontology_overrated.html

[Skuce and Lethbridge, 1995]
Skuce D, Lethbridge TC (1995) CODE4: A Unified $ystfor Managing
Conceptual Knowledge. International Journal of Hom@amputer Studies
42(4):413-451

[Smith, 2006]
Smith B (2006) Against Idiosyncrasy in Ontology Be®pment. Forthcoming
in B. Bennett and C. Fellbaum (Eds.), Formal Orggl@and Information
Systems, (FOIS 2006), Baltimore November 9—11, 2006

[Spaccapientra et al., 2004]
Spaccapientra S, Parent C, Vangenot C, Cullot R420n Using Conceptual
Modeling for Ontologies. In: Proceedings of the Walbrmation Systems
Workshops (WISE 2004 Workshops), Lecture Notes am@uter Science
3307, 22-33

[Spyns et al., 2002]
Spyns P, Meersman R, Jarrar M (2002) Data modeNiagsus ontology
engineering. ACM SIGMOD Rec 31(4):12-17

[Studer et al., 1998]
Studer R, Benjamins VR, Fensel D (1998) Knowledggikeering: Principles
and Methods. IEEE Transactions on Data and Knoveldelggineering 25(1-
2):161-197

[Suarez-Figueroa et al., 2007]
Suarez-Figueroa MC, Brockmans S, Gangemi A, GonegezPA, Lehmann J,
Lewen H, Presutti V and Sabou M (2007) NeOn ModglliComponents.
UPM, 2007

[Sure and Studer, 2002]
Sure Y and Studer R (2002) On-To-Knowledge Methogypl- Final Version.
Institute AIFB, University of Karlsruhe, On-To-Kndedge Deliverable 18,
2002. Available at http://www.aifb.uni-
karlsruhe.de/WBS/ysu/publications/OTK-D18 v1-0.pdf

[Tempero and Biddle, 2000]
Tempero E and Biddle R (2000) Simulating Multiplehéritance in Java.
Journal of Information and Software Technology,) (85100, 2000

[Uschold and Gruninger, 1996]

Page 54 of 55

Uschold M, Gruninger M (1996) Ontologies: PrincgleMethods, and
Applications. Knowledge Eng. Rev., Vol. 11, Nopp, 93-155

[Uschold and King, 1995]
Uschold M, King M, (1995) Towards a Methodology #uwilding Ontologies.
In: Skuce D (eds) IJCAI'95 Workshop on Basic Ongial Issues in
Knowledge Sharing. Montreal, Canada, pp 6.1-6.10

[Vrandecic, 2006]
Vrandecic D (2006) Ontology Evaluation for the WelPhD proposal. In
Joerg Diederich and Enrico Motta and Elena Padamitas, Proceedings of
the KnowledgeWeb PhD Symposium KWEPSY 2006. Budiantenegro,
June 2006

[Vrandecic and Gangemi, 2006]
Vrandecic D and Gangemi A (2006) Unit tests forotwgies. Jarrar, M.;
Ostyn, C.; Ceusters, W. & Persidis, A. (ed.) Prdoegs of the First
International Workshop on Ontology content and ea@bn in Enterprise,
Springer, 2006

[Waldo 1991]
Waldo J (1991) Controversy: The case for multipheritance in C++.
USENIX Computing Systems, 4(2):157-172, Spring 1991

[Wang et al., 2006]

Wang TD, Parsia B and Hendler J (2006) A Surveyhef Web Ontology
Landscape. In Proc. of Int. Semantic Web Confer¢ig/C 2006), 2006

Page 55 of 55

