Evaluating Collaborative Search Interfaces with
Information Seeking Theory

Max L. Wilson, m.c. schraefel
School of Electronics and Computer Science
University of Southampton, UK
{mlw05r, mc}@ecs.soton.ac.uk

ABSTRACT

Despite the many implicit references to the social aspects of
search within the history of Information Seeking and
Retrieval research, there has been relatively little work that
has specifically investigated the additional requirements for
collaborative search software. In this paper we re-assess a
recent evaluation framework, designed for individual
information seeking experiences, to see a) how it can still
be applied to collaborative search software; b) how it can
produce additional requirements; and ¢) how it could be
extended in future work to be even more appropriate for
collaborative search evaluation. The results of the
investigation reveal that it can be used to evaluate the
available interactions with collaborative search software,
while providing new insights into their requirements.
Finally, future work will investigate roles within
collaborative groups as a means to extend the framework.

Author Keywords
Collaborative, search, seeking, evaluation.

ACM Classification Keywords

H.5.2 User Interfaces: Evaluation/methodology,
Prototyping. H.5.3 Group and Organization Interfaces:
Computer-supported cooperative work. H.1.2
User/Machine Systems: Human factors.

INTRODUCTION

Although forms of implicit collaboration, such as
recommender systems, have been well researched,
investigation into interfaces for explicit, synchronous and
asynchronous, collaborative search software has only
recently received a flurry of interest. This is surprising
given that such collaboration has been identified many
times in the history of information seeking research,
discussed in detail by Hansen and Jarvelin [4], and there
has been around 20 years of research into Computer

Supported Collaborative Work! (CSCW). The focus for
Collaborative Information Retrieval (and Seeking) research,
however, is a union of these two areas that extends our
ideas of Information Seeking research with a subset of the
tasks being investigated by CSCW.

Given the relatively infant level of investigation so far, into
teams or groups who search together to achieve a mutual
goal, recent efforts have focused on identifying the
additional requirements for collaborative search software.
An example is the survey performed by Morris [5], that
revealed that around 95% of people have performed in
weekly or monthly collaborative searches. The
investigation further reveals the methods used by people
when achieving their collective goal.

In this paper we continue to identify requirements for
collaborative search software by assessing a recent
evaluation framework. The framework was developed using
models of information seeking behavior, which have
historically focused on individuals. The assessment is
designed to see a) how it can still be applied to
collaborative search; b) what additional requirements it can
identify for collaborative search software; and c¢) how it
may be extended in the future to be more appropriate for
collaborative search conditions.

RELATED WORK

As opposed to collaborative search environments that use
techniques such as relevance feedback, which have been
deemed as implicit [8], explicit collaborative information
retrieval involves groups of people actively participating as
a team to gather information on a shared goal. Further
Pickens and Golovchinsky [8] break this down into
synchronous and asynchronous, where groups are either
working together in real-time or are collaborating without
any immediate social communications, respectively.

Recent efforts have produced some early designs of explicit
collaborative search software that, in turn, are also
producing new insights into additional requirements for
collaboration during information seeking tasks. S°, standing
for Storable, Shareable Search [6], was designed to support

http://portal.acm.org/browse_dl.cfm?part=series&idx=
SERIES296 — CSCW (ACM Digital Library)

asynchronous explicit search by recording peoples
searching activities, making them persistent over time, and
providing them to others in a team. Synchronous explicit
collaboration can be further broken down into co-located
and distributed groups. An example of co-located
collaborative search software is CoSearch [9], which lets
groups of people use a combination of mobile devices to
search as a group over one machine. An example of a
distributed explicit ~ synchronous application is
SearchTogether [7], which provides means of
communicating with, recommending pages to and
monitoring the activity of other searchers. SearchTogether
does, however, allow for these communications to be
persistent and so can work for asynchronous groups too.

EVALUATION FRAMEWORK

Recent work by Wilson et al. [11, 12] has produced an
evaluation framework that is designed to systematically
inspect prototype interfaces in terms of the tactics they
allow users to employ and the types of conditions the
searchers may be in. Consequently, it can tell evaluators a)
which types of users are well or poorly supported, b) which
types of tactics users may struggle to perform, and ¢) which
parts of the interface are enabling the tactics that are
supported. These tactics are discussed in more detail below,
but examples include broadening a search, checking what
has been done, and weighing up options. User types are
broken down by dimensions such as their existing
knowledge and confidence in finding an answer. This
approach, based in theory, was also recently validated [10].

To perform such a detailed and systematic inspection of
prototype designs, the framework relies on information
seeking theory. Specifically, the framework uses one model
of tactics, by Bates [1, 2], and one model of users, by
Belkin et al. [3]. One contribution of the framework was to
provide a connection between the two models that states
which tactics are most useful for each user type. Below, we
assess these two models from information seeking theory,
to see how they can be applied to collaborative search.

Bates’ Model of Tactics

Bates identified 32 different tactics that people may carry
out when searching for information across different
technologies. Where these were originally designed to be
self-serving tactics, they may have different implications
for those who are part of a group or team. We now step
through these tactics to identify the additional
considerations that evaluators must maintain when applying
the framework to collaborative search software.

The first five tactics are ‘Monitoring Tactics’. CHECK is to
check that the current state of search is still related to the
original reason for searching. In a group setting, the user
may have to check both their current task, and the overall
task of the group. WEIGH is to consider whether to
continue or choose a different approach. In a group setting
the user will require knowledge of what other approaches

have already been tried. PATTERN is to monitor ones
actions for efficiency. In a group setting, users may benefit
from comparing their own patterns to those of co-searchers.
CORRECT involves watching for and correcting any errors
during search. Although this may maintain as an individual
activity, the many eyes of others may help identify errors
you yourself have missed. Thus, in a group setting, it may
be beneficial to notice errors in other peoples work.
RECORD is to record items for later return. The capture of
context here may be even more important for others in the
group who did not perform the original search.

The following 7 tactics relate to parsing results or groups of
results. BIBBLE is to check to see if other searchers have
already carried out the current task. This may change vary
little, except that those who may have already carried out
the work may be others in the team, rather than unknown
searchers from the past. SELECT is to select part of a task
and address it as a set of sub-tasks. In a group setting it may
be beneficial to know that others have not already
completed these sub-tasks, or to see if the results of the sub-
task may be of use to others. SURVEY is to review the
current available options. Again, it may be of value to know
that others have not already completed some of current
options. CUT is to take an action that has the largest affect
on the overall task. This may not vary in collaborative
search software, as other tactics from this group deal with
preparing for the decision. STRETCH is similar to reusing
something. It may be that a user can ‘stretch the value’ of
someone else’s hard work to benefit their own. The actions
of a known team of group may be much easier to visualize
than trying to browse the previous actions of every other
user in the history of the search service. To SCAFFOLD is
to design a different approach to find a certain result,
having followed a ‘dead end’ path. This may be much
easier to do if the user can see and mimic the successful
paths taken to similar targets by others in the team.
CLEAVE is a fairly solo activity in terms of applying a
binary search technique to going through a structured list.

The following 6 tactics relate to formulating search plans,
which research has shown to be core to collaborative search
groups [5]. SPECIFY is to apply a set of query terms that
are known to produce the desired result. Searchers may
benefit from knowledge from others in the group to do this,
especially those who are not search-savvy. Being
EXHAUSTive is also an activity that is easier with a team
of searchers. To REDUCE is the opposite of EXHAUST,
which allows un-expected but potentially valuable results to
be found. This often involves parsing a larger amount of
results, with many being unrelated or previously found and
so shared human resources may help here too. PARALLEL
is to broaden a search by using synonymous terms, for
example. Like EXHAUST, this may be easier with shared
group knowledge. To PINPOINT is the opposite of
PARALLEL, and allows for searching to focus on specific
synonyms. BLOCK relates, for example, to the use of
‘NOT’ in a Boolean query. In a group, this action may help

avoid overlap and may help searchers to discover results on
a certain topic, but avoid results that relate to what a
colleague is searching for.

The next 11 tactics relate to the specific terms used after
having formulated a search plan: SUPER, SUB, RELATE,
NEIGHBOR, TRACE, VARY, FIX, REARRANGE,
CONTRARY, RESPELL and RESPACE. We do not
discuss these individually here, but they are each mainly
solo decisions. Consequently, however, they could also
each benefit from an awareness of others peoples use of
terms. However, it is important to note that at the level of
terms, it may not be important that one term a user is about
to use has been used by other searchers, depending on if the
term is core to the uniqueness of the query, or relating to its
context. For example, if everyone in the team is researching
diabetes, then telling a user that others have used the term
‘diabetes’ is not of value.

The final 3 tactics relate to changing ideas or mental
concepts of the searcher and so tend to relate to the on-
going learning that informs better searching behavior.
Consequently, the three tactics are important for a team
setting for keeping each other informed and sharing specific
advances on a goal or problem. RESCUE is to rethink a
problem, when the searcher realizes their ideas are
inherently incorrect. BREACH is to extend ones boundaries
of understanding given new information. An example may
be realizing that diabetes is not solely related to genetics,
but also to aspects such as diet. FOCUS, therefore, is the
opposite of BREACH and relates to identifying that only a
sub-part of a problem is actually relevant to the overall
goal. It is clear that collaborative search interfaces should
support the transfer of developed understanding to other
members of a team, as they may significantly alter the
direction of the whole group.

Most of the discussion of tactics above could be generalized
to the need to either actively share results or passively
monitoring the progress of others. In the evaluation
framework, however, each feature of an interface, such as
the keyword search form, the list of results, the
communication channels, and so on, are addressed
individually in terms of how they support each tactic. This
process, therefore, means that the evaluator is encouraged
to think about how the keyword search box alone may help
users understand how their current search may also be used
to see which terms another searcher has already used.
Consequently, it leads to a system where support of tactics
is pervasive to the whole interface rather than having
specific functions or features of the design that specifically
support individual tactics. This should become clearer as
we discuss a specific example below.

Belkin et al’s Model of Users

Unlike Bates” model of tactics, there are no changes or
additional considerations to the model by Belkin et al, when
applying the framework to collaborative software. The
dimensions of the model are: Method (scanning or actively

searching), Goal (to learn or select and take away), Mode
(by recognizing or being able to specify), and Resource
(looking for a report, for example, or information about a
report). None of these dimensions are related to or affected
by the need to collaborate with others. Instead they reflect
the individual’s activity when performing their tasks for the
benefit of the team. We revisit the idea of types of users in
our future work section below, but first we discuss an
example application of the framework.

EVALUATING A COLLABORATIVE SEARCH Ul

The framework is designed to evaluate specific interfaces to
a system. So to understand the CoSearch system [9], for
example, which allows people to take part in the search
using devices such as mobile cellular phones, the evaluator
would consider how both the mobile interface and the
computer interface support users. The combination of
interfaces makes CoSearch a complex example. Instead,
SearchTogether makes a good clear example, as it provides
a single interface for every user in the team, and has been
specifically designed for collaborative web searching [7].

Unfortunately there is not the available space in this
workshop paper for a full evaluation, like the ones
previously published by Wilson et al. [11, 12]. Instead we
discuss some of the specific features of the software that
have been developed. It is important to note that in order to
perform a full evaluation, familiarity with the interface is
always beneficial. Having novice users of a particular
system perform the evaluation, however, can provide
insights into discoverability of interface features.

The first step of applying the evaluation is to identify each
of the features in the interface, such as the keyword search
box and the results list. In the case of SearchTogether, there
is also the ability to do a split search and a multiple-engine
search, to comment and recommend, chat via instant
messaging, a complete search summary, a view of
individual search histories and the ability to view the pages
that are currently being browsed by other collaborators.

Each of the identified features of the interface will have the
ability to support many of the 32 tactics. Step 2, therefore,
is to measure the minimum number of moves it may take to
perform each of the tactics with each of the identified
features. For more information on this unit of measurement,
refer to earlier publications [11, 12]. The output of these
two steps, which could be applied to multiple user
interfaces if doing a comparison, is a series of graphs that
tell you a) the breadth of support each interface feature is
producing, b) the amount to which each tactic is being
supported, and then ¢) which types of users are, therefore,
being well supported.

Let us consider the group query history function, for
example, which shows the user search phrases already used
by each of the other team members. This directly supports
many tactics from the list described above, especially as it
can remain persistently in view throughout the user’s search

sessions. For it example, the query history function helps
users to identify PATTERNSs; to BIBBLE and make sure
that no one has performed a valuable search before; to
SURVEY their options; STRETCH other peoples searches;
and many more in terms of devising specific queries.

The group history function above, however, is an example
of one that has been specifically designed to support
collaborative search. It is also possible for keyword
searches to help provide this similar context of other’s
queries. For example, when a user enters a search phrase,
the interface could indicate that, if applicable, someone else
has performed it before. This would support the user in
avoiding overlap, without having to proactively double
check each query.

The search summary view is another important feature of
the interface, but depending on how it is designed, it could
support different tactics. In this case, the user can use it to
view previously found pages. This could help the user
TRACE the pages for useful search terms, or may simply
help with the final 3 idea tactics. If the search summary also
recorded the search terms used to find the annotated item,
the user could both BIBBLE and SCAFFOLD their own
follow-up searches. Similarly, knowing the search terms
that found a poorly rated page could help the user BLOCK
certain terms.

The above examples show how the framework can provide
both insights into the support being provided and identify
potential design ideas for improving the design. In the final
example of the search summary, by simply asking how the
feature could also support the BIBBLE tactic, new ideas
can be produced.

FUTURE WORK

Despite the fact that Belkin’s model is unchanged by the
notion of collaboration, there are different types of
searchers in teams and each of them may well benefit from
different types of support. Pickens and Golovchinsky [8],
for example, identify two team dynamics in their paper:
domain experts working together, and domain experts
working with search experts (where the latter may be a
librarian for example). Similarly, in the scenarios provided
to inform the SearchTogether interface [7], Morris and
Horvitz also identify different roles in the groups. The
elderly father, for example, may benefit more from the
search experience of his son or daughter, by receiving
recommendations, than by being able to see what they have
each searched for and found in the past. The search-
experienced son, though, may benefit more by seeing a
quick overview of what everyone has found so far, to be
able to consider new search directions.

Our position is that this notion of roles may be important
for understanding the value of, and therefore in evaluating,
collaborative search software. A similar example could be
seen when a manager may be assigning tasks to employees.
For the manager, summaries and overviews may be

valuable, but for the employees, avoiding duplication of
effort and having effective means of sharing results may be
more important. Consequently, part of our future work will
involve investigation into CSCW research to understand
what is known about roles within teams. The aim is to
identify an additional model to the framework to be used
when evaluating collaborative search software.

CONCLUSION

In this paper we have analyzed an evaluation framework for
information seeking interfaces in terms of its applicability
to collaborative search software. The results show that the
framework can be just as easily applied to collaborative
search interactions as individual seeking software, but that
there are additional considerations about the individual’s
involvement within a group that must be maintained as the
assessment is carried out. These additional considerations
for each tactic are listed above. One result of analyzing the
applicability of the framework to collaborative search is
that the process identified a potential enhancement for the
framework by involving an additional model of roles within
a group. The choice and integration of such a model of
group-roles will be investigated in future work.

REFERENCES

1. Bates, M.J. Idea tactics. JASIST, 30 5 (1979). 280-
289.

2. Bates, M.J. Information search tactics. JASIST, 30
(1979). 205-214.

3. Belkin, N.J., Marchetti, P.G. and Cool, C. Braque:

design of an interface to support user interaction in
information retrieval. Inf. Process. Manage., 29 3 (1993).
325-344.

4. Hansen, P. and Jirvelin, K. Collaborative
Information Retrieval in an information-intensive domain.
Inf. Process. Manage., 41 5 (2005). 1101-1119.

5. Morris, M.R., A survey of collaborative web
search practices. CHI0S, (2008), ACM Press.

6. Morris, M.R. and Horvitz, E., S3: Storable,
Shareable Search. Interact, (2007), ACM press.

7. Morris, M.R. and Horvitz, E. SearchTogether: an
interface for collaborative web search. UIST (2007). 3-12.
8. Pickens, J. and Golovchinsky, G., Collaborative
Exploratory Search. HCIR, (2007).21--22

9. Saleema, A. and Meredith Ringel, M. CoSearch: a

system for co-located collaborative web search CHI,
Florence, Italy, 2008.

10. Wilson, M.L. A Transfer Report on the
Development of a Framework to Evaluate Search Interfaces
for their Support of Different User Types and Search
Tactics., University of Southampton, 2008.

11. Wilson, M.L. and schraefel, m.c., Bridging the
Gap: Using IR Models for Evaluating Exploratory Search
Interfaces. First Workshop on Exploratory Search and HCI
at CHI, (2007).

12. Wilson, M.L., schraefel, m.c. and White, RW.
Evaluating Advanced Search Interfaces using Established
Information-Seeking Models. JASIST (to come).

