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ABSTRACT
We present an extension of the Dynamics Based Control (DBC)
paradigm to environment models based on Predictive State Repre-
sentations (PSRs). We show an approximate greedy version ofthe
DBC for PSR model,EMT-PSR, and demonstrate how this algo-
rithm can be applied to solve several control problems. We then
provide some classifications and requirements of PSR environment
models that are necessary for the EMT-PSR algorithm to operate.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search—Control theory; I.2.11 [Artificial Intelligence ]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Dynamics Based Control, Predictive State Representation

1. INTRODUCTION
Autonomous agents, and the entities they represent, regularly en-

counter systems that develop over time. Modifying network trans-
mission rates, controlling the motion of remote actuators,or po-
sitioning a target within a field of vision (by moving the target
or the vision system), can all be described as a control task of a
dynamic stochastic system. One common model for formalising
such tasks has been Partially Observable Markov Decision Prob-
lems (POMDPs) [11, 3]. POMDPs assume that the true state of
the system is obscured, and can be only indirectly observed from
the available sensory input. The control task is then translated into
a utility function that uniformly describes the benefit of different
steps in the system’s development, and the action policy is opti-
mised to produce the highest expected utility [9]. While theoret-
ically attractive, such an approach in practise has high computa-
tional complexity [7, 5], which has encouraged the development of
additional system modelling and control frameworks.

Predictive State Representations (PSRs) [6, 16] have been pro-
posed as a new way of creating models of controlled dynamic sys-
tems. PSRs describe a system’s dynamic development based exclu-
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sively on observed properties: sensory input, and the available ac-
tions. Based on the predicted success levels of some future action-
observation sequences, termedtests, PSRs allow the recovery of
the probability of success of any given sequence of actions that can
be applied, and the observations that would follow them, resulting
in a modelling scheme that is at least as powerful and compactas
hidden state models [6].

Dynamics Based Control (DBC) [15] is a new approach to con-
trolling agents in stochastic environments. Unlike previous tech-
niques, which seek to optimise expected rewards (e.g., in POMDPs),
DBC optimises system behaviourtowards specified system dynam-
ics. One specific instance of the overall DBC framework is the
controller based on Extended Markov Tracking (EMT) [12, 13,14];
EMT employs greedy action selection to provide an efficient con-
trol algorithm in Markovian environments. The EMT-based con-
troller assumes that the system can be forced to behave as a spec-
ified Markov chain—an ideal dynamics—and uses the underlying
EMT algorithm to estimate the effects of different actions.The ac-
tion with the effect most aligned with the ideal dynamics is then
applied.

In this paper, we combine the PSR representation with the DBC
approach. We propose a new system-tracking algorithm underthe
PSR model, the EMT-PSR algorithm, which is designed to recover
the transition rule between two consecutive actions and observa-
tions in the immediate future—that is, the transition between to-
morrowandthe day after tomorrow, under the assumption that such
a transition is Markovian. The resulting polynomial-time control
algorithm directly operates over observable quantities, the sensory
inputs, and the available actions, allowing for a more intuitive and
dynamics-directed specification of the control task. We experimen-
tally show that behavioural heuristics can be directly incorporated
into the algorithm’s task specification, resulting in improved con-
trol performance.

The remainder of the paper is structured as follows. In Section 2
we review the PSR environment, review the DBC framework, and
present the EMT-PSR algorithm in detail. In Section 3 we describe
the domains used for the algorithm’s performance evaluation, in-
cluding domain-specific performance measures and the empirical
results obtained for each of the domains. Sections 4 and 5 describe
the necessary modelling characteristics and the control task spec-
ification guidelines for the EMT-PSR algorithm application. We
conclude and discuss future work in Section 6.

2. THE EMT-PSR ALGORITHM
The recently introduced Dynamics Based Control (DBC) [15]

framework, which we review below in Section 2.2, views the con-
trol task as follows: force a given algorithm for system identifica-
tion to produce a result as close as possible to a specified (ideal)



one. This point of view requires an environment model to predict
the response of the identification algorithm, and to operatein terms
of connections between the actions that will be applied and the ob-
servations that will then be made. Although all previous implemen-
tations of the DBC framework [12] used a hidden state model, in
this paper DBC is implemented using a new approach. We con-
struct a DBC algorithm using an environment model that operates
only in terms of direct observables: sensory input and actions se-
lected, the elements of Predictive State Representations (PSRs).

PSRs [6, 16] are based on the fact that in some systems, given
the history of their development, it is enough to know only a few
predictions of their future development in order to predicttheiren-
tire future. Among the benefits of PSRs (discussed below in Sec-
tion 2.1) is their representation of a system directly in terms of
observable and deliverable aspects of the environment, i.e., their
representation directly captures the relationship between future ob-
servations an agent may have, and the future actions it may apply.

2.1 Predictive Representation of State
Predictive State Representations (PSRs) were introduced in [6];

the approach views a system as a set of dynamically developing
predictions of future observations.

Given a (discrete) setA of actions available to an agent, and a
(discrete) setO of possible observations, PSRs focus on sequences
of future actions and observations ortests(A × O)+. A testt =
a1o1...aror ∈ (A×O)+ is said to succeed if the sequence of obser-
vationso1, ..., or is obtained as the sequence of actionsa1, ..., ar

is executed. As actions are executed and observations are made, an
interaction historyh ∈ (A × O)∗ is obtained, and the probability
of any given testp(t|h) varies.

The set of success probabilities of all tests is infinite. How-
ever, in some systems it is possible to identify a subsetQ of tests,
termedcore tests, such that the success probabilityp(t|h) of any
test can be computed from the success probabilities of the core
testsp(Q|h) = {p(q|h)}q∈Q. The dependency betweenp(Q|h)
and p(t|h) is independent of the interaction historyh, though it
may be non-linear.

In this paper we will concentrate on Linear Discrete PSRs [6,
16], which can be defined by the tuple< A, O, Q, p(Q|∅),M,m >,
where:

• A is the set of actions available to an agent under the model;

• O is the set of observations an agent can encounter under the
model;

• Q is the set of key future points,core tests, Q ⊂ (A × O)+.
In a linear PSR this set is finite, and its size dictates thedi-
mensionof the model:Q = {q1, ..., qk};

• p(Q|∅) = [p(q1|∅), ..., p(qk|∅)] is the initial vector of pre-
dictions regarding the core tests. This is the probability that
the test will succeed, given that the interaction history is
empty. In generalp(Q|h), whereh ∈ (A×O)∗ is the history
of interaction, is called thePSR state;

• M = {MT
ao = [maoqi

]|qi ∈ Qa ∈ A, o ∈ O} is the set
of one-step extension weight matrices. Each row inMao is a
weight vectormT

aoqi
, so thatp(aoqi|h) = mT

aoqi
p(Q|h);

• m = {mao|a ∈ A, o ∈ O} is the set of weight vectors for
the single-step testsao, that is,p(ao|h) = mT

aop(Q|h).

It is important to note some notation abuse:P (a1o1...aror|h) =
P (o1, ..., or|h, a1, ..., ar). The left term is the probability of the
testa1o1...aror, while the right term is its correct interpretation

as a conditional probability: the probability that the sequence of
observationso1, ..., or will take place if the sequence of actions
a1, ..., ar will take place after historyh ∈ (A × O)∗.

The linearity assumption states that for any testt = a1o1...aror ∈
(A × O)+ there exists a constant vector of weightsmt so that
p(t|h) = mT

t p(Q|h), wheremt = mT
aror

Mar−1or−1
...Ma1o1

p(Q|h).
The PSR state update after applying actiona ∈ A and receiving
observationo ∈ O is given by:

P (qi|hao) =
maoqi

P (Q|h)

maoP (Q|h)
.

2.2 Dynamics Based Control
The Dynamics Based Control (DBC) framework introduced in [15]

is based on two key features: the perceptual control principle, and
the focus on system dynamics.

The DBC framework can be decomposed into three major levels:

• TheEnvironment Design level describes the system model.
In this paper, we will concentrate on PSR models of the en-
vironment.

• The User level defines a system identification or a system
tracking algorithm, and a measure of similarity is established
between feasible outcomes of the tracking algorithm. An
ideal dynamics (also termed atactical target), towards which
the outcome of the tracking algorithm has to be forced, is
also defined at this level. The ideal dynamics describes one’s
preferences regarding, and requirements for, the system’sde-
velopment and performance.

• TheAgent level defines an on-line control procedure which
sets actions that force the tracking algorithm towards the ideal
dynamics.

The data flow for the framework is depicted in Figure 1.
Despite the generality of the DBC framework, we are thus far

aware of only one system-tracking algorithm capable of operating
within this framework, which has been publicised by the DBC au-
thors [12, 13, 14, 15]—Extended Markov Tracking (EMT).

The EMT algorithm assumes that the system is an autonomous
single Markov chain, and it thus views the system dynamics asa
single stochastic matrix. EMT performs a sequence of conservative
updates of the system dynamics matrix, minimising the Kullback-
Leibler divergence between the new and old estimates, with the
limitation that the new estimate has to match the system transition
sample that triggered the update.

Assume that two probability distributionspt−1, pt are given that
describe two consecutive states of knowledge about the system, and
τ t−1

EMT is the old estimate of the system dynamics. Then the EMT
updateτ t

EMT is the solution of the following optimisation problem,
whereDKL is the Kullback-Leibler divergence:

τ
t
EMT = H [pt−1, pt, τ

t−1
EMT ]

= arg min
τ

DKL(τ × pt−1‖τ
t−1
EMT × pt−1)

s.t.

pt(x
′) =

X

x

(τ × pt−1)(x
′
, x)

pt−1(x) =
X

x′

(τ × pt−1)(x
′
, x)

Note the following abbreviation of the update:
τ t

EMT = H [pt−1, pt, τ
t−1
EMT ].
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Figure 1: Data flow of the DBC framework

2.3 EMT-PSR Implementation of DBC
In this section, we present an implementation of the DBC frame-

work with the following assumptions imposed on its constituent
levels:

• The Environment level produces a PSR environment model;

• The User level treats a distribution over future action-observation
pairs at timet as the state of knowledge about the system at
time t, and assumes consecutive time steps to be linked by a
Markovian process. The User level uses EMT as the system
tracking algorithm.

The core idea of the algorithm at the Agent level is to make EMT
track the difference between the observation distributionof the next
time step (termedtomorrow) and the time step after the next one
(termedthe day after tomorrow).

The Agent level control algorithm is a non-committing two-step
lookahead. It selects a pair of actions based on the prediction of
EMT as to how similar the difference betweentomorrowand the
day after tomorrowwould be, relative to the tactical target. The
algorithm then applies the first part of the pair, thus movingthe
system one step ahead. The oldday after tomorrowbecomes the
newtomorrow, and the algorithm uses the second action of the pair
it selected to recomputethe day after tomorrowdistribution of ob-
servations. It then calls EMT to update its estimate, based on the
difference between the oldtomorrowand the newtomorrow.

Given the PSR tuple< A, O, Q, p(Q|∅),M,m >, denote as
usualτ∗ as the tactical target, andH [pt, pt+1, τ ] as the EMT opti-
misation procedure computation.

0. Initialise:

• Set the time tot = 0.

• Set the EMT estimateτt to be a conditional uniform
distribution.

• Set the PSR model to its initial PSR state.

• Denote byp+a
t ∈ Π(O) the distribution over the ob-

servations at timet + 1 (tomorrow), after taking action
a ∈ A as is estimated at timet; denote byp+a1+a2

t ∈
Π(O) the distribution over the observations at timet+2
(the day after tomorrow) after taking actionsa1 and
a2 ∈ A, as is estimated at timet.

1. Prediction stage: for each pair of actions(a1, a2) ∈ A2

compute:

• The distributionp
+a1

t = P (a1o1|h) ∈ Π(O) by ap-
plying the PSR model and its current state:

∀o1 ∈ O, P (a1o1|h) = m
T
a1o1

P (Q|h).

• The distributionP (a1o1a2o2|ht) ∈ Π(O2) by apply-
ing the PSR model and its current state:

∀o1, o2 ∈ O, P (a1o1a2o2|h) = m
T
a2o2

Ma1o1
P (Q|h).

• Computep+a1+a2

t =
P

o1∈O

P (a1o1a2o2|h).

• ComputeDa1a2
= H [p+a1

t , p
+a1+a2

t , τt].

2. Action selection:

(a∗

1, a
∗

2) = arg min
(a1,a2)∈A2

DKL(Da1a2
×p

+a1

t ‖τ∗×p
+a1

t ).

3. Application and Update:

• Apply a∗

1, receive observationo∗1 ∈ O.

• Computep
+a∗

2

t = P (a∗

2o2|ha∗

1o
∗

1) ∈ Π(O) as before:

∀o2 ∈ O, P (a∗

2o2|h) = m
T
a∗

2
o2

P (Q|ha
∗

1o
∗

1).

• Updateτt+1 = H [p
+a∗

1

t , p
+a∗

2

t , τt].

• Update the PSR historyh = ha∗

1o
∗

1.

• Update the PSR state as prescribed.

• t=t+1.

3. TESTING THE EMT-PSR ALGORITHM
When testing and evaluating the performance of the EMT-PSR

algorithm, one faces two challenges.
First, to the best of our knowledge, there is no optimal solution

algorithm available within the DBC framework, nor a benchmark
problem with a clear performance metric. Thus, instead of a com-
parative study, we have resorted to the use of a range of problems,
each with its own intrinsic domain-specific performance metric.
Most of these domains are more commonly modelled and solved
using the POMDP approach [1, 8, 10, 4, 2]. However, in this paper
we formalised them as PSRs, either directly or using the conversion
algorithm provided in Littman et al. [6].

The second challenge comes from the need to provide DBC-type
solutions with anideal dynamics matrix, or tactical target. DBC
assumes that the tactical target is completely evident fromthe def-
inition of the domain or from a specific instance at hand. We find,
however, that in many cases the ideal dynamics matrix is generally
formed from a set ofheuristicsfor a domain.

3.1 Domain Dependent Tactical Targets
From the EMT point of view (and it is that to which the tactical

target has to conform), the system is guided by a single Markovian
conditional distribution, a matrix that represents the ideal rules of
system development. In general such rules would have the form
of a conditional implication between two consecutive expressions
of system knowledge. Under our system modelling assumptions,
the most simple rule would have a form of :if tomorrow’s obser-
vation then the day after tomorrow’s observationhasζ degree of
preference.

This allows for a rather flexible specification of the desiredsys-
tem behaviour, which may include dependencies between actions,
sensory observations, and an external feedback of performance eval-
uation.1 Furthermore, if the exact rule set is unknown, one may
formulate the tactical target via a set of heuristic rules. In this case,
the ideal dynamics matrix can be viewed as behavioural guidance
to the Agent Level algorithm, rather than an ideal system develop-
ment to which an agent has to adhere.

In the following subsections we apply the EMT-PSR algorithm
towards solving a range of control and continual planning problems
in stochastic domains. For each domain, we provide a specificset
of behavioural rules that were used to create the ideal dynamics

1Such an evaluation is commonly termedreward in the Reinforce-
ment Learning literature [17].



matrix. These rules, although domain specific, stem from general
heuristics for solving the class of problems to which each domain
belongs. For instance, the Maze Domains (Sections 3.3, 3.4)and
the Shuttle Domain (Section 3.2) can be characterised as support of
motion through a graph. In this type of domain, the ideal system
development is simply a path through the graph which has optimal
properties with respect to the specifications of the domain.As a
result, the set of rules that form the ideal dynamics matrix simply
describes the path, or a heuristic for its reconstruction.

The domains of Sections 3.2–3.6 adhere to the development of
the EMT-PSR evaluation, and form an ascending order of complex-
ity and challenge to the control algorithm. From the simplest to the
most difficult, all domain descriptions follow the same presentation
pattern. Every section begins with a description of the domain, and
introduces the rules used to form the ideal dynamics matrix.We
then discuss the performance measures relevant to the domain, and
provide experimental results of the EMT-PSR algorithm’s execu-
tion with respect to that measure.

3.2 The Shuttle Domain
In the shuttle domain [1] there are two identical space stations

each containing a loading dock; the stations are separated from one
another. The goal of the problem is to provide continual transport
of supplies between the two stations. The agent’s aim is thusto
continually move from the most-recently visited station (MRV) to
the least-recently visited (LRV) station.2 For docking, the agent
should reach the station, turn around so that he is positioned with
his back to the dock, and back up into the station. If the agent
attempts to move into the station’s dock while facing it (instead of
backing in), a collision occurs.

Figure 2: Shuttle domain environment description. The agent
has 8 potential directed positions.

The domain’sActionsspace is {GoForward, Backup, TurnAround}.
Backup is the only noisy action, with a 70% success rate. TheOb-
servationsspace, {See LRV, See MRV, See docked in MRV, See
docked in LRV, See nothing}, provides the agent with the orien-
tation information relative to the two stations. Note the ambiguity
of theSee nothingobservation obtained in the open space between
the stations—it provides positioning, but not orientationinforma-
tion, and can be received both when the Shuttle is directedtowards
andaway fromthe LRV.

As can be seen from Figure 2, the shortest route from MRV to
LRV, assuming that all actions succeed, consists of five steps: three
Forward actions, followed by theTurnAroundandBackupactions.

Intuitively, these five steps are characterised by the following
rules, which were used to create theideal dynamics matrixfor this
domain:

• If tomorrow you go forward and see the LRV station ahead,

2Of cause, once the LRV is reached it becomes the MRV, which
naturally resets the problem.

then on the day after tomorrow you should TurnAround and
hope to see nothing or the MRV ahead.

• If tomorrow you performed a TurnAround action and see
nothing or the MRV station ahead, then on the day after to-
morrow Backup and hope to see yourself docked in the LRV.

To verify the quality of the action sequence produced by the
EMT-PSR control solution, we have chosen two domain charac-
teristic measurements. The first is the number of steps it takes the
agent to reach the LRV. This enables us to see how close the route
chosen by the agent is to the shortest, five step, route. The second
measure, which appears to be natural for control performance eval-
uation in this domain, is the number of times the agent crashed into
a station compared to the number of times the agent has attempted
to reach the LRV station.

In our experiment set, the agent attempted the MRV-LRV route
100,000 times using the EMT-PSR algorithm, and avoided ever
crashing into either of the stations. The empirical distribution of
the number of actions required to reach LRV from MRV is shown
in Figure 3. In 71% of the attempts the agent reached its target in
five steps, in 20% it took six steps, and so on with exponentialde-
crease. Analysis of the action sequences showed that the agent took
additional actions, beyond the necessary five, only if the conclud-
ing Backupaction failed, and attempted to repeat it. This naturally
resulted in the exponential decay of the number of longer docking
sequences.

The experimental results show that the Docking Domain, al-
though it contains both uncertain actions and sensory aliasing, presents
little challenge to the EMT-PSR control algorithm. We thus pro-
ceeded to domains that supersede the Docking Domain with regard
to the amount of sensory and system noise (uncertain actions) that
they present, seeking the limit of the control algorithm’s resilience.
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Figure 3: Shuttle Domain: Number of steps from MRV to LRV

3.3 The Cheese Maze Domain
In the cheese maze domain [8], the agent is placed on a non-

regular grid (a maze), with one of the cells of the grid marked(i.e.,
containing a chunk of cheese). The agent is allowed to attempt
to move in four directions on the grid, and is tasked to reach the
cheese. Each time the agent reaches its target, it is randomly relo-
cated to another cell of the grid.

Unlike in the Shuttle domain, theActionsspace, {North, South,
East, West}, consists of completely deterministic actions.3 The
3Actions can (deterministically) fail if the agent attemptsto move



(a) Feasible locations (b) Observation pattern

Figure 4: Cheese maze grid environment

only uncertainty comes from the random relocation and sensory
aliasing. The agent’s sensors provide information about the sur-
rounding walls and the presence of the cheese chunk; the resulting
space of seven possibleObservationsis depicted in Figure 4(b).

These rules were used for defining theideal dynamics matrix:

• If tomorrow you go north and reach a corridor going east
(west), then the day after tomorrow you should go east (west)
and hope to see in front of you a corridor going east (west).

• If tomorrow you go east (west) and see that you are in a cor-
ridor going east (west), then on the day after tomorrow you
should go east (west) and hope to see an intersection of east-
west-south directions.

• If tomorrow you go east or west and see an intersection of
east-west-south directions, then on the day after tomorrow
go south and hope to see a corridor leading south.

• If tomorrow you go south and see a corridor going south, then
on the day after tomorrow you should go south and hope to
get the cheese.

To check the quality of the solution, we measured the number of
steps needed for reaching the cheese for each of the possiblestart-
ing positions. After 500,000 iterations4 the number of extra steps
was averaged over all possible starting locations, and the empiri-
cal distribution of extra steps depicted in Figure 5 was obtained.
Once again, the number of extra steps decreases rapidly (at what
appears to be an exponential rate), which seems to imply thatthe
controller quickly recovers from the location ambiguity induced by
the random relocation and the sensory aliasing.

3.4 The 4x3 Maze Domain
The 4x3 maze domain [10] is also a grid world domain where the

agent can move in four directions, with theActionsspace of {North,
South, East, West}. However, in this domain even a feasible action
can fail with some probability. The 4x3 Maze also has two marked
positions: “+” denoting the desired goal, and “-” denoting aplace
to avoid. Every time the agent reaches any marked position, it is
relocated to a random cell of the grid.

While in motion, the agent can perceive the properties of itslo-
cation, i.e., the walls surrounding it and the markers, withtheOb-
servationsset being {Wall to your left, Wall to your right, Walls on
both sides, No walls, “+”, “-”}.

These rules were used for defining theideal dynamics matrix:

• If tomorrow you move in any direction and see walls to your
left and right, then on the day after tomorrow move north and
hope to see a wall to your left.

off the grid, in which case it remains at its old location.
4Similarly to the Shuttle Domain, reaching the target naturally re-
sets the system.
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Figure 5: Cheese Maze: extra steps taken (0 denotes taking the
optimal route)

(a) Positioning Grid (b) Observation Map

Figure 6: 4x3 maze domain environment description. Goals are
reaching the “+” sign and avoiding the “-” sign.

• If tomorrow you move east or north and see no walls, then
on the day after tomorrow go north and hope to see a wall to
your left or go east and hope to see no walls or the “+” sign.

• If tomorrow you move north and see no walls, then on the
day after tomorrow move east and hope to see a “+” sign.

• If tomorrow you perform any action and get observation “-”,
then on the day after tomorrow you should move west and
hope to see a wall to your left.

Notice that the two tasks, reaching the “+” marks, and avoiding
the “-” mark, are not strictly unifiable, and can be in conflict. Merg-
ing them into one singletactical targetmeans that the behavioural
trends have to be balanced at a low level, and their relative weights
depend on the relative numerical values each one of the aboverules
is given in the tactical target.

For this domain we measured two parameters: the number of
steps required beyond traversing the optimal route to the “+” goal
position, and the ratio between the number of times the agentreached
the “+” goal position and the number of times it reached the “-”
avoidance position.

After 500,000 iterations of the problem, with a 90.1% success
rate of reaching the “+” goal position, the empirical frequency of
the number of extra steps taken beyond the optimal route was com-
puted, averaging over all possible starting positions (seeFigure 7).
As with the previous domains involving route traversal, thedelay en
route from starting position to goal position decays exponentially.

In our tests, we used an ideal dynamics matrix that resulted (as
mentioned above) in a 90.1% success rate of reaching the “+” mark.
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Figure 7: 4x3 Maze: Extra steps taken (0 denotes taking the
optimal route)

This was accompanied by a larger divergence from the optimal
route length, compared to previously described domains—41.6%
of the time, the route taken exceeded the optimal route by more
than 5 steps. This trade-off, however, was expected. Since reaching
the “+” mark and avoiding the “-” mark comprise two conflicting
behaviours, it results in a trade-off between the length of the route
to the “+” mark, and the failure rate of reaching the “-” mark.We
conjecture that, since both conflicting behaviours were explicitly
weighed and merged into a single ideal dynamics matrix, the EMT-
PSR algorithm reproduced that trade-off in practise. Additional
experiments with a modified tactical target support this conjecture;
these results are excluded from the paper due to space limitations.

3.5 The Network Domain
In [4], Littman describes a network domain with a controlled

transmission rate that influences the general network utilisation level,
with the seventh and last of the levels being an overload, at which
the network “crashes”. By applying one of the four availableAc-
tions, {unrestricted, steady, restricted, reboot}, the agent modulates
the transmission rate (or the flow) of data through the network and
thus its utilisation level. TheUnrestrictedflow increases the net-
work load, theSteadyflow may both increase or decrease the net-
work load, and theRestrictionof the flow reduces the network load.
If the network crashes, then only theRebootaction can recover it
and reset the system to the first and lowest utilisation level. Since
both low utilisation level and an overload are disadvantageous, the
task of this domain is to keep the network away from both extremes
of the utilisation scale.

The observations available to an agent in this domain are multi-
parametric, or multidimensional. First, the agent may assess if the
network has actually crashed or not, is it “up” or “down”, butthe
assessment is noisy and both values can appear even for medium
network loads. Second, the agent can also assess the satisfaction
of network users: if the network flow is too restricted, or thenet-
work is close to overload, the users are “unhappy”, otherwise they
are “content”. As a result four possibleObservationsare formu-
lated that describe the utilisation of the system: {underused (the
network is “up”, but users are “unhappy”), low-load (“up”, and
“happy”), high-load (“down”, and “happy”), overload (“down” and
“unhappy”, the network has crashed)}.

These rules were used for defining theideal dynamics matrix:

• If tomorrow you perform any action but unrestricted and ob-
serve low-load, then on the day after tomorrow you should

perform steady and hope to observe low-load.

• If tomorrow you perform any action and observe underused,
then on the day after tomorrow you should perform unre-
stricted and hope to see low-load.

• If tomorrow you perform any action and observe high-load,
then on the day after tomorrow you should perform restricted
and hope to see low-load or high-load.

• If tomorrow you perform any action and observe overload,
then on the day after tomorrow you should perform a reboot
and hope to see any other observation.

To test the solution quality for the Network Domain, we mea-
sured the number of times each of the load levels was reached,and
the number of times each one of the actions was taken. The empir-
ical frequencies after 500,000 runs are shown in Figure 8.
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Figure 8: Network Domain: Empirical frequencies

As can be seen in Figure 8(a), the crash level was reached 2% of
the time, and in complete accordance with that the “harsh” reboot
operation was used 2% of the time (as can be seen in Figure 8(b)).
This means that the control algorithm correctly interpreted the sys-
tem model—it identified and consistently utilised the “reboot” ac-
tion as the only action capable of restoring a crashed network.

Though the behaviour rules that define the ideal dynamics target
explicitly require the agent to avoid utilisation level 1 (the lowest),
the empirical results show that level was most frequently visited.
Problem analysis showed that the mathematical model of the utili-
sation level transitions had a strong preference for naturally main-
taining the low utilisation level, once it had been reached.Given
that the utilisation level transitions also have a stochastic nature,
this artificially kept the network at the low utilisation level, despite
the controlling agent’s efforts. The Network Domain is an exam-
ple of a domain possessing strong tendencies towards certain goals
that are derived from the environment’s representation, and not only
from the ideal dynamics matrix created for governing movement.

3.6 The Tiger Domain
In the Tiger Domain, an agent is facing the choice of opening

one of two available doors. Behind one of the doors lurks a hungry
tiger, and the agent would like to avoid such an encounter. The
tiger growls slightly, and hearing the growl may assist the agent in
determining which one of the doors not to open. Unfortunately, the
growl echoes, and the agent may sometimes be misled.
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Figure 9: Tiger Domain: Performance under noise 0-30%.

Unlike the classical modelling of the problem [2], we avoid ex-
plicit labelling of the doors as left and right, and the association of
each door with an “open” action. Instead, we place the agent closer
to one of the doors, and implicitly label them as the door closer to
the agent, and the door further away. The agent can compare the
sound that issues from behind each door by moving from one to the
other, or open the door which at the moment is closest, thus form-
ing the set of availableActions:{Open, Compare}. While compar-
ing the sound coming from the doors, the agent may receive three
possibleObservations:{Louder, Same, Quieter}.Louderindicates
that the sound of the tiger has become stronger when moving closer
to a different door,Sameindicates that the sound remains the same
as before, andQuieterindicates that the sound appears to weaken.

The agent’s observations depend on the system transitions:the
Openaction produces aLouderobservation if the tiger is behind the
opened door, and aQuieterobservation if the tiger remains behind
the closed door. The outcomes of theCompareaction simulate
the misleading echo of a growl that confuses the agent. The action
produces the correct observation of the tiger’s location only 85% of
the time, the rest of the time giving the agent theSameobservation.

In this domain, the ideal dynamics matrix is determined by a sin-
gle rule: if tomorrow you perform an open operation and observe a
louder sound, then on the day after tomorrow you should perform
a compare action and hope to hear a quieter sound.

The algorithm was first run for 100,000 iterations on the domain.
An interesting result was obtained—the agent always succeeded in
opening the correct door without encountering the tiger. The agent
always performed the sequence of operations where he first com-
pared doors, until getting theQuieterobservation, then opened the
door. Taking a closer look at the observability of the domain, it
became obvious that once an informative observation (Louder or
Quieter) was obtained, the domain’s uncertainty was completely
resolved, which means the sequence created by the EMT-PSR al-
gorithm will be optimal. Although the solution to the domainunder
the initial observability assumptions ended up being trivial, it was
still interesting to note that this optimal solution was obtained auto-
matically, through the use of a general purpose control algorithm.

To complicate the domain, additional forms of noise were added
to the observations, with values from 1% to 30%. The meaning
of adding 5% noise, for example, was that now instead of seeing
the proper door 85% of the time, the agent sees the proper door
80% of the time. Then, the algorithm was run 50 times for each

noise level with 1000 problem iterations in each run. The empirical
data of the success level as a function of the noise level is shown in
Figure 9(a). One would expect that the agent’s performance would
gradually decay with the increase in noise level, and it would open
the wrong door more often. Surprisingly, this is not the case. The
ratio between the correct door openings and wrong door openings
spikes and fluctuates (Figure 9(a)), but never decays below 92%.
Figure 9(b) suggests the source of the noise resistance: thenumber
of times the agent actually opened a door, out of the 1000 steps
of each system run, decays—the agent appears to become more
careful, and tends to repeat the comparison of doors, ratherthan
opening one. This link is further supported by the apparent phase
transitions in both ratios between0.10 and0.12 noise values: as
the rate of door openings plummets, the ratio of the correct door
being open recovers to above0.95.

4. REMARK ON DOMAIN MODELLING
When attempting to solve different domains using the EMT-PSR

algorithm, we can identify two classes of domains that differ in the
quality and feasibility of their solution, compared to other domains
we have encountered.

The first group of domains are themulti-dimensional observation
domains, such as the Network Domain [4]. In some control meth-
ods these domains would be divided, and only a subset of them
would be used directly as a source of on-line information forthe
controller, while others would be used to drive the solver ofthe
method. It occurs, for instance, in POMDPs where performance
feedback (reward) and environment observations are treated as two
separate classes of observable quantities, even in domainswhere
the reward is not arbitrary delayed. We find such separation to be,
in a sense, “improper”, and treat all available observable quantities
as a source of information. Thus, the observation space of the PSR
models we have used explicitly includes actions, sensory observa-
tions, and the external performance signal (if one is available).

The second group isdomains containing identical “reset” ac-
tions. When modelling some problems, one may be tempted to use
several “reset” actions, which return the system to the initial knowl-
edge and situation conditions. This can be allowed only if the ac-
tions are provided with some differentiating property withrespect
to obtained observations. Otherwise, we again consider themodel
to be in a sense “improper”; there are several actions that cannot be
distinguished, and which require remodelling of the domain.



5. GUIDELINES FOR CREATING AN
IDEAL DYNAMICS MATRIX

Ideally, we would like to state a set of behavioural rules, encode
them into the ideal dynamics matrix, and run EMT-PSR to obtain
the necessary behaviour. However, there are two issues one has to
consider during the process of behaviour rule encoding:

1. The relative numerical expression each of the behavioural rules
has within the ideal dynamics matrix is important. The ratioof the
numerical expression translates through the EMT-PSR algorithm
into expressiveness of each of the rules in the overall controlled
system behaviour. Since the EMT-PSR uses a logarithmic, rather
than a linear, comparison procedure, in many cases the behaviour
rules’ numerical encodings need to differ by an order of magnitude
in order to express the proper overall mixture of expressiveness.

2. From our series of tests, it appeared that most systems have a
strong tendency towards certain goals. This behaviour was clearly
seen when the ideal dynamics matrix was replaced by a uniform
dynamics matrix. Despite the uniform tactical target, the system
did not perform in a random fashion, but rather moved towards
clear goals that were not present in the dynamics matrix. We re-
fer to this behaviour asnatural system tendencies. This behaviour
results from EMT-PSR choosing future actions based on otherfac-
tors, such as the PSR system’s representationm and M . When
encoding the behavioural rules into the ideal dynamics matrix, the
natural system’s tendencies must be taken into account. In some
domains, this influence is weak compared to the encoded rules,
and can be disregarded. In other domains, the influence is strong
and behavioural rules contradicting the system’s natural tendencies
must also be encoded into the ideal dynamics matrix in order to
obtain clear results. An example of natural system tendencies was
observed in the Network Domain, Section 3.5.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a new instantiation of the DBC

control framework, namely the EMT-PSR algorithm. It has pro-
vided a novel way for planning in PSR-modelled environments
using the concept of anideal dynamics matrix. By combining
the DBC approach and the PSR environment, we have achieved
a tighter relationship between the environment and the controlling
algorithm, since both use only actions and observations.

We have demonstrated the performance and viability of the al-
gorithm on a number of small domains that were represented by
PSR models. Several of the environment models were constructed
by conversion from other modelling techniques using the proce-
dure from [6]. For each of the domains, an ideal dynamics matrix
was constructed based on domain-specific properties of the con-
trol task. These control task properties were first expressed as be-
havioural rules describing the system motion through the next two
steps of development, and then numerically encoded into theideal
dynamics matrix. In all the domains, the algorithm showed good
performance trends.

From the experimental data we obtained, we were able to provide
some insight into the DBC framework’s operation, includingthe
treatment of multi-dimensional observable quantities, and multiple
reset actions during the formal modelling of the domains. Some ex-
periments have suggested that the automated discovery and utilisa-
tion of the intrinsic system dynamic properties can be established,
and it is a part of our future work to do so.

We also plan to explore the possibility of minimising the neces-
sary set of behavioural rules for the construction of the ideal dy-
namics matrix, and to consider the improvement of the algorithm
with respect to multiple behavioural trends along the linesof [14].
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