An Empirical Comparison of Two Agile Projects in the Same Organization

Noura Abbas, Andrew M Gravell, and Gary B Wills

School of Electronics and Computer Science, University of Southampton
Southampton, SO17 1BJ, United Kingdom
[n.abbas, amg, gbw}@ecs.soton.ac.uk

Abstract

The appearance of Agile methods has been the most
noticeable change to software process thinking in the
last fifteen years[6]. Although many papers, articles
and books have been published about these methods,
few empirical studies focus on their impact on software
quality. Therefore, the main goal of this research is to
investigate the quality of Agile projects empirically, in
order to help software development organizations
increase their understanding of Agile methods,
principles and practices. This paper presents a multi-
case study that was conducted using semi-structured
interviews with two project teams that are using Agile
methods within one organization. Our data was
analyzed using the constant comparison method. The
results are presented to illustrate how the teams
adopted Agile methods and a comparison between the
two projects is provided. From this it can be concluded
that both projects were successful with multiple
releases, the quality is generally seem to be as good as
other projects in the same organization, the time
release is reduced, and the differences between the two
projects in terms of communication, the iteration
length and the approach to quality, may result from the
different team sizes.

1. Introduction

Agile methods are gaining interest from both
academia and industry. Researchers expect to see
increasing use of Agile methods for projects such as
financial services, E-commerce, and air traffic control
[4]. Although many papers, article and books have
been published about Agile, empirical studies about
how do organizations adopt Agile methods still
needed. In addition, providing the evidence for what
does and does not work is always needed when a new
methodology is introduced. Most importantly, we need
more studies about the impact of Agile methods on
software quality. Therefore, we decided to empirically

investigate how do organizations adopt Agile methods.
The empirical study descried here is part of bigger
research that aims to investigate the impact of Agile
methods on software quality, in order to give a clear
understanding of the topic, furthermore, to help people
and organizations who work with Agile methods to
produce high quality software. In his paper, we present
a multi-case study where we describe the adoption of
Agile methods is two projects within the same
organization using qualitative research methods. The
presented results are based on data collected from the
15 interviews with two teams. The paper is organized
as the following: we will start with the background of
the research and why such empirical studies are
needed, and we will review the related work and
studies. Then we will describe the nature of the
empirical research and the methodology we used to
collect and analyze the data. Finally we will present
our results for each of the projects and will provide a
comparison. We will conclude with the future work.

2. Background and Motivation

The study of software engineering has always been
complex and difficult. This is mainly because of the
intersection of machine and human capabilities [17].
Therefore, and because software development is a
human-based activity [3] we need to apply empirical
studies in order to understand important problems in
the domain. Organizations need to know what are the
right processes for their business, and what is the right
combination of methods, and they need answers which
are supported with empirical evidence. So now Agile
methods have been around for a while, and they
became very popular in industry, yet we still need to
provide the evidence of how effective these methods
are and what are the best ways to adopt them for
software development.

The term “Agile” refers to a philosophy of software
development [6]. This term was agreed in a big
gathering when seventeen of the proponents of the
“lightweight” approaches came together in a workshop

in early 2001 [9]. Under the umbrella of “Agile” term
sit more specific approaches such as Extreme
Programming (XP), Scrum, Crystal Methods, Adaptive
Software Development (ASD), Dynamic Systems
Development Method (DSDM), Feature-Driven
Development (FDD), and Lean Development.
Although these methods vary in practice, they all share
the same principles and values. Barry Boehm defined
Agile methods as “very lightweight processes that
employ short iteration cycles; actively involve users to
establish, prioritize, and verify requirements; and rely
on tacit knowledge within a team as opposed to
documentation” [4].

Survey results showed that Agile methods are
gaining more interest in industry. A survey conducted
in March 2007 [2] shows that Agile methods are wide
spread within organizations. This found that 69% of
781 respondents worked for organizations currently
using Agile methods. More interestingly many
organizations that have adopted Agile methods have
gone beyond pilot projects [2].

However, in a review and analysis of Agile
software development methods that was conducted in
2002, the reviewers stated that there are not many
experience reports available. In addition, scientific
studies are hard to find [1]. Furthermore, many people
claim that Agile methods are a better way to do
software [5, 8, 12, 14]. However, as far as we know,
there is no strong empirical evidence to support these
claims. Therefore, we decided to investigate Agile
methods, how organizations are using them and their
impact on software quality empirically, in order to
provide the evidence for what does and does not work
as well as when it works in the Agile methods world.

This multi-case study is part of a research that aims
to answer the following research questions:

1. How do organizations adopt Agile methods?

2. What is quality within Agile context?

3. What are the impacts of Agile practices on
software quality?

4. Can Agile methods assure the quality under
time pressure and with unstable requirements?

5. What are the best ways to assure the quality of
Agile projects?

3. Review of Related Work

In this section we will review the empirical studies
that have been conducted about Agile methods, their
practices and principles. We could recognize two kinds
of empirical studies about Agile methods. The first one
discussed the use of an Agile method within an
organization and conclude with success factors, pretty
much similar to our approach in this paper.

The second one is investigating the impact of
different Agile practices on software quality and how
effective they are.

Following the first category we found two empirical
studies about the use of Agile methods were published
in the journal of Empirical software engineering in
2006. The first one discussed the advantages and
difficulties 15 Greek software companies experience
applying extreme programming. The study was
conducted using sample survey techniques with
questionnaires and interviews. The paper concluded
that pair programming and test-driven development
were found to be the most significant success factors in
addition to interactions, communication between
skilled people [18].

The second paper presented a qualitative case study
of two large independent software system projects that
have wused extreme programming for software
development within context of stage-gate project
management models. The study was conducted using
open ended interviews. The paper concluded that it is
possible to integrate XP in a gate model context, and
the success factors are the interfaces towards the agile
subproject and the management attitudes towards the
Agile approach [11].

Another paper with more focus on the human
factor was published in the Agile Development
Conference in 2005. It explored the nature of
interaction between organizational culture and XP
practices via three-based case studies. The paper
findings suggest that XP can thrive in a range of
organizational cultures and that the interaction between
organizational culture and XP can be complex and
subtle with consequences for practice [15].

On the other hand, a number of experiments
investigated the impact of different Agile practices on
software quality, such as a study about test-driven
development where the results from a comparative case
study of three software development projects were
presented. The results showed that the effect of TDD
on program design was not as evident as expected, but
the test coverage was significantly superior to iterative
test-last development [19]. Another study was based on
a post hoc analysis of the results of an IBM team who
has sustained the use of TDD for five years. The study
reported that TDD practice can aid in production of
high quality products[16].

Finally a replicate empirical comparison between
pair development and software development with
inspection using two classroom experiments and one
industry experiment reported that in the classroom
experiments, the pair development group had less
average development effort than the inspection group
with the same or higher level of quality. In the

industrial experiment the pair development had a bit
more effort but fewer major defects [13].

4. The Study

Understanding a discipline demands observation,
model building and experimentation. When studying a
human-based activity such as software development,
our research must deal with the study of human
activities [3], preferably, within a real world settings.
Qualitative methods are designed to study the
complexities of human behaviors [17]. Qualitative data
are represented as words and pictures, not numbers.
Qualitative research is mainly useful when no well
known theories or hypothesis have previously put forth
in an area of study. As this is the case for the adoption
of Agile methods and their impact on quality, and
because the big goal of this multi-case study is to
generate hypothesis that can be tested in future stages
of the research, we conducted our case studies using
qualitative methods, mainly semi-structured interviews
[20]. Interviewing people provides insights into their
work, their opinions and thoughts [10]. The reported
results in this paper are based on interviews with 2
teams used Agile methods within the same
organization. We conducted 10 interviews with 8
subjects, 5 interviews with each team. Each interview
lasted, on average, 1 hour with two researchers
interviewing one subject. At this stage of the research,
the main purpose of these interviews is to understand
how organizations adopt Agile methods and what is
their approach to quality.

4.1. Data Collection

The interviews were conducted from January to
November 2007. We accomplished 10 interviews in
total. The interviews were conducted with members
from a large organization working on two different
projects. For each project we interviewed a project
manager, an architect, a developer, and a tester. In
addition, we interviewed the project manager twice;
the first time was in early stage of the project and the
second was in later stage. The main purpose of the
multi-case study is have a deep understanding of Agile
adoption within one organization that have different
projects and approaches to software development, and
to measure the quality and compare it with projects that
used more traditional methods within the same
company.

We used semi-structured interviews for all our
subjects. We had two sets of questions, the first was
about general Agile projects experience: number of
projects, size of projects, working with Agile vs.

traditional approaches if any exist, and how they rate
the quality of an Agile project in terms of code quality
and user satisfaction. The second set was about their
experience in the current project: communication
within the team, with customers, iteration and
incremental development, and how satisfied they are
with the whole process.

In each interview two researchers were present, and
both took notes. In the same day of the interview the
notes were reviewed and written up. Having two
researchers talking notes was used in a study of COTS
integration within NASA [17]. We tried audio taping
couple of times; however transcription the recordings
was time consuming and very expensive and the level
of details we have got was more than what needed.
Therefore we decided to use note-taking by both
researchers which was successful in getting the
required level of detail with an acceptable level of
accuracy.

4.2. Data Analysis

As mentioned in the previous section the field notes
were written up and reviewed. Each interview
produced, on average, 8 pages (A4 size). In order to
analyze our interviews we used the constant
comparison method described by Glaser and Strauss
[7]. In addition, we were influenced by the guidance
from Carolyn Seaman to use this method for software
engineering empirical research [17]. In this method we
start with coding the field notes which means attaching
labels to pieces of text which is relevant to a particular
theme or a topic. We generated our list of code while
we were reading through the data, with a big influence
of the research questions. As a result we got a list of
categories and sub codes (see Appendix A).

The next step was to group the passages of text into
patterns and themes according to these codes. We did
not cut and paste paragraphs or sentences as we did not
want to lose the context of the data, instead we used
MS Word find feature to trace each code. After that
field memos were written to record our observations
from the coded data. These field memos are the base
for the results presented in the next section, and it will
articulate a preliminary hypothesis to be considered in
the next stage of the research.

Our results will describe each project in detail, and
will discuss the main emerged themes from the coding.
These themes are: the team, Agile adoption (iterative
and incremental development, Agile practices,
communication, and customer), quality issues and
traditional software engineering (requirements,
documentation, and testing).

5. Project A

Project A started in January 2007, with 2 week
iteration and a high level of agility. We conducted our
interviews between March and June 2007. The first
release was due to be released after iteration 13 (6
month after the project started).

5.1. The Team

Project A has a team of 16 people (In both projects
the team size varied over time, and the number
reported here is the size at the time we interviewed the
project manager for the first time), of which 12 are on-
site and 4 off-site. The 12 people are mostly
developers, 1 architect and 1 development manager
with two sub-teams each with a lead who rotates. The
testing team is off-site with a test lead on site.

The team was put together before deciding on using
Agile methods. The criteria of choosing the team
members was mainly the ability to deliver and work in
a team, self-directed people, with high level of
communication and language skills which according to
the project manager are the essential skills for any
project.

The team is seated in an open plan area consists of 3
bays of 4 people each. The project manager sits in one
of these bays. The layout seems to work quite well,
however they can’t have a white board because of
security reasons as they are sharing the area with other
teams. This affects the communication as well as they
have to respect other teams who use different kind of
methods that does not involve high Ilevel of
communication/interaction between the team members.

In general the team is happy, motivated and hard
working. One comment was: “Shared view and
ownership - yes this is good”

5.2. Agile Adoption

5.2.1. Iterative and Incremental Development. In
project A the iterative and incremental approach which
is the heart of Agile methods was in use. The team
used 2 weeks iterations. At the beginning of each
iteration they decide what to do. Each Iteration begins
with a list of priorities (tasks). The first iteration was
planned in details, next iteration in some detail, the
others in less details (3 bullet points). They used Agile
modeling on whiteboard, discussions, refine and tune
the plan for the next iteration. Although the small lead
team is doing the design, the whole team should
understand the architecture, therefore it is reviewed by
the team and continuously improved over the
iterations. Decisions to drop line items are not very

strict or formal; they may roll over to next iteration or
reword it to close it off, although in the future they are
planning to be stricter.

An interesting practice was to have an iteration for
stabilization and consolidation and to improve code
quality. At the time of the interviews the project was in
iteration 13, and 3 iterations were devoted to this
purpose. These tidy-up-iteration help to pace the work
and they allow some breathing space for the team.

A team member emphasized that Agile and iterative
development gives less illusion of control but we get
more control in reality.

5.2.2. Agile Practices. Test-driven development was in
use and it worked well for simple tasks. However, it
has been helpful to have specialist testers as well as
developers in the team, who have the skills to oversee
all testing. Also, they used Pair programming for new
team members to help integrate them in the team.

The stand up Scrum meeting was used and the team
was happy about it, it helped having the shared
technical understanding.

The shared understanding was present during the
interviews. All team members were able to describe the
process and they mostly agreed. The whole team
understands what every one is going to do; also they
should be able to present the overall picture
themselves. It have been presented twice so far, and
they would like to do this more often. The management
goal is that everybody should be able to deliver the
presentation.

5.2.3. Communication. Communication within Agile
teams plays an important role. In project A the team
used different ways of communication such as
meetings, whiteboards, wikis, presentations, and chalk
and talk sessions.

The team has two meetings for the iteration
preparation. One for the team lead only in order to
produce a straw man list of items. This list is discussed
and refined in the first day of the iteration with the
whole team, and the tasks are allocated to developers.
In this meeting they go over the status of the previous
iteration and say “well done”, go through each goal
and who is responsible, and schedule design sessions.
During the iteration, the team has daily stand up Scrum
meeting for 15 minutes. In this meeting everybody
says a couple of sentences to describe what they are
doing at the moment, this may lead to further
communication. In addition, they have a weekly
meeting for one hour for the whole team. This meeting
is a good opportunity for feedback and discuss on
technical issues. The senior team meets three times a
week for half an hour to discuss planning issues,
feedback from customer and bug lists. The off-site test

team meets once a week for half an hour through a
formal phone call to agree responsibilities. In addition,
a test meeting will take place on the day before the
iteration planning meeting. Also, they have a weekly
chalk and talk session; originally it was for learning
purposes, now explaining key areas, such as how to
construct trace point and exceptions. The white boards
are used to record the task lists, progress of the current
release and to tick the completed tasks.

5.2.4. Customer. Project A has internal customers.
Developers expressed that response to customer
requests is very good with Agile project; however it
depends on a good customer as in some cases where
you need an effort to obtain some feedback. The
customer provides priorities weekly by phone calls on
the day just before the iteration planning meeting. As
expected, the customer’s demands and requests
increase throughout the project. In this project they had
2 weeks internal delivery at the end of the iteration,
and it was always on time. In later stages the deliveries
will be available on demands. The first external release
will be after 6 month from the start of the project.

5.3. Quality Issues

Assigning one iteration to improve the quality of the
code is an effective practice; in addition they are using
code reviews. Small number of defects was reported so
far, some are missing features, and the others are
reported by internal customers. The focus was on the
good-enough factor which is the right thing at the time
based on current knowledge.

The team put a lot of effort on fixing bugs;
sometimes it took priority over agreed goals.

5.4. Traditional Software Engineering

Although the development method was very agile in
project A, we thought that it will be interesting to
discuss how the traditional aspects of software
engineering were integrated within the Agile project.
We will discuss requirements, documentation and
testing.

5.4.1. Requirements. Risk was used to priorities the
requirements. Actually some simple ones were picked
first to show progress, as well as the most risky ones
(to reduce risk). As we mentioned in the
communication section a meeting is held at the
beginning of the iteration in order to select the line
items, priorities them and assign them to people.

After the first two months the customers become
more forceful and they start asking for more features.

Team members are expecting to have firmer
requirements in the future.

5.4.2. Documentation. The team keeps a history of the
development (change logs, wikis, etc.) but no “static”
documents. Though with traditional approaches, the
documentation can easily get out of date too. The
architecture is documented as power point slides,
basically UML diagrams, and some text (bullet points).
It is about 30 slides, 90% are diagrams. They are using
class diagrams, package diagrams, and sequence
diagram. In addition, they use Java doc, they have up
to date list of features for users (what is available and
how to use it), also they use coding standards and
design patterns. The off-site test team wrote a formal
document for test case writing guidelines. They
experimented with taking photos of the whiteboards as
well. At the end of each iteration the project manager
will write a report to the senior management.

5.4.3. Testing. As motioned in Agile practices section
test driven development was used by developers to test
their own code. Probably all developers write test first
and then try it, all should pass. Testers write functional
tests and the project manager review them.

The tests team is trying to keep ahead of the
developers so they can run the tests when writing the
code. When the requirements are met, the test suite is
enabled. Builds picks up test suits and produces the
report to show status of each function, if any test fails
the build fails. When the build is broken it should be
fixed in around 30 minutes. The first attempt will be by
the person who last checked in the code.

6. Project B

Project B started in October 2005. The interviews
were held between January and November 2007. The
First release was out after 10 months (Sep 2006),
quicker that other products within the organization (the
average is 18 months). The second release was out in
May 2007. When the last interview was conducted the
team was preparing for the third release.

6.1. The Team

Project B has a bigger team of 55 in total, of which
17 developers increased to 24, 20 testers, 2 architect, 2
project managers and 7 off-site. The team is divided
into three smaller teams, each working in one area.

Regarding people experience, developers stated that
iterative development requires experienced people,
who are open to change, and with communication

skills. One interviewee commented “It will not work
for people who need to be told what to do”.

All team members are located in the same area,
though it is not an open plan area but small offices
where testers and developers often share the same
office.

The team expressed personal satisfaction with the
new way of working; however the high pressure might
cause some conflicts. Developers don’t get bored with
Agile because of the constant changing which
encourages them to be creative. In each iteration they
had new code to write and some to maintain. Mostly
the team was satisfied with the new approach as they
had more input to the design and more influence to the
architecture, besides they are having more fun. Another
important point is that they can see the customer using
their product quicker than before. In other words they
can see the value of their work. This satisfaction was
expressed in comments like “The team is like a

9 ¢ EEENT3]

democracy”, “current project has more interaction”, “in
the waterfall days we didn’t talk to anybody”, “In agile
5 minutes discussion can solve the problem”. On the
other hand some interviewee had concerns about things

going very fast, and the time pressure.

6.2. Agile Adoption

6.2.1. Iterative and Incremental Development. In
Project B the team used four weeks iteration. In each
iteration the team has some code to write and some to
maintain, the process has developed over the iterations.
Every iteration has to deliver something new

As mentioned before each iteration will last four
weeks. However, in reality up to two weeks are added
for testing and correcting the code. At the same time
the next iteration will start so the two iterations will
overlap. At the end of week four the next iteration will
start and a code cut off will occur in the current
iteration which will enter the fifth week where the
testers will start testing the code. This means that the
developers will be under pressure in the first week or
two of each iteration, because they may have to start
the next iteration while correcting the code from the
previous one. In the first week of the iteration they will
determine functionality (agree the design and the
scope). Test cases and code were written in parallel
(the developers wrote some unit testing) so that tests
were written first. The second and third weeks are for
developing. The last week is for testing — usually this
week overlapped with week one (and sometimes week
two) of the next iteration. During this time testers test
stable code and developers stabilize code and plan for
next iteration.

The first release was after 9 iterations. The team had
a tidy up iteration after the first release, mainly for re-
factoring. They had another tidy up iteration just before
the second release. An interesting idea that the team is
trying to have an iteration and release focus, which
means working in themes, for example in the first
release the focus was on functionality, the second on
robustness. The same with iterations, in the tidy up
iteration the focus is on refactoring or improving one
aspect of software quality such as maintainability,
extensibility or scalability.

6.2.2. Agile Practices. Refactoring was the main
theme for the tidy up iterations. The team thought that
it worked quite well. They didn’t do a lot of pair
programming, some at the beginning of each iteration.
Similar to project A the shared understanding was clear
during the interviews as expressed the ability to
describe the process of working; also they had the
same overview picture. An interviewee pointed out that
this was very important “If everyone understands what
is going on, this is what really matters”.

When asking about code ownership, the answer was
that it was ok to change other people code, even testers
and developers can change (people are comfortable
about it). The same applies to line items were anyone
in the team can open one at any time and they can
make changes.

6.2.3. Communication. The iteration starts with 2
hours meeting for the whole team. After this meeting
each development team leader will have a meeting
with his or her team on the same day to make sure that
they understand everything and to see if they have any
questions. On the second day of the iteration the
project manager and the development team lead and
the architects will meet for 2 hours. In the third day the
project manager will meet with the architecture to
agree the feature list and who’s doing what. During the
iteration there will be a daily walk in the area and a
meeting with the architects. The project manager and
the architects will meet weekly to discuss architecture
reports. The architects and project manager will meet
every day for an hour to focus on the external view and
to decide on high level priorities. The triage meetings
(with architects, testers, developers and service
representative) will be held to decide what should be
fixed and which to be deferred to the next iteration or
the next release, also the architects have a daily
meeting for an hour.

6.2.4. Customer. Because of legal issues the first
delivery was after iteration 6, after that they deliver
after each iteration. With each delivery, the customer is
expecting something they can use. So it is important to

understand how the customer is going to use the
capabilities they provide. The customer can install, use
the product and send feedback or queries or even
suggestions. Requirements can be changed always on
customer requests. In case of requests conflicts they
will follow the majority. There is an external news
group to add comments and questions, this group can
be shown by all customers.

6.3. Quality Issues

In project B the project manager stated that testing
in the main factor to assure the quality of the product.
One developer stated that he/she thinks that the quality
is slightly less, another two stated that it is no worse
than in other products. In this project they didn’t use
code reviews, but developers expressed that they
would like to do code reviews as they have used them
before and they were effective. An interesting
comment from a tester was that although the number of
reported bugs is bigger in Agile projects however they
are minor and easier to fix than what they used to have
in more traditional projects.

As in project A, the idea is to provide what is
needed from the customer point of view. Team
members stated that the project is a great success as all
releases are on time so far, the defect rate is very low
comparing to other products within the organization
and the customers are satisfied.

The team gave a lot of time and effort on reviewing
new defects and setting priorities. Although defect rate
is one important aspect of quality, measuring customer
satisfaction is another important aspect. Therefore,
they measures user satisfaction through talking to
customers and collecting feedback from them, as well
as having measures for the number of reported
problems.

6.4. Traditional Software Engineering

As we did in project A, we thought that it will be
interesting to discuss how the traditional aspects of
software engineering were integrated within the Agile
project. We will discuss requirements, documentation
and testing.

6.4.1. Requirements. The project manager stated that
initially they were prepared to be flexible with
requirements. They commit to some requirements,
might do other stuff, can always change as a result of
customer requirements or for sales people. He pointed
out that requirements management in Agile is very
critical, in order to decide what is important at the
time. Requirements’ prioritizing happens during the

management daily meeting where they focus on
external view and select customer requests.

6.4.2. Documentation. Team B did not have much
design documents; however the architects provide
weekly reports and power points to document the
architecture. They produce good customer
documentation, range of approaches are in use
including Java doc.

6.4.3. Testing. The project manager indicated that the
success factor in the project is the automated tests. All
automated tests are executed overnight. As mentioned
before, at the end of week four the next iteration will
start and a code cut off will occur in the current
iteration which will enter the fifth week where the
testers will start testing the code. So, the testers are
writing code to test the code written by the developers
and most developers are writing unit tests. Test cases
and code were written in parallel.

Test team structure mirrored the development team
division. Testers attended design and brainstorming
sessions to understand the design and to suggest
testability improvements. For critical problems testers
will go to talk with development team.

7. Comparison

A multi-case study with two projects of different
sizes and domains within the same organization is
quite interesting. In this section we will compare the
two projects. We will discuss how the different
variables affected each other for each project.

Table 1 summarizes the main themes for each
project. The most interesting fact is the team size. We
argue that the team size affected the level of
communication in the team. For example in team A we
can see more channels of communication within the
team. In addition the whole team is involved in most of
the meeting and this is understandable for a team of 12
(on-site).

On the other hand, with 55 people, team B has more
meetings that involve high level of leadership (project
managers, architect and teams lead); however, this
doesn’t affect the shared understanding and the
ownership within the team.

In both projects we can see a good amount of
documentation, however similar to communication, in
project A we can see more documents than in project
B. Probably it will be expected to be the opposite, as
more documentation is needed in a larger project
where communication between team members will be
more difficult.

Testers: test suites

Theme Project A Project B
. Team size 16 55
;.3 Team Distribution 12 on-site, 4 off-site 48 on-site, 7 off-site
é Seating Plan Open plan Conventional office space
Team Satisfaction Satisfied Satisfied
IID Used Used
E Iteration Length 2 weeks 4 weeks
g
S
< | Tidy-up-Iteration 3 times over 13 iterations Once every release (every 6 months average)
D
81
< Scrum meeting Refactorin
Agile Practices Test-driven development Shared un dgerstan dine and ownershi
Shared understanding and ownership g P
Meetings
Whiteboard .
Communication Wikis Meetings
. Walking though offices
Presentations
Chalk and talk
Internal customers External customer
+ | Customer Delivery . . . Delivery after each iteration
aé Delivery after each iteration
(=} B T . N N
*%' Feedback Prioritize requirements through Feedback through emails
&) phone calls forums
Satisfaction Satisfied Satisfied
. High communication skills High communication skills
>
-% el @G Self-oriented Self-oriented
s -
< | Quality of Code Low defect rates LMolilvocrie?focetzt:ate
b Initial item list
=] c Start with simple ones Can always change to response to customer
‘= | Requirements L .
g Becoming firmer over time requests
&
g Change log, wikis
& Presentation for architecture (UML
s diagrams) Architecture reports
§ . Java doc, lists of features, design Customer documents
= | Documentation
R patterns Java doc
Té Test cases guidelines
° Reports to senior managements at the
5 end of the iteration
< 3 — -
E | Tes ting Developers: TDD Developers: unit testing

Testers: test cases

Table 1. Comparison between Project A and Project B

Interestingly the team size didn’t affect the quality
of the code or customer satisfaction. It only affected
the communication within the team. The same apply
for the seating plan; the first team had an open plan
area where the other team is seated in offices.

A question arises here, is the level of
communication between the team members
independent of the quality including the process and
product quality and customer satisfaction.

The other variable is the iteration length, for the
first team it is 2 weeks where it is 4 weeks for the
second team with up to 2 weeks of overlap. The
question here is do we need longer iterations for bigger
teams?

The final point is that project B has more developed
approach to quality. Quality measures were in place for
release 3, this includes defects rates, test coverage and
user satisfaction measures. We do not know if this is
because of the size or because the project age is longer
than project A.

8. Validity

The presented study was conducted within one
organization only. So it could be generalized to cover
other projects within the same organization or to
similar organizations. However in order to generalize
the results on other organizations we need to expand
our study to include projects from different companies.
On the other hand the study was done with real
software development on two projects of a significant
size and duration.

Regarding the validly of the collected data, we did 5
interviews with each team and the participants mostly
agreed with each other. In addition we had two
researchers taking notes which gave our data higher
level of quality and accuracy. However we had only
one coder during the analyzing phase of the study.

9. Conclusion and Future Work

In this paper we presented the results of an
empirical study that was conducted using semi-
structured interviews with two project teams that are
using Agile methods within one organization. Our data
was analyzed using the constant comparison method.
The results were presented to illustrate how the teams
adopted Agile methods, the team organization, the
approach to quality, the communication within the
team and the relation with the customer. In addition we
provided a comparison between the two projects.

Although the two projects were of different sizes
(16 vs 55), the level of quality was not different.
However we argue that the size may affect the level of
communication and the iteration length and the
approach to quality.

From this it can be concluded that both projects
were successful with multiple releases, the quality is
generally seem to be as good as other projects in the
same organization, the time release is reduced.

The future work will be to conduct more interviews
with different organizations in order to generalize our
results and to focus more on the quality. In addition
the collected data will be used to generate hypothesis
that can be tested in next stage of the research using the
quality measures provided by the organization. If the
data are available, we will compare these measures
with ones from more traditional projects within the
same organization.

10. Acknowledgement

We would like to thank all participants for their
time and valuable input. At the time of writing this
paper we are waiting for the organization permission to
mention the name and more details about the
organization. We hope that at the time of the camera
ready version we will get this permission.

11. References

[1] Abrahamsson, P., O. Solo, J. Ronkainen, and J. Warsta,
Agile Software Development Methods. 2002, VTT
technical Research Centre of Finland.

[2] Ambler, S., Agile Adoption Rate Survey. 2007,
www.ambysoft.com.

[3] Basili, V.R. and M.V. Zelkowitz, Empirical studies
to build a science of computer science. 2007. 50(11): p. 33-
37.

[4] Boehm, B. and R. Turner, Balancing Agility and
Discipline: A Guide for the Perplexed. 2003: Addison-
Wesley Longman Publishing Co., Inc. 304.

[5] Cockburn, A. and J. Highsmith, Agile Software
Development: The Business of Innovation. Computer, 2001.
34(9): p. 120-127.

[6] Fowler, M., The New Methodology. 2005,
www.martinfowler.com.

[7] Glaser, B.G. and A. Strauss, The Discovery of
Grounded Theory: Strategies for Qualitative Research. 1967:
Aldine Transaction

[8] Highsmith, J., Agile Software Development
Ecosystems. 2002: Addison-Wesley Longman Publishing
Co., Inc. 404.

[9] Highsmith, J., k. Beck, A. Cockburn, and R.
Jeffries. Agile Manifesto. 2001 [cited; Available from:

www.agilemanifesto.org.

[10] Hove, S.E. and B. Anda, Experiences from
Conducting Semi-structured Interviews in Empirical
Software Engineering Research, in Proceedings of the 11th
IEEE International Software Metrics Symposium
(METRICS'05) - Volume 00. 2005, IEEE

Computer Society.

[11] Karlstr, D. and P. Runeson, Integrating agile

software development into stage-gate managed product
development. Empirical Software Engineering, 2006. 11(2):
p. 203-225.

[12] Larman, C., Agile and Iterative Development: A
Manager's Guide, C. Alistair and H. Jim, Editors. 2004,
Pearson Education, Inc.

[13] Phongpaibul, M. and B. Boehm, A Replicate

Empirical Comparison between Pair Development and
Software Development with Inspection, in First International
Symposium on Empirical Software Engineering

and Measurement. 2007: Madrid, Spain.

[14] Poppendieck, M. and T. Poppendieck, Lean
Software Development: An Agile Toolkit. 2003:

Addison-Wesley Longman Publishing Co., Inc. 240.

[15] Robinson, H. and H. Sharp, Organizational culture
and XP: three case studies, in Agile Development
Conference. 2005, IEEE Computer Society.

[16] Sanchez, J.C., L. Williams, and E.M. Maximilien,

On the Sustained Use of a Test-Driven Development Practice
at IBM, in Proceedings of the AGILE 2007 (AGILE 2007) -
Volume 00. 2007, IEEE Computer Society.

[17] Seaman, C.B., Qualitative methods in empirical
studies of software engineering. IEEE Transactions on
Software Engineering, 1999. 25(4): p. 557-572.

[18] Sfetsos, P., L. Angelis, and I. Stamelos,
Investigating the extreme programming system---An
empirical study. Empirical Software Engineering, 2006.
11(2): p. 269-301.

[19] Siniaalto, M. and P. Abrahamsson, A Comparative
Case Study on the Impact of Test-Driven Development on
Program Design and Test Coverage, in International
Symposium on Empirical Software Engineering and
Measurement. 2007.

[20] Wohlin, C., P. Runeson, M. Host, M.C. Ohlsson,
B. Regnell, and A. Wessl, Experimentation in Software
Engineering: an introduction. 2000: Kluwer Academic
Publishers. 204.

Appendix A - List of Codes

Agile Adoption
AA-CT Communication within the team
AA-CC Communication with the customer
AA-DC Delivery to the customer
AA-OST Off-site teams
AA-DTS Developing team skills
AA-MET Meetings
AA-PLN Iteration planning
AA-GOOD What is good about agile
AA-BAD What is bad about agile
AA-CUL Culture issues
AA-PRO Process
AA-SU Share understanding
AA-OWN Ownership
AA-BV Business value
TI-UP-IT Tidy up iteration

Agile Practices
AP-TDD Test driven development
AP-PP Pair programming
AP-1ID Iterative and incremental development
AP-XP Extreme programming
AP-SCR Scrum meeting
AP-CI Refactoring
AP-CRC CRC cards

Quality
Q-CODE Quality of the code
Q-PPL Quality of the people
Q-T Relation between quality and the time
Q-DEF Defects
Q-CS Customer satisfaction
Q-MEG Quality measures
G-EN The Good Enough
P-SUCS Project Success
M-SUCS Measure of success
Software Engineering

CR Code review
REQ Requirements
DOC Documentation
TEST Testing
ARCH Architecture
BUG-R Bugs removal
PP Project progress
P-REQ Prioritising requirements
LI Line items
AT Automated testing

People Issues

Ol Organizational team

DT Development team
DT-SKILLS Development team skills
DT-ORG Development team organization
SP Seating plan

ROLES Roles

R-T-D Relation between test team and development team
MT Moral of the team

S-O-T Size of the team

TT Test team

TT-ORG Test team organization
TT-SKILLS Test team skills

TS

Team satisfaction

