
An Empirical Comparison of Two Agile Projects in the Same Organization

Noura Abbas, Andrew M Gravell, and Gary B Wills

School of Electronics and Computer Science, University of Southampton

Southampton, SO17 1BJ, United Kingdom

{n.abbas, amg, gbw}@ecs.soton.ac.uk

Abstract

The appearance of Agile methods has been the most

noticeable change to software process thinking in the

last fifteen years[6]. Although many papers, articles

and books have been published about these methods,

few empirical studies focus on their impact on software

quality. Therefore, the main goal of this research is to

investigate the quality of Agile projects empirically, in

order to help software development organizations

increase their understanding of Agile methods,

principles and practices. This paper presents a multi-

case study that was conducted using semi-structured

interviews with two project teams that are using Agile

methods within one organization. Our data was

analyzed using the constant comparison method. The

results are presented to illustrate how the teams

adopted Agile methods and a comparison between the

two projects is provided. From this it can be concluded

that both projects were successful with multiple

releases, the quality is generally seem to be as good as

other projects in the same organization, the time

release is reduced, and the differences between the two

projects in terms of communication, the iteration

length and the approach to quality, may result from the

different team sizes.

1. Introduction

Agile methods are gaining interest from both

academia and industry. Researchers expect to see

increasing use of Agile methods for projects such as

financial services, E-commerce, and air traffic control

[4]. Although many papers, article and books have

been published about Agile, empirical studies about

how do organizations adopt Agile methods still

needed. In addition, providing the evidence for what

does and does not work is always needed when a new

methodology is introduced. Most importantly, we need

more studies about the impact of Agile methods on

software quality. Therefore, we decided to empirically

investigate how do organizations adopt Agile methods.

The empirical study descried here is part of bigger

research that aims to investigate the impact of Agile

methods on software quality, in order to give a clear

understanding of the topic, furthermore, to help people

and organizations who work with Agile methods to

produce high quality software. In his paper, we present

a multi-case study where we describe the adoption of

Agile methods is two projects within the same

organization using qualitative research methods. The

presented results are based on data collected from the

15 interviews with two teams. The paper is organized

as the following: we will start with the background of

the research and why such empirical studies are

needed, and we will review the related work and

studies. Then we will describe the nature of the

empirical research and the methodology we used to

collect and analyze the data. Finally we will present

our results for each of the projects and will provide a

comparison. We will conclude with the future work.

2. Background and Motivation

The study of software engineering has always been

complex and difficult. This is mainly because of the

intersection of machine and human capabilities [17].

Therefore, and because software development is a

human-based activity [3] we need to apply empirical

studies in order to understand important problems in

the domain. Organizations need to know what are the

right processes for their business, and what is the right

combination of methods, and they need answers which

are supported with empirical evidence. So now Agile

methods have been around for a while, and they

became very popular in industry, yet we still need to

provide the evidence of how effective these methods

are and what are the best ways to adopt them for

software development.

The term “Agile” refers to a philosophy of software

development [6]. This term was agreed in a big

gathering when seventeen of the proponents of the

“lightweight” approaches came together in a workshop

in early 2001 [9]. Under the umbrella of “Agile” term

sit more specific approaches such as Extreme

Programming (XP), Scrum, Crystal Methods, Adaptive

Software Development (ASD), Dynamic Systems

Development Method (DSDM), Feature-Driven

Development (FDD), and Lean Development.

Although these methods vary in practice, they all share

the same principles and values. Barry Boehm defined

Agile methods as “very lightweight processes that

employ short iteration cycles; actively involve users to

establish, prioritize, and verify requirements; and rely

on tacit knowledge within a team as opposed to

documentation” [4].

Survey results showed that Agile methods are

gaining more interest in industry. A survey conducted

in March 2007 [2] shows that Agile methods are wide

spread within organizations. This found that 69% of

781 respondents worked for organizations currently

using Agile methods. More interestingly many

organizations that have adopted Agile methods have

gone beyond pilot projects [2].

However, in a review and analysis of Agile

software development methods that was conducted in

2002, the reviewers stated that there are not many

experience reports available. In addition, scientific

studies are hard to find [1]. Furthermore, many people

claim that Agile methods are a better way to do

software [5, 8, 12, 14]. However, as far as we know,

there is no strong empirical evidence to support these

claims. Therefore, we decided to investigate Agile

methods, how organizations are using them and their

impact on software quality empirically, in order to

provide the evidence for what does and does not work

as well as when it works in the Agile methods world.

This multi-case study is part of a research that aims

to answer the following research questions:

1. How do organizations adopt Agile methods?

2. What is quality within Agile context?

3. What are the impacts of Agile practices on

software quality?

4. Can Agile methods assure the quality under

time pressure and with unstable requirements?

5. What are the best ways to assure the quality of

Agile projects?

3. Review of Related Work

In this section we will review the empirical studies

that have been conducted about Agile methods, their

practices and principles. We could recognize two kinds

of empirical studies about Agile methods. The first one

discussed the use of an Agile method within an

organization and conclude with success factors, pretty

much similar to our approach in this paper.

The second one is investigating the impact of

different Agile practices on software quality and how

effective they are.

Following the first category we found two empirical

studies about the use of Agile methods were published

in the journal of Empirical software engineering in

2006. The first one discussed the advantages and

difficulties 15 Greek software companies experience

applying extreme programming. The study was

conducted using sample survey techniques with

questionnaires and interviews. The paper concluded

that pair programming and test-driven development

were found to be the most significant success factors in

addition to interactions, communication between

skilled people [18].

The second paper presented a qualitative case study

of two large independent software system projects that

have used extreme programming for software

development within context of stage-gate project

management models. The study was conducted using

open ended interviews. The paper concluded that it is

possible to integrate XP in a gate model context, and

the success factors are the interfaces towards the agile

subproject and the management attitudes towards the

Agile approach [11].

 Another paper with more focus on the human

factor was published in the Agile Development

Conference in 2005. It explored the nature of

interaction between organizational culture and XP

practices via three-based case studies. The paper

findings suggest that XP can thrive in a range of

organizational cultures and that the interaction between

organizational culture and XP can be complex and

subtle with consequences for practice [15].

On the other hand, a number of experiments

investigated the impact of different Agile practices on

software quality, such as a study about test-driven

development where the results from a comparative case

study of three software development projects were

presented. The results showed that the effect of TDD

on program design was not as evident as expected, but

the test coverage was significantly superior to iterative

test-last development [19]. Another study was based on

a post hoc analysis of the results of an IBM team who

has sustained the use of TDD for five years. The study

reported that TDD practice can aid in production of

high quality products[16].

Finally a replicate empirical comparison between

pair development and software development with

inspection using two classroom experiments and one

industry experiment reported that in the classroom

experiments, the pair development group had less

average development effort than the inspection group

with the same or higher level of quality. In the

industrial experiment the pair development had a bit

more effort but fewer major defects [13].

4. The Study

Understanding a discipline demands observation,

model building and experimentation. When studying a

human-based activity such as software development,

our research must deal with the study of human

activities [3], preferably, within a real world settings.

Qualitative methods are designed to study the

complexities of human behaviors [17]. Qualitative data

are represented as words and pictures, not numbers.

Qualitative research is mainly useful when no well

known theories or hypothesis have previously put forth

in an area of study. As this is the case for the adoption

of Agile methods and their impact on quality, and

because the big goal of this multi-case study is to

generate hypothesis that can be tested in future stages

of the research, we conducted our case studies using

qualitative methods, mainly semi-structured interviews

[20]. Interviewing people provides insights into their

work, their opinions and thoughts [10]. The reported

results in this paper are based on interviews with 2

teams used Agile methods within the same

organization. We conducted 10 interviews with 8

subjects, 5 interviews with each team. Each interview

lasted, on average, 1 hour with two researchers

interviewing one subject. At this stage of the research,

the main purpose of these interviews is to understand

how organizations adopt Agile methods and what is

their approach to quality.

4.1. Data Collection

The interviews were conducted from January to

November 2007. We accomplished 10 interviews in

total. The interviews were conducted with members

from a large organization working on two different

projects. For each project we interviewed a project

manager, an architect, a developer, and a tester. In

addition, we interviewed the project manager twice;

the first time was in early stage of the project and the

second was in later stage. The main purpose of the

multi-case study is have a deep understanding of Agile

adoption within one organization that have different

projects and approaches to software development, and

to measure the quality and compare it with projects that

used more traditional methods within the same

company.

We used semi-structured interviews for all our

subjects. We had two sets of questions, the first was

about general Agile projects experience: number of

projects, size of projects, working with Agile vs.

traditional approaches if any exist, and how they rate

the quality of an Agile project in terms of code quality

and user satisfaction. The second set was about their

experience in the current project: communication

within the team, with customers, iteration and

incremental development, and how satisfied they are

with the whole process.

In each interview two researchers were present, and

both took notes. In the same day of the interview the

notes were reviewed and written up. Having two

researchers talking notes was used in a study of COTS

integration within NASA [17]. We tried audio taping

couple of times; however transcription the recordings

was time consuming and very expensive and the level

of details we have got was more than what needed.

Therefore we decided to use note-taking by both

researchers which was successful in getting the

required level of detail with an acceptable level of

accuracy.

4.2. Data Analysis

As mentioned in the previous section the field notes

were written up and reviewed. Each interview

produced, on average, 8 pages (A4 size). In order to

analyze our interviews we used the constant

comparison method described by Glaser and Strauss

[7]. In addition, we were influenced by the guidance

from Carolyn Seaman to use this method for software

engineering empirical research [17]. In this method we

start with coding the field notes which means attaching

labels to pieces of text which is relevant to a particular

theme or a topic. We generated our list of code while

we were reading through the data, with a big influence

of the research questions. As a result we got a list of

categories and sub codes (see Appendix A).

The next step was to group the passages of text into

patterns and themes according to these codes. We did

not cut and paste paragraphs or sentences as we did not

want to lose the context of the data, instead we used

MS Word find feature to trace each code. After that

field memos were written to record our observations

from the coded data. These field memos are the base

for the results presented in the next section, and it will

articulate a preliminary hypothesis to be considered in

the next stage of the research.

Our results will describe each project in detail, and

will discuss the main emerged themes from the coding.

These themes are: the team, Agile adoption (iterative

and incremental development, Agile practices,

communication, and customer), quality issues and

traditional software engineering (requirements,

documentation, and testing).

5. Project A

Project A started in January 2007, with 2 week

iteration and a high level of agility. We conducted our

interviews between March and June 2007. The first

release was due to be released after iteration 13 (6

month after the project started).

5.1. The Team

Project A has a team of 16 people (In both projects

the team size varied over time, and the number

reported here is the size at the time we interviewed the

project manager for the first time), of which 12 are on-

site and 4 off-site. The 12 people are mostly

developers, 1 architect and 1 development manager

with two sub-teams each with a lead who rotates. The

testing team is off-site with a test lead on site.

The team was put together before deciding on using

Agile methods. The criteria of choosing the team

members was mainly the ability to deliver and work in

a team, self-directed people, with high level of

communication and language skills which according to

the project manager are the essential skills for any

project.

The team is seated in an open plan area consists of 3

bays of 4 people each. The project manager sits in one

of these bays. The layout seems to work quite well,

however they can’t have a white board because of

security reasons as they are sharing the area with other

teams. This affects the communication as well as they

have to respect other teams who use different kind of

methods that does not involve high level of

communication/interaction between the team members.

In general the team is happy, motivated and hard

working. One comment was: “Shared view and

ownership - yes this is good”

5.2. Agile Adoption

5.2.1. Iterative and Incremental Development. In

project A the iterative and incremental approach which

is the heart of Agile methods was in use. The team

used 2 weeks iterations. At the beginning of each

iteration they decide what to do. Each Iteration begins

with a list of priorities (tasks). The first iteration was

planned in details, next iteration in some detail, the

others in less details (3 bullet points). They used Agile

modeling on whiteboard, discussions, refine and tune

the plan for the next iteration. Although the small lead

team is doing the design, the whole team should

understand the architecture, therefore it is reviewed by

the team and continuously improved over the

iterations. Decisions to drop line items are not very

strict or formal; they may roll over to next iteration or

reword it to close it off, although in the future they are

planning to be stricter.

An interesting practice was to have an iteration for

stabilization and consolidation and to improve code

quality. At the time of the interviews the project was in

iteration 13, and 3 iterations were devoted to this

purpose. These tidy-up-iteration help to pace the work

and they allow some breathing space for the team.

A team member emphasized that Agile and iterative

development gives less illusion of control but we get

more control in reality.

5.2.2. Agile Practices. Test-driven development was in

use and it worked well for simple tasks. However, it

has been helpful to have specialist testers as well as

developers in the team, who have the skills to oversee

all testing. Also, they used Pair programming for new

team members to help integrate them in the team.

The stand up Scrum meeting was used and the team

was happy about it, it helped having the shared

technical understanding.

The shared understanding was present during the

interviews. All team members were able to describe the

process and they mostly agreed. The whole team

understands what every one is going to do; also they

should be able to present the overall picture

themselves. It have been presented twice so far, and

they would like to do this more often. The management

goal is that everybody should be able to deliver the

presentation.

5.2.3. Communication. Communication within Agile

teams plays an important role. In project A the team

used different ways of communication such as

meetings, whiteboards, wikis, presentations, and chalk

and talk sessions.

The team has two meetings for the iteration

preparation. One for the team lead only in order to

produce a straw man list of items. This list is discussed

and refined in the first day of the iteration with the

whole team, and the tasks are allocated to developers.

In this meeting they go over the status of the previous

iteration and say “well done”, go through each goal

and who is responsible, and schedule design sessions.

During the iteration, the team has daily stand up Scrum

meeting for 15 minutes. In this meeting everybody

says a couple of sentences to describe what they are

doing at the moment, this may lead to further

communication. In addition, they have a weekly

meeting for one hour for the whole team. This meeting

is a good opportunity for feedback and discuss on

technical issues. The senior team meets three times a

week for half an hour to discuss planning issues,

feedback from customer and bug lists. The off-site test

team meets once a week for half an hour through a

formal phone call to agree responsibilities. In addition,

a test meeting will take place on the day before the

iteration planning meeting. Also, they have a weekly

chalk and talk session; originally it was for learning

purposes, now explaining key areas, such as how to

construct trace point and exceptions. The white boards

are used to record the task lists, progress of the current

release and to tick the completed tasks.

5.2.4. Customer. Project A has internal customers.

Developers expressed that response to customer

requests is very good with Agile project; however it

depends on a good customer as in some cases where

you need an effort to obtain some feedback. The

customer provides priorities weekly by phone calls on

the day just before the iteration planning meeting. As

expected, the customer’s demands and requests

increase throughout the project. In this project they had

2 weeks internal delivery at the end of the iteration,

and it was always on time. In later stages the deliveries

will be available on demands. The first external release

will be after 6 month from the start of the project.

5.3. Quality Issues

Assigning one iteration to improve the quality of the

code is an effective practice; in addition they are using

code reviews. Small number of defects was reported so

far, some are missing features, and the others are

reported by internal customers. The focus was on the

good-enough factor which is the right thing at the time

based on current knowledge.

The team put a lot of effort on fixing bugs;

sometimes it took priority over agreed goals.

5.4. Traditional Software Engineering

Although the development method was very agile in

project A, we thought that it will be interesting to

discuss how the traditional aspects of software

engineering were integrated within the Agile project.

We will discuss requirements, documentation and

testing.

5.4.1. Requirements. Risk was used to priorities the

requirements. Actually some simple ones were picked

first to show progress, as well as the most risky ones

(to reduce risk). As we mentioned in the

communication section a meeting is held at the

beginning of the iteration in order to select the line

items, priorities them and assign them to people.

After the first two months the customers become

more forceful and they start asking for more features.

Team members are expecting to have firmer

requirements in the future.

5.4.2. Documentation. The team keeps a history of the

development (change logs, wikis, etc.) but no “static”

documents. Though with traditional approaches, the

documentation can easily get out of date too. The

architecture is documented as power point slides,

basically UML diagrams, and some text (bullet points).

It is about 30 slides, 90% are diagrams. They are using

class diagrams, package diagrams, and sequence

diagram. In addition, they use Java doc, they have up

to date list of features for users (what is available and

how to use it), also they use coding standards and

design patterns. The off-site test team wrote a formal

document for test case writing guidelines. They

experimented with taking photos of the whiteboards as

well. At the end of each iteration the project manager

will write a report to the senior management.

5.4.3. Testing. As motioned in Agile practices section

test driven development was used by developers to test

their own code. Probably all developers write test first

and then try it, all should pass. Testers write functional

tests and the project manager review them.

The tests team is trying to keep ahead of the

developers so they can run the tests when writing the

code. When the requirements are met, the test suite is

enabled. Builds picks up test suits and produces the

report to show status of each function, if any test fails

the build fails. When the build is broken it should be

fixed in around 30 minutes. The first attempt will be by

the person who last checked in the code.

6. Project B

Project B started in October 2005. The interviews

were held between January and November 2007. The

First release was out after 10 months (Sep 2006),

quicker that other products within the organization (the

average is 18 months). The second release was out in

May 2007. When the last interview was conducted the

team was preparing for the third release.

6.1. The Team

Project B has a bigger team of 55 in total, of which

17 developers increased to 24, 20 testers, 2 architect, 2

project managers and 7 off-site. The team is divided

into three smaller teams, each working in one area.

Regarding people experience, developers stated that

iterative development requires experienced people,

who are open to change, and with communication

skills. One interviewee commented “It will not work

for people who need to be told what to do”.

All team members are located in the same area,

though it is not an open plan area but small offices

where testers and developers often share the same

office.

The team expressed personal satisfaction with the

new way of working; however the high pressure might

cause some conflicts. Developers don’t get bored with

Agile because of the constant changing which

encourages them to be creative. In each iteration they

had new code to write and some to maintain. Mostly

the team was satisfied with the new approach as they

had more input to the design and more influence to the

architecture, besides they are having more fun. Another

important point is that they can see the customer using

their product quicker than before. In other words they

can see the value of their work. This satisfaction was

expressed in comments like “The team is like a

democracy”, “current project has more interaction”, “in

the waterfall days we didn’t talk to anybody”, “In agile

5 minutes discussion can solve the problem”. On the

other hand some interviewee had concerns about things

going very fast, and the time pressure.

6.2. Agile Adoption

6.2.1. Iterative and Incremental Development. In

Project B the team used four weeks iteration. In each

iteration the team has some code to write and some to

maintain, the process has developed over the iterations.

Every iteration has to deliver something new

As mentioned before each iteration will last four

weeks. However, in reality up to two weeks are added

for testing and correcting the code. At the same time

the next iteration will start so the two iterations will

overlap. At the end of week four the next iteration will

start and a code cut off will occur in the current

iteration which will enter the fifth week where the

testers will start testing the code. This means that the

developers will be under pressure in the first week or

two of each iteration, because they may have to start

the next iteration while correcting the code from the

previous one. In the first week of the iteration they will

determine functionality (agree the design and the

scope). Test cases and code were written in parallel

(the developers wrote some unit testing) so that tests

were written first. The second and third weeks are for

developing. The last week is for testing – usually this

week overlapped with week one (and sometimes week

two) of the next iteration. During this time testers test

stable code and developers stabilize code and plan for

next iteration.

The first release was after 9 iterations. The team had

a tidy up iteration after the first release, mainly for re-

factoring. They had another tidy up iteration just before

the second release. An interesting idea that the team is

trying to have an iteration and release focus, which

means working in themes, for example in the first

release the focus was on functionality, the second on

robustness. The same with iterations, in the tidy up

iteration the focus is on refactoring or improving one

aspect of software quality such as maintainability,

extensibility or scalability.

6.2.2. Agile Practices. Refactoring was the main

theme for the tidy up iterations. The team thought that

it worked quite well. They didn’t do a lot of pair

programming, some at the beginning of each iteration.

Similar to project A the shared understanding was clear

during the interviews as expressed the ability to

describe the process of working; also they had the

same overview picture. An interviewee pointed out that

this was very important “If everyone understands what

is going on, this is what really matters”.

When asking about code ownership, the answer was

that it was ok to change other people code, even testers

and developers can change (people are comfortable

about it). The same applies to line items were anyone

in the team can open one at any time and they can

make changes.

6.2.3. Communication. The iteration starts with 2

hours meeting for the whole team. After this meeting

each development team leader will have a meeting

with his or her team on the same day to make sure that

they understand everything and to see if they have any

questions. On the second day of the iteration the

project manager and the development team lead and

the architects will meet for 2 hours. In the third day the

project manager will meet with the architecture to

agree the feature list and who’s doing what. During the

iteration there will be a daily walk in the area and a

meeting with the architects. The project manager and

the architects will meet weekly to discuss architecture

reports. The architects and project manager will meet

every day for an hour to focus on the external view and

to decide on high level priorities. The triage meetings

(with architects, testers, developers and service

representative) will be held to decide what should be

fixed and which to be deferred to the next iteration or

the next release, also the architects have a daily

meeting for an hour.

6.2.4. Customer. Because of legal issues the first

delivery was after iteration 6, after that they deliver

after each iteration. With each delivery, the customer is

expecting something they can use. So it is important to

understand how the customer is going to use the

capabilities they provide. The customer can install, use

the product and send feedback or queries or even

suggestions. Requirements can be changed always on

customer requests. In case of requests conflicts they

will follow the majority. There is an external news

group to add comments and questions, this group can

be shown by all customers.

6.3. Quality Issues

In project B the project manager stated that testing

in the main factor to assure the quality of the product.

One developer stated that he/she thinks that the quality

is slightly less, another two stated that it is no worse

than in other products. In this project they didn’t use

code reviews, but developers expressed that they

would like to do code reviews as they have used them

before and they were effective. An interesting

comment from a tester was that although the number of

reported bugs is bigger in Agile projects however they

are minor and easier to fix than what they used to have

in more traditional projects.

As in project A, the idea is to provide what is

needed from the customer point of view. Team

members stated that the project is a great success as all

releases are on time so far, the defect rate is very low

comparing to other products within the organization

and the customers are satisfied.

The team gave a lot of time and effort on reviewing

new defects and setting priorities. Although defect rate

is one important aspect of quality, measuring customer

satisfaction is another important aspect. Therefore,

they measures user satisfaction through talking to

customers and collecting feedback from them, as well

as having measures for the number of reported

problems.

6.4. Traditional Software Engineering

As we did in project A, we thought that it will be

interesting to discuss how the traditional aspects of

software engineering were integrated within the Agile

project. We will discuss requirements, documentation

and testing.

6.4.1. Requirements. The project manager stated that

initially they were prepared to be flexible with

requirements. They commit to some requirements,

might do other stuff, can always change as a result of

customer requirements or for sales people. He pointed

out that requirements management in Agile is very

critical, in order to decide what is important at the

time. Requirements’ prioritizing happens during the

management daily meeting where they focus on

external view and select customer requests.

6.4.2. Documentation. Team B did not have much

design documents; however the architects provide

weekly reports and power points to document the

architecture. They produce good customer

documentation, range of approaches are in use

including Java doc.

6.4.3. Testing. The project manager indicated that the

success factor in the project is the automated tests. All

automated tests are executed overnight. As mentioned

before, at the end of week four the next iteration will

start and a code cut off will occur in the current

iteration which will enter the fifth week where the

testers will start testing the code. So, the testers are

writing code to test the code written by the developers

and most developers are writing unit tests. Test cases

and code were written in parallel.

Test team structure mirrored the development team

division. Testers attended design and brainstorming

sessions to understand the design and to suggest

testability improvements. For critical problems testers

will go to talk with development team.

7. Comparison

A multi-case study with two projects of different

sizes and domains within the same organization is

quite interesting. In this section we will compare the

two projects. We will discuss how the different

variables affected each other for each project.

Table 1 summarizes the main themes for each

project. The most interesting fact is the team size. We

argue that the team size affected the level of

communication in the team. For example in team A we

can see more channels of communication within the

team. In addition the whole team is involved in most of

the meeting and this is understandable for a team of 12

(on-site).

On the other hand, with 55 people, team B has more

meetings that involve high level of leadership (project

managers, architect and teams lead); however, this

doesn’t affect the shared understanding and the

ownership within the team.

In both projects we can see a good amount of

documentation, however similar to communication, in

project A we can see more documents than in project

B. Probably it will be expected to be the opposite, as

more documentation is needed in a larger project

where communication between team members will be

more difficult.

Theme Project A Project B
T

h
e

T
ea

m
 Team size 16 55

Team Distribution 12 on-site, 4 off-site 48 on-site, 7 off-site

Seating Plan Open plan Conventional office space

Team Satisfaction Satisfied Satisfied

A
g

il
e

A
d

o
p

ti
o

n

IID Used Used

Iteration Length 2 weeks 4 weeks

Tidy-up-Iteration 3 times over 13 iterations Once every release (every 6 months average)

Agile Practices

Scrum meeting

Test-driven development

Shared understanding and ownership

Refactoring

Shared understanding and ownership

 Communication

Meetings

Whiteboard

Wikis

Presentations

Chalk and talk

Meetings

Walking though offices

C
u

st
o

m
er

 Customer Delivery
Internal customers

Delivery after each iteration

External customer

Delivery after each iteration

Feedback
Prioritize requirements through

phone calls

Feedback through emails

forums

Satisfaction Satisfied Satisfied

Q
u

a
li

ty

Quality of People
High communication skills

Self-oriented

High communication skills

Self-oriented

Quality of Code Low defect rates
Minor defects

Low defects rate

T
ra

d
it

io
n

a
l

S
o

ft
w

a
re

 E
n

g
in

e
er

in
g

.

Requirements
Start with simple ones

Becoming firmer over time

Initial item list

Can always change to response to customer

requests

Documentation

Change log, wikis

Presentation for architecture (UML

diagrams)

Java doc, lists of features, design

patterns

Test cases guidelines

Reports to senior managements at the

end of the iteration

Architecture reports

Customer documents

Java doc

Testing
Developers: TDD

Testers: test suites

Developers: unit testing

Testers: test cases

Table 1. Comparison between Project A and Project B

Interestingly the team size didn’t affect the quality

of the code or customer satisfaction. It only affected

the communication within the team. The same apply

for the seating plan; the first team had an open plan

area where the other team is seated in offices.

A question arises here, is the level of

communication between the team members

independent of the quality including the process and

product quality and customer satisfaction.

The other variable is the iteration length, for the

first team it is 2 weeks where it is 4 weeks for the

second team with up to 2 weeks of overlap. The

question here is do we need longer iterations for bigger

teams?

The final point is that project B has more developed

approach to quality. Quality measures were in place for

release 3, this includes defects rates, test coverage and

user satisfaction measures. We do not know if this is

because of the size or because the project age is longer

than project A.

8. Validity

The presented study was conducted within one

organization only. So it could be generalized to cover

other projects within the same organization or to

similar organizations. However in order to generalize

the results on other organizations we need to expand

our study to include projects from different companies.

On the other hand the study was done with real

software development on two projects of a significant

size and duration.

Regarding the validly of the collected data, we did 5

interviews with each team and the participants mostly

agreed with each other. In addition we had two

researchers taking notes which gave our data higher

level of quality and accuracy. However we had only

one coder during the analyzing phase of the study.

9. Conclusion and Future Work

In this paper we presented the results of an

empirical study that was conducted using semi-

structured interviews with two project teams that are

using Agile methods within one organization. Our data

was analyzed using the constant comparison method.

The results were presented to illustrate how the teams

adopted Agile methods, the team organization, the

approach to quality, the communication within the

team and the relation with the customer. In addition we

provided a comparison between the two projects.

Although the two projects were of different sizes

(16 vs 55), the level of quality was not different.

However we argue that the size may affect the level of

communication and the iteration length and the

approach to quality.

From this it can be concluded that both projects

were successful with multiple releases, the quality is

generally seem to be as good as other projects in the

same organization, the time release is reduced.

The future work will be to conduct more interviews

with different organizations in order to generalize our

results and to focus more on the quality. In addition

the collected data will be used to generate hypothesis

that can be tested in next stage of the research using the

quality measures provided by the organization. If the

data are available, we will compare these measures

with ones from more traditional projects within the

same organization.

10. Acknowledgement

We would like to thank all participants for their

time and valuable input. At the time of writing this

paper we are waiting for the organization permission to

mention the name and more details about the

organization. We hope that at the time of the camera

ready version we will get this permission.

11. References

[1] Abrahamsson, P., O. Solo, J. Ronkainen, and J. Warsta,

 Agile Software Development Methods. 2002, VTT

technical Research Centre of Finland.

[2] Ambler, S., Agile Adoption Rate Survey. 2007,

www.ambysoft.com.

[3] Basili, V.R. and M.V. Zelkowitz, Empirical studies

to build a science of computer science. 2007. 50(11): p. 33-

37.

[4] Boehm, B. and R. Turner, Balancing Agility and

Discipline: A Guide for the Perplexed. 2003: Addison-

Wesley Longman Publishing Co., Inc. 304.

[5] Cockburn, A. and J. Highsmith, Agile Software

Development: The Business of Innovation. Computer, 2001.

34(9): p. 120-127.

[6] Fowler, M., The New Methodology. 2005,

www.martinfowler.com.

[7] Glaser, B.G. and A. Strauss, The Discovery of

Grounded Theory: Strategies for Qualitative Research. 1967:

Aldine Transaction

[8] Highsmith, J., Agile Software Development

Ecosystems. 2002: Addison-Wesley Longman Publishing

Co., Inc. 404.

[9] Highsmith, J., k. Beck, A. Cockburn, and R.

Jeffries. Agile Manifesto. 2001 [cited; Available from:

www.agilemanifesto.org.

[10] Hove, S.E. and B. Anda, Experiences from

Conducting Semi-structured Interviews in Empirical

Software Engineering Research, in Proceedings of the 11th

IEEE International Software Metrics Symposium

(METRICS'05) - Volume 00. 2005, IEEE

Computer Society.

[11] Karlstr, D. and P. Runeson, Integrating agile

software development into stage-gate managed product

development. Empirical Software Engineering, 2006. 11(2):

p. 203-225.

[12] Larman, C., Agile and Iterative Development: A

Manager's Guide, C. Alistair and H. Jim, Editors. 2004,

Pearson Education, Inc.

[13] Phongpaibul, M. and B. Boehm, A Replicate

Empirical Comparison between Pair Development and

Software Development with Inspection, in First International

Symposium on Empirical Software Engineering

and Measurement. 2007: Madrid, Spain.

[14] Poppendieck, M. and T. Poppendieck, Lean

Software Development: An Agile Toolkit. 2003:

Addison-Wesley Longman Publishing Co., Inc. 240.

[15] Robinson, H. and H. Sharp, Organizational culture

and XP: three case studies, in Agile Development

Conference. 2005, IEEE Computer Society.

[16] Sanchez, J.C., L. Williams, and E.M. Maximilien,

On the Sustained Use of a Test-Driven Development Practice

at IBM, in Proceedings of the AGILE 2007 (AGILE 2007) -

Volume 00. 2007, IEEE Computer Society.

[17] Seaman, C.B., Qualitative methods in empirical

studies of software engineering. IEEE Transactions on

Software Engineering, 1999. 25(4): p. 557-572.

[18] Sfetsos, P., L. Angelis, and I. Stamelos,

Investigating the extreme programming system---An

empirical study. Empirical Software Engineering, 2006.

11(2): p. 269-301.

[19] Siniaalto, M. and P. Abrahamsson, A Comparative

Case Study on the Impact of Test-Driven Development on

Program Design and Test Coverage, in International

Symposium on Empirical Software Engineering and

Measurement. 2007.

[20] Wohlin, C., P. Runeson, M. Host, M.C. Ohlsson,

B. Regnell, and A. Wessl, Experimentation in Software

Engineering: an introduction. 2000: Kluwer Academic

Publishers. 204.

Appendix A - List of Codes

Agile Adoption

AA-CT Communication within the team

AA-CC Communication with the customer

AA-DC Delivery to the customer

AA-OST Off-site teams

AA-DTS Developing team skills

AA-MET Meetings

AA-PLN Iteration planning

AA-GOOD What is good about agile

AA-BAD What is bad about agile

AA-CUL Culture issues

AA-PRO Process

AA-SU Share understanding

AA-OWN Ownership

AA-BV Business value

TI-UP-IT Tidy up iteration

Agile Practices

AP-TDD Test driven development

AP-PP Pair programming

AP-IID Iterative and incremental development

AP-XP Extreme programming

AP-SCR Scrum meeting

AP-CI Refactoring

AP-CRC CRC cards

Quality

Q-CODE Quality of the code

Q-PPL Quality of the people

Q-T Relation between quality and the time

Q-DEF Defects

Q-CS Customer satisfaction

Q-MEG Quality measures

G-EN The Good Enough

P-SUCS Project Success

M-SUCS Measure of success

Software Engineering

CR Code review

REQ Requirements

DOC Documentation

TEST Testing

ARCH Architecture

BUG-R Bugs removal

PP Project progress

P-REQ Prioritising requirements

LI Line items

AT Automated testing

People Issues

OI Organizational team

DT Development team

DT-SKILLS Development team skills

DT-ORG Development team organization

SP Seating plan

ROLES Roles

R-T-D Relation between test team and development team

MT Moral of the team

S-O-T Size of the team

TT Test team

TT-ORG Test team organization

TT-SKILLS Test team skills

TS Team satisfaction

