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Abstract— A nonlinear beamforming aided detector is proposed
for multiple-antenna assisted quadrature phase shift keying
systems. By exploiting the inherent symmetry of the optimal
Bayesian detection solution, a symmetric radial basis function
(SRBF) detector is developed which is capable of approaching the
optimal Bayesian performance using channel-impaired training
data. In the uplink case, adaptive nonlinear beamforming can be
implemented effectively by estimating the channel matrix based
on the least squares channel estimate. Adaptive implementation of
nonlinear beamforming in the downlink case by contrast is much
more challenging, and we adopt a cluster-variation enhanced
clustering algorithm to directly identify the SRBF centre vectors
required for realising the optimal Bayesian detector.

I. INTRODUCTION

The ever-increasing demand for an improved throughput in
wireless communication has motivated the development of
adaptive antenna array assisted spatial processing techniques
[1], [2], [3], [4], [5], [6], [7], including adaptive beamforming,
in order to further improve the achievable spectral efficiency.
Beamforming is traditionally defined as a linear processing.
Upon appropriately combining the signals received by the
antenna array linearly, adaptive beamforming is capable of sep-
arating user signals transmitted on the same carrier frequency,
provided that the signal sources are sufficiently separated in
the angular domain. Classically, this is achieved by a linear
beamformer based on the minimum mean square error (L-
MMSE) solution [1], [4], [5], [8]. This L-MMSE beamforming
design requires that the number of users supported is no more
than the number of receive antenna elements. If this condition
is not met, the system is referred to as rank-deficient. The
optimal solution for the linear beamforming has been shown
to be the minimum bit error rate (L-MBER) design [9], [10].
The L-MBER beamforming outperforms the L-MMSE one,
particularly in hostile rank-deficient scenarios.
Digital communication signal detection however can be
viewed as a classification problem [11], [12], [13], [14], where
the receiver simply classifies the received channel-impaired
signal into the most-likely transmitted symbol constellation
point. For the multiple-antenna aided receiver, if one is willing
to extend the beamforming process to nonlinear, substantial
performance enhancement can be achieved over the linear
beamforming at the cost of an increased complexity. The
idea of nonlinear beamforming has been developed for binary
phase shift keying systems [15], [16], where a symmetric
radial basis function (SRBF) network is proposed to adaptively

implement the optimal nonlinear beamforming solution. This
study extends nonlinear beamforming to quadrature phase
shift keying (QPSK) systems. For QPSK systems the optimal
Bayesian detection solution can be expressed as a complex-
valued radial basis function network [17], [18]. We further
exploit the inherent symmetry of the optimal nonlinear beam-
forming solution and propose a SRBF network for adaptively
implementing the Bayesian beamforming solution.
In Section II we present the QPSK beamforming signal model.
Based on the system model of Section II, the optimal nonlinear
beamforming solution is derived in Section III, where the
inherent symmetric structure of the optimal Bayesian detection
solution is discussed, while in Section IV the novel SRBF
beamformer is presented and adaptive solutions are discussed
for both uplink and downlink. For the uplink senario, adaptive
nonlinear beamforming can be realised effectively by esti-
mating the channel matrix using the least squares channel
estimate (LSCE). For the downlink senario, adaptive nonlinear
beamforming is proposed by adopting an enhanced κ-means
clustering algorithm [16], [19]. The achievable performance
of this nonlinear beamforming approach is demonstrated in
Section V, and we offer our conclusions in Section VI.

II. MULTIPLE ANTENNA ASSISTED BEAMFORMING

Consider a coherent communication system that supports M
single-transmit-antenna users of the same carrier frequency
ω = 2πf . The receiver is equipped with a linear antenna array
consisting of L uniformly spaced elements, in order to achieve
user separation in the angular domain [5], [7]. Assume that the
channel is non-dispersive and it does not induce intersymbol
interference. Then the symbol-rate complex-valued received
signal samples can be expressed as [1], [4]

xl(k) =
M∑
i=1

Aibi(k)ejωtl(θi) + nl(k) = x̄l(k) + nl(k), (1)

for 1 ≤ l ≤ L, where bi(k) is the k-th symbol of user i, which
takes values from a QPSK symbol set

bi(k) ∈
{

b[1] = +1 + j, b[2] = −1 + j,

b[3] = −1 − j, b[4] = +1 − j
}

, (2)

tl(θi) is the relative time delay at array element l for source i,
with θi being the direction of arrival for source i, nl(k) is the
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complex-valued Gaussian white noise with E[|nl(k)|2] = 2σ2
n,

and Ai is the non-dispersive channel coefficient of user i. The
average signal-to-noise ratio (SNR) of the system is

SNR =

(
1
M

M∑
i=1

|Ai|2
)

σ2
b/2σ2

n, (3)

where σ2
b is the QPSK symbol energy. Let source i be the

desired user and the rest of the sources be the interfering
users. The desired signal-to-interferer q ratio (SIR) is defined
by SIRi,q = |Ai|2/|Aq|2, for q �= i. The received signal vector
x(k) = [x1(k) x2(k) · · ·xL(k)]T can be expressed as

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (4)

where P = [A1s1 A2s2 · · ·AMsM ] is the system’s channel
matrix with si =

[
ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)

]T
being the

steering vector of source i, b(k) = [b1(k) b2(k) · · · bM (k)]T

and n(k) = [n1(k) n2(k) · · ·nL(k)]T .
Traditionally, a linear beamformer is adopted to detect the
desired user’s signal [1], [4]. The linear beamformer for
user i is defined by yLin(k) = αH

i x(k), where αi =
[α1,i α2,i · · ·αL,i]T is the complex-valued i-th linear beam-
former’s weight vector. The decision regarding the transmitted
symbol bi(k) is given by b̂i(k) = sgn(yLin(k)) with

sgn(y) =




b[1] = +1 + j, yR ≥ 0 and yI ≥ 0,
b[2] = −1 + j, yR < 0 and yI ≥ 0,
b[3] = −1 − j, yR < 0 and yI < 0,
b[4] = +1 − j, yR ≥ 0 and yI < 0,

(5)

where yR = �[y] and yI = �[y] denote the real and imaginary
parts of y, respectively. The optimal weight vector designed for
the linear beamformer is known to be the L-MBER solution
[9], [10]. However, we will show that the true optimal solution
for the beamforming aided detector is nonlinear.

III. OPTIMAL BAYESIAN BEAMFORMING SOLUTION

Denote the Nb = 4M legitimate combinations of b(k) as bq,
1 ≤ q ≤ Nb. The noiseless channel output x̄(k) takes values

from the vector state set X �
= {x̄q = Pbq, 1 ≤ q ≤ Nb},

and X can be divided into the four subsets conditioned on the
values of bi(k) = b[m], 1 ≤ m ≤ 4, as follows

X [m] �
= {x̄[m]

i ∈ X , 1 ≤ i ≤ Nsb : bi(k) = b[m]}, (6)

where the size of X [m] is Nsb = 4M−1. Denote the con-
ditional probabilities of receiving x(k) given bi(k) = b[m]

as p[m](x(k)) = p(x(k)|bi(k) = b[m]). According to Bayes’
decision theory [20], the optimal detection strategy is

b̂i(k) = b[m∗] (7)

where
m∗ = arg max

1≤m≤4
p[m](x(k)). (8)

Define the complex-valued Bayesian decision variable [18]

yBay(k)
�
= b[1] · p[1](x(k)) + b[2] · p[2](x(k))

+b[3] · p[3](x(k)) + b[4] · p[4](x(k)). (9)

The optimal Bayesian detection rule (7) and (8) is equivalent
to b̂i(k) = sgn(yBay(k)).
The conditional probability p[m](x(k)) can be expressed as

p[m](x(k)) =
Nsb∑
q=1

βqe
− ‖x(k)−x̄

[m]
q ‖2

2σ2
n (10)

where x̄[m]
q ∈ X [m], and βq is proportional to the a priori

probability of x̄[m]
q . Since all the x̄[m]

q are equiprobable, βq =
β = 1

Nsb(2πσ2
n)L . It can be seen that the optimal Bayesian

decision variable (9) takes the structure of a complex-valued
RBF network [17] with a Gaussian RBF function. The state
subsets X [m], 1 ≤ m ≤ 4, are distributed symmetrically with
respect to each other as summarised in the following lemma.
Lemma. The four subsets X [m], 1 ≤ m ≤ 4, satisfy

X [2] = +j · X [1], X [3] = −1 · X [1], X [4] = −j · X [1]. (11)

Proof: Consider any x̄[1]
q = Pb[1]

q ∈ X [1], where the i-th
element of b[1]

q is b[1] = +1 + j. Noting j · b[1] = b[2],
j · x̄[1]

q = P(j ·b[1]
q ) ∈ X [2]. This proves the first relationship.

The proofs of the other two relationships are similar. Given this
symmetry, the optimal Bayesian solution (9) can alternatively
be expressed as

yBay(k) =
Nsb∑
q=1

{
b[1]β · e−

‖x(k)−x̄
[1]
q ‖2

2σ2
n + b[2]β · e−

‖x(k)−j·x̄[1]
q ‖2

2σ2
n

+b[3]β · e−
‖x(k)+x̄

[1]
q ‖2

2σ2
n + b[4]β · e−

‖x(k)+j·x̄[1]
q ‖2

2σ2
n

}
, (12)

where x̄[1]
q ∈ X [1].

IV. SYMMETRIC RADIAL BASIS FUNCTION NETWORK

Consider how to realise the optimal beamforming solution
using a radial basis function (RBF) network. The symmetry
of the Bayesian solution (12) should be explicitly exploited,
and we propose to use the following SRBF network for the
detection of user i data

yRBF(k) =
Nc∑
q=1

{
α[1]

q ϕ(x(k); cq, σ
2
q ) + α[2]

q ϕ(x(k); jcq, σ
2
q )

+α[3]
q ϕ(x(k);−cq, σ

2
q ) + α[4]

q ϕ(x(k);−jcq, σ
2
q )

}
(13)

with the decision b̂i(k) = sgn(yRBF(k)), where Nc is the
number of RBF centres, cq are the complex-valued RBF centre
vectors, α

[m]
q for 1 ≤ m ≤ 4 are complex-valued RBF weights,

σ2
q are the RBF variances, and ϕ(•) is the real-valued radial

basis function. In this study we adopt the Gaussian function.
Since the number of users is usually known, the number of
RBF centres can be set to Nc = Nsb. To further exploit the
structure of the optimal Bayesian solution (12), the complex-
valued RBF weights are set to α

[m]
q = βb[m], 1 ≤ m ≤ 4,

where β > 0 is a constant. Furthermore, all the RBF variances
can be set to σ2

q = σ̂2
n, where σ̂2

n is an estimate of the noise
variance. Thus, adaptation of the SRBF network (13) becomes
the task of finding appropriately the RBF centre vectors cq.
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A. Uplink Detection

In the uplink senario, the receiver has to detect all the users’
data, and it has access to the training symbols of all the users.
The most effective way of adaptive implementation of the
SRBF network detector (13) is to estimate the channel matrix
P first and then use it to calculate the state subset X [1], which
specifies the optimal Bayesian solution. Given the training
data set {x(k),b(k)}K

k=1, where K is the number of training
symbols, define the training symbol matrix and the corre-
sponding observation matrix as BK = [b(1) b(2) · · ·b(K)]
and XK = [x(1) x(2) · · ·x(K)], respectively. Then the LSCE
for P is given by P̂ = XKSH

K

(
SKSH

K

)−1
. As a byproduct

of the LSCE, an estimated channel noise variance σ̂2
n =

‖XK − P̂ SK‖2/2K is also produced.

B. Downlink Detection

In the downlink senario, the task of receiver is to detect the
data of the desired user i. During training, the receiver has
the training data {x(k), bi(k)}K

k=1 but it does not have access
to the interfering users’ data {bq(k)}, q �= i. Thus, estimating
the channel matrix P is a challenging task. It is more feasible
using the channel-impaired training data to directly adjust the
SRBF network (13) and hence to approximate the optimal
Bayesian solution. We adopt the enhanced κ-means clustering
algorithm [16], [19] to adapt the RBF centres. Specifically,
during training, the RBF centres are adjusted according to

cl(k) = cl(k − 1) + µcMl(x̌(k))(x̌(k) − cl(k − 1)), (14)

where µc is the step size,

x̌(k) =




+1 · x(k), bi(k) = b[1],
−j · x(k), bi(k) = b[2],
−1 · x(k), bi(k) = b[3],
+j · x(k), bi(k) = b[4],

(15)

and the membership function Ml(x) is defined as

Ml(x) =
{

1, if v̄l‖x − cl‖2 ≤ v̄q‖x − cq‖2,∀q �= l,
0, otherwise,

(16)
with v̄l being the variation of the l-th cluster. The following
updating rule is used to estimate the associated variation v̄l

v̄l(k) = µv v̄l(k−1)+(1−µv)Ml(x̌(k))‖x̌(k)−cl(k−1)‖2,
(17)

where µv is a constant slightly less than 1.0. The initial
variations v̄l(0), ∀l, are set to the same small number.

V. SIMULATION STUDY

A three-element antenna array was designed to support four
QPSK users. Fig. 1 shows the angular positions of the four
users . The simulated narrowband channels were Ai = ηi(1+
j0), 1 ≤ i ≤ 4, where η2

i specified the power of user i. First,
we demonstrated the performance improvement achievable by
the optimal nonlinear beamforming over the optimal linear
one. Two cases of user power distribution were considered.
In the equal power (EP) case, all the four users had a same
signal power. In the unequal power (UEP) case, users 1, 2

λ/2λ /2

ouser 4

20
o

70
45

o

15
o

user 1 user 3user 2

Fig. 1. Angular locations of the four QPSK users with respect to the three-
element linear antenna array having λ/2 spacing, where λ is the wavelength.

and 4 had a same power but user 3 had 6 dB more power
than users 1, 2 and 4. Fig. 2 compares the BER performance
of the Bayesian beamforming and the L-MBER beamforming.
As expected, the Bayesian beamforming achieved much better
BER performance over the optimal linear beamforming. This
performance gain was of course obtained at the cost of an
increased complexity. From Fig. 2 it can be seen that in the
EP case the performance of the individual linear beamformer
depended on the particular user’s angular position as well as
the other users’ locations. By contrast, all the four optimal
Bayesian beamformers had the similar performance. Moreover,
the results of the UEP case shown in Fig. 2 also confirm
that the nonlinear beamforming was much more robust to
the near-far effect than the linear beamforming. Because of
this remarkable robustness property, we only concentrated
on the user one in the EP case when investigating adaptive
implementation of the nonlinear beamforming.
The LSCE-based adaptive implementation was first investi-
gated, and Fig. 3 depicts the user-one BER performance of
the adaptive SRBF beamformer with the different numbers of
training symbols K, given σ̂2

n = σ2
n, in comparsion with the

case of the perfect channel knowledge. It is seen from Fig. 3
that the LSCE-based adaptive implementation required K =
64 training symbols to closely approach the optimal Bayesian
performance. The performance shown in Fig. 3 was obtained
by setting the RBF variance σ̂2

n to the true noise variance
σ2

n. The influence of the RBF variance σ̂2
n used to the BER

performance of the LSCE-based adaptive SRBF beamformer
is illustrated in Fig. 4, given the SNR= 7 dB and K = 64
training symbols. It is seen from Fig. 4 that the performance of
the LSCE-based adaptive SRBF beamformer is not sensitive
at all to the value of the RBF variance and there exists a large
range of σ̂2

n values which enable the LSCE-based adaptive
SRBF beamformer to match the Bayesian performance.
The clustering-based adaptive SRBF beamforming was then
studied. The number of the subset states was Nsb = 64, and
we used the first 64 data points x̌(k), 1 ≤ k ≤ 64, as the
initial RBF centres. The initial cluster variations were set to
v̄l(0) = 0.1 for 1 ≤ l ≤ Nsb, and the adaptive gain for
updating the cluster variations was chosen to be µv = 0.995.
Convergence performance of the cluster-variation enhanced
clustering algorithm was assessed in the simulation based on
the Euclidean distance between the set of the RBF centres
{cl}Nsb

l=1 and the set of the true subset channel states {x̄[1]
l }Nsb

l=1 .
Given SNR= 7 dB, Fig. 5 plots the learning curves of the
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Fig. 2. Bit error rate performance comparison of the optimal nonlinear beamforming with the optimal linear beamforming.

clustering algorithm averaged over ten runs for the three values
of µc. It is seen from Fig. 5 that for this example the best
convergence performance was achieved with µc = 0.4. The ro-
bustness of the clustering-based adaptive SRBF beamforming
with respect to the value of the RBF variance is demonstrated
in Fig. 4, while Fig. 6 compares the BER performance of the
clustering-based adaptive SRBF beamformer for user one after
convergence with that of the optimal Bayesian beamformer,
given the RBF variance σ̂2

n = σ2
n.

VI. CONCLUSIONS

A nonlinear beamforming based detector has been extended
to multiple-antenna assisted QPSK wireless systems. It has
been demonstrated that nonlinear beamforming is capable of
substantially improving the achievable system performance
and significantly increasing user capacity over the traditional
linear beamforming, at the cost of an increased computational

complexity. By exploiting the inherent symmetry of the op-
timal Bayesian solution, a novel SRBF network has been
proposed for adaptive nonlinear beamforming. In the uplink
senario, adaptive SRBF beamforming has been implemented
efficiently by estimating the system’s channel matrix based
on the LSCE. For the more challenging downlink senario,
the cluster-variation enhanced clustering algorithm has been
adopted to implement the adaptive SRBF beamforming. The
robustness of the adaptive SRBF beamformer with respect to
the RBF variance used has been verified in the simulation.
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