View Inheritance as an Extension of the
Slllqtninoil Normalization Ontology Design Pattern

School of Electronics . .
and Computer Science Bene Rodriguez-Castro, Hugh Glaser and lan Millard

University of Southampton, Southampton, UK
{b.rodriguez, hg, icm}@ecs.soton.ac.uk

Definition of Fault used in the ontOIogy e

Avizienis et al. (2005). Basic Concepts and Taxonomy of Dependable and Secure Computing.
e The ReSIST (Resilience for Survivability in Information Society Technologies) project
features a semantic web portal in the field of resilient and dependable computing: The !
ReSIST Knowledge Base Explorer (RKB Explorer) <www.rkbexplorer.com/explorer/> Dovelopment Faults Physical Fauts Intracton Faals
The representation of the concept Faul t (Figure 1) in the ontology built for the RKB ‘ 7N ‘ AN =
Explorer is difficult to model due to: ‘ .

* The complexity of its definition.

| Inemal Faus
« The number of roles that it fulfils in the ontology. He
¢ The number and different types of relationships that it participates in. A
* The representation of the Faul t domain concept has also to support: 4 |t
e Classifying occurrences of actual faults in real world systems. - N aicis P
¢ Providing a keyword index for: subjects of publications, research interest areas of .
projects, institutions or people, and support of resilient mechanisms. [Eﬁﬂﬁ‘gj‘,

The representation of multiple alternative criteria (views) to classify the abstractions of
a certain domain concept, such as Faul t, motivated the development of the View
Inheritance ODP.

e

Ph’)‘?ﬂ:\ Intrigion Viruses
L R L Interiarence Atpmols oy
Structure: Elements and Relationships 5 Crterion 1) Crteron 2 * Crierion 3 Crterion :

NamedC aj p NamedClassFault

TargetDomainConcept (Figure 2): This class represents the ontology domain concept
being defined for which multiple alternative abstraction criteria exist.

e Figure 3: Fault.

Criterion1, Criterion2, ..., Criterion_i (Figure 2): These classes represent each one of

the alternative abstraction criteria of the TargetDomainConcept. The list of classes may

not be exhaustive or pairwise disjoint.

* Figure 3: BasicViewPointFault, MajorGroupFault, NamedClassFault,
NamedCombinedFault.

C1_Classl, ..., C2_Class1, ..., Ci_Class_x (Figure 2): These classes refine each abstraction e ST

criteria class. The list of classes may not be exhaustive or pairwise disjoint. =—o
* Figure 3: Subclasses of BasicViewPointFault, MajorGroupFault, NamedClassFault,

NamedCombinedFault. 2
C1_Class1Class2 or any Ci_Class_xClass_y (Figure 2): These classes participate in
multiple inheritance relationships combining different refinements from the same S Ve
abstraction criteria class. — ==
C1Class3_C2Class2, or any CiClass_x_CjClass_y (Figure 2): These classes participate in (I
multiple inheritance relationships combining different refinements from different o1 Classtolas2)
alternative abstraction criteria classes.

* Figure 3: FaultTypel, FaultType2, ..., FaultType32

_Class_n)

Inter- and Intra-criterion Multiple Inheritance

Inter-criterion: when the parent classes involved in the multiple inheritance
relation are subclasses of different abstraction criteria. The class
CiClass3_C2Class2 in Figure 2 is an example of this type of inheritance because .

one of its parent classes, C1Class3, is a refining concept of Criterion1 and the other Gty
parent class, C2Class2, is a refining concept of Criterion2. S)

e Intra-criterion: when the parent classes involved in the multiple inheritance /o Comntansauc ¥
relation are subclasses of the same abstraction criterion. The class C1_Class1Class2 fane—
is an example of this type of inheritance because all of its parents classes, C1Class1 | Comemonrai S —lea——C

and C1Class2, are refining concepts of the same criterion, Criterionl.
Intra- and inter-criterion: when there are at least two parents involved in the
relation that are subclasses of the same abstraction criterion and there is at least
one more different parent that is a subclass of a different abstraction criterion. An
example of this type of inheritance is trivial to extrapolate from the composition of
the previous two.

Conclusions

A survey of the current ontology building techniques was carried out. The
Normalization ODP seemed a viable option, yet the pattern did not fully address
the definition of Faul t and the application requirements of the ReSIST project.

To bridge this gap, the View Inheritance ODP is put forward as an extension to the
Normalization ODP, combining the latter with the notion of View Inheritance
originated in the O-O software design.

View Inheritance revealed two basic types of likely relations that could take place in
the structure of the pattern: Inter- or Intra-criterion Multiple Inheritance.
These contributions, while not solving all the modelling challenges of the ontology
module for ReSIST, do provide additional awareness to be considered in the
development process.

[This work is supported under the ReSIST Network of Excellence (NoE) which is sponsored by the Information Society Technology (IST) priority of the EU Sixth Framework programme (FP6) under contract number I1ST-4-026764-NOE]

