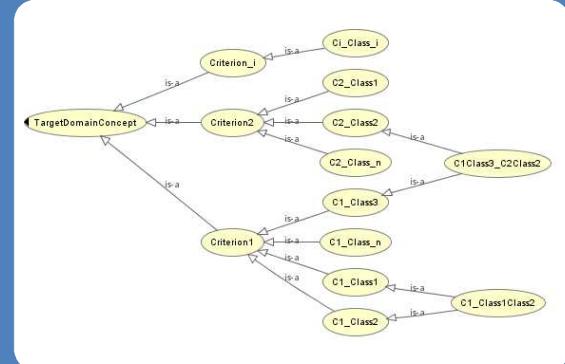


Motivation

- The ReSiST (Resilience for Survivability in Information Society Technologies) project features a semantic web portal in the field of resilient and dependable computing: The ReSiST Knowledge Base Explorer (RKB Explorer) <www.rkbexplorer.com/explorer/>
- The representation of the concept **Fault** (Figure 1) in the ontology built for the RKB Explorer is **difficult to model** due to:
 - The complexity of its **definition**.
 - The number of **roles** that it fulfils in the ontology.
 - The number and different types of **relationships** that it participates in.
- The representation of the **Fault** domain concept has also to support:
 - Classifying occurrences of actual faults in real world systems.
 - Providing a keyword index for: subjects of publications, research interest areas of projects, institutions or people, and support of resilient mechanisms.
- The representation of multiple alternative criteria (views) to classify the abstractions of a certain domain concept, such as **Fault**, motivated the development of the View Inheritance ODP.

Figure 1

Definition of Fault used in the ontology for ReSiST
Avizienis et al. (2005). Basic Concepts and Taxonomy of Dependable and Secure Computing.



Structure: Elements and Relationships

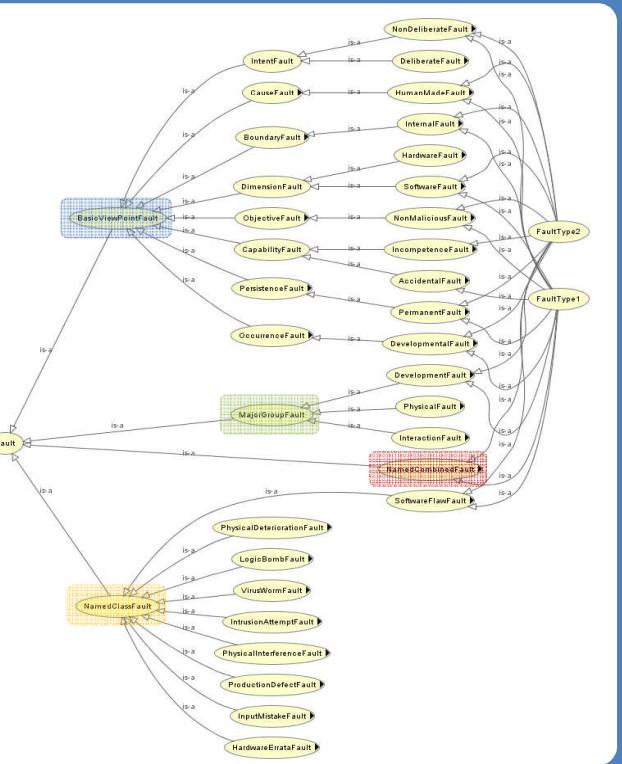

- TargetDomainConcept** (Figure 2): This class represents the ontology domain concept being defined for which multiple alternative abstraction criteria exist.
 - Figure 3: Fault.
- Criterion1, Criterion2, ..., Criterion_i** (Figure 2): These classes represent each one of the alternative abstraction criteria of the TargetDomainConcept. The list of classes may not be exhaustive or pairwise disjoint.
 - Figure 3: BasicViewPointFault, MajorGroupFault, NamedClassFault, NamedCombinedFault.
- C1_Class1, ..., C2_Class1, ..., Ci_Class_x** (Figure 2): These classes refine each abstraction criteria class. The list of classes may not be exhaustive or pairwise disjoint.
 - Figure 3: Subclasses of BasicViewPointFault, MajorGroupFault, NamedClassFault, NamedCombinedFault.
- C1_Class1Class2** or any **Ci_Class_xClass_y** (Figure 2): These classes participate in multiple inheritance relationships combining different refinements from **the same** abstraction criteria class.
 - Figure 3: Subclasses of BasicViewPointFault, MajorGroupFault, NamedClassFault, NamedCombinedFault.
- C1Class3_C2Class2**, or any **CiClass_x_CjClass_y** (Figure 2): These classes participate in multiple inheritance relationships combining different refinements from **different** alternative abstraction criteria classes.
 - Figure 3: FaultType1, FaultType2, ..., FaultType32

Figure 2

Structure of a generic use case of the View Inheritance ODP

Structure of the View Inheritance ODP for the representation of Fault
For simplicity, only 2 types of faults are shown out of the 31 types defined

Conclusions

- A survey of the current ontology building techniques was carried out. The **Normalization ODP** seemed a viable option, yet the pattern did not fully address the definition of **Fault** and the application requirements of the **ReSiST project**.
- To bridge this gap, the **View Inheritance ODP** is put forward as an extension to the Normalization ODP, combining the latter with the notion of View Inheritance originated in the O-O software design.
- View Inheritance revealed two basic types of likely relations that could take place in the structure of the pattern: **Inter- or Intra-criterion Multiple Inheritance**.
- These contributions, while not solving all the modelling challenges of the ontology module for ReSiST, do provide additional awareness to be considered in the development process.