A Novel Transient Fault Injection Methodology
Based on STE Model Checking

Ashish Darbari®, Bashir Al Hashimif, Peter Harrod'" and Daryl Bradley!"
TtECS Department, University of Southampton, Southampton, England
TTARM Ltd.,Cambridge, England

Abstract— The aim of this paper is to propose a new transient
fault injection methodology based on Symbolic Trajectory Evalu-
ation (STE) model checking, that addresses the limitations of the
recently proposed techniques on sudying fault injection using
property checking [1-3]. To demonstrate the capability of our
proposed methodology, we instrument the necessary properties,
and verify them using the STE model checker Forte, to analyse
the effect of transient faults on the fetch unit of a 32-bit
multi-cycle processor, synthesized using Altera Quartus II. Our
approach can be applied generally to any faulty processor, to
compute precise inter-dependencies among different functional
units, thereby lending better understanding of the faulty be-
haviour in an efficient way.

I. INTRODUCTION

The goal of fault tolerance is to make the hardware work
correctly in the presence of faults. This usually entails con-
ducting a study on fault injection on a design, to learn about
the possible effect of faults, and then devise a technique to
mask the effect of these faults.

In a formal verification approach we pose the question: Is
a given property satisfied by a circuit model? The answer
obtained is usually in the form of a Boolean expression, which
can be simply true, or false, or a compound formula built
over some Boolean variables known as a counter-example. A
counter-example is a precious by-product of a formal verifica-
tion run because it encapsulates vital debugging information,
that can be used by the designers judiciously to fix the source
of the bug.

We use a formal property checking approach based on
Symbolic Trajectory Evaluation (STE) based model checking
to evaluate the effect of transient faults (often known as
single-event-upsets (SEU)), on the fetch unit of a CPU. We
demonstrate how one can compute and monitor the trajectory
of a fault from the source to different points of interest in the
fetch unit. In this paper whenever we use the term fault, we
mean an SEU.

II. RELATED WORK

Simulation based fault injection is a special case of software
fault injection [4-6] that “‘can support a variety of system
abstraction levels — architectural, functional, logical and
electrical” [7], and for this reason has been used extensively
to investigate fault injection. Recently, there has been an
emergence of using formal property checking to study fault
injection [1-3]. The basic technique employed is to instrument
the RTL in a controlled way to incorporate fault injection, and

then check the behaviour of the faulty RTL whilst running
some benchmark programs, using a formal property language.
Property checking based methodology is an instance of a
simulation based fault injection technique, but because it
computes simulation traces by doing model checking under-
neath, it provides comprehensive coverage — wider than any
conventional simulation that relies on testing on a finite set of
patterns.

Hazelhurst et al. [1] were the first to note that one can
use formal property checking to specify and verify the effects
of stuck-at faults. They proposed using STE to accomplish
this, and for this reason their work is most similar to ours.
But there are notable differences between our approach and
the one Hazelhurst et al. proposed. In their method, faults
were modelled by decomposing the finite-state machine rep-
resentation into smaller components, and each smaller model
is modified to incorporate faults that they investigated. The
authors deal with three different FSMs, one that represents
the RTL under investigation, one that injects the faults, and
the third that monitors the effect of faults.

However, manipulating low-level FSMs is compute inten-
sive, is less abstract and less intuitive, and is therefore not
desirable. Another shortcoming of their approach was that they
hand-converted the VHDL code into an FSM representation,
which obviously limits the applicability of their approach.

Leveugle [2] was the first to show how IBM’s Property
Specification Language (PSL) based property checking can
be used together with controlled mutations, for transient fault
injection. The basic idea is that the RTL that has to be
investigated for faults is instrumented with extra hardware
to model faulty behaviour. The author uses mutants [7] for
this precise instrumentation technique. Much care was taken
in developing these mutants, since having too many of them,
will result in state-space explosion. The author noted that using
PSL rules in practice was difficult, and often the rules were
long and complex. In addition the tools that are used for model
checking were not able to say much in case of a contradiction,
besides saying “over-constrained”. Also the tool Leveugle used
was unsound, meaning the tool okayed the properties whilst
there were known counter-examples.

The author stesses that in spite of property checking being
used it may be important to think of applications running on
the target RTL so that one investigates the behaviour of the
faulty design keeping in view the target application. This is
however a limitation, since the faults being characterised are
influenced by the specific benchmark program running on the

processor.

Krautz et al. [3] also used PSL based property checking
to evaluate the effect of transients on the coverage of error-
detection logic. The basic approach used by them is very simi-
lar to Leveugle — instrument the VHDL with faulty hardware,
and then use PSL property checking to evaluate the behaviour
of the RTL while it executes specific benchmark programs.
The authors prefer dealing with two separate RTLs — one the
golden RTL which is fault-free and other the fault injected
model. Tolerance in the form of error-detection-and-correction
is encoded in the RTL and PSL is used to express properties
that will check if the tolerance is adequate to mask the faults.
The checking is done by comparing the fault-free RTL with
the faulty RTL which the authors suggest is important in order
to avoid developing complex PSL properties.

Whereas the fault injection scheme in the model by Krautz
et al. is slightly simpler than Leveugle, because an extension
of VHDL called BugSpray is used, it is still a limiting factor.
This is because bloating the RTL with extra hardware makes
formal model checking much harder to perform due to extra
state variables, leading to huge BDDs.

In summary, Figure 1 shows how fault injection has
been studied traditionally. In the next section we present
an overview of our methodology that will overcome the
limitations pointed out above.

Fault Injection
Library and
Routines

Benchmark
programs

Fig. 1. Existing fault injection approaches Traditionally fault injection
is carried out by comparing the behaviour of two different RTLs, one that
has been instrumented to incorporate faults, and the other — golden RTL
— which expresses the intention of the designer in a fault-free case. Both
these RTLs are simulated whilst running specific binary program images. In
the instrumented RTL, faults are injected using a fault library and injection
functions. The comparison is usually done by comparing the output values of
gates, registers, memory elements and so on. In a property checking approach,
one compares the output of a property checking run of the golden RTL against
the instrumented RTL.

III. OVERVIEW OF OUR METHODOLOGY

Our fault injection methodology relies on architecting faulty
properties, and verifying them against a fault-free RTL. This
offers several benefits. Firstly, it is using the language of
STE for faulty property specification which enables one to
express properties easily. Secondly, using properties to express
faults, rather than adding more hardware to the RTL, we are
able to avoid the state-space explosion problem experienced
by others who have used property checking. By keeping the
original RTL intact, one can evaluate the effect of faults on

the design more faithfully — there remains only one RTL
— the one that has to be investigated for faults. A final
benefit is that our methodology describes properties about the
general architecture of the processor, and does not rely on
characterising the faults in the presence of specific program
instances as is done in fault injection both by people who have
used property checking and those who have used testing.

Instrument properties
inSTE
that capture faults

Property checking
using STE

Useful insights Yes
on computing
tolerance

Counter
Example

Fig. 2. Proposed Methodology Instrument STE properties to express
transient faults, and then verify the golden RTL (obtained through a formal
verification of a fault-free model) against the faulty properties to obtain a
counter-example that provides useful insights on how to obtain tolerance.

We use the STE syntax (shown in the next section) to rep-
resent our properties and use the model checking engine built
in the model checker Forte [8] to check if the properties are
satisfied by the circuit model. These properties can describe a
fault-free scenario for the correct functioning of a processor,
or a faulty scenario for the same processor design. In fact, the
first step in formally analysing the fault-tolerance is to verify if
the processor works correctly without the faults. The outcome
of the first step is a golden RTL — one that works according
to the intended specifications that the designer had in mind for
the processor to work correctly in the absence of any fault.

We instrument the STE properties to capture precisely the
transient faults we want to model, and then check the modified
properties against the golden RTL. This provides us a counter-
example, which is very useful for the designer to gain insights
into the behaviour of the processor in the presence of faults,
and thus a suitable fault tolerance scheme can be designed
based on this. An overview of our approach is shown in
Figure 2. Our processor is designed in VHDL, and is a 32 bit
multi-cycle unpipelined RISC architecture adapted from [9].
The choice of this processor is merely to demonstrate a proof-
of-concept. What we show in terms of functionality of this
processor is common to any processor - presence of a PC, a
branch prediction logic and so on. It is then synthesized (see
Figure 2) using the Altera Quartus II tool to a BLIF model
(Berkeley Logic Interchange Format) which is then used for
model checking using STE. The BLIF model generated from
Quartus II is converted to a finite-state machine (FSM) using
exlif2exe that is provided as a part of the Forte distribution by
Intel. An FSM is represented in Forte by a file with a .exe
extension.

We combine theorem proving, with STE model checking
similar to what has been successfully used elsewhere [10]
and in major industrial processor verification cycles [8]. The

general strategy’ is to use STE inference rules [10], to decom-
pose properties about CPU verification into properties about
different functional blocks such as fetch, decode, execute,
write-back and control, and check for faults in each block
separately. Once properties about each block have been exam-
ined independently, the integrated design with all the blocks —
the full processor — is re-checked for faults. However, when
this is done at the level of the full processor, the symbolic
property checking itself does not have to be done again for
each and every unit; only the interfaces have to be done. The
properties that characterise each faulty block simply become
instances of the properties that we had checked earlier for each
stand-alone unit, modulo node re-naming. The overall set of
properties for the full processor in the presence of faults, are
stitched from all the component smaller properties about each
functional unit.

IV. STE MODEL CHECKING

We provide a brief note on the preliminaries that are
required to understand the details presented in later sections.
In this section we assume familiarity with logical connectives
that appear in propositional logic such as —, A, V, D. We
use V quantifier from first-order logic to express the fact that
something holds “for all values”, and use the F notation to
denote a theorem. We also use the notation (a — b | ¢) to
express “if a then b else ¢”.

STE [11] is a model checking technique that combines
the ideas of ternary modelling (using 0,1 and X) with
symbolic simulation (using symbolic variables). Circuit mod-
els are defined on lattice states, and are constructed on-the-
fly during simulation, from the FSM (.exe) representation of
the circuit. Specifications in STE, take the form of what are
known as symbolic trajectory formulas. Formally, we define
the syntax of formulas [8, 11] as follows:

Definition 1. Syntax of STE formulas

f = nis0 - node n has value 0
| nisl - node n has value 1
| fiand fo - conjunction of formulas
| fwhenG - f is asserted only when G is true
| Nf - f holds in the next time step

where f; and f5 range over formulas, n € string ranges over
the nodes of the circuit, and G is a propositional formula
over Boolean variables (i.e. a Boolean ‘function’) called a
guard. The various guards that occur in a trajectory formula
can have variables in common, so this mechanism gives STE
the expressive power needed to represent inter-dependencies
among node values. For example, we can associate an arbitrary
propositional formula G with a node using the construct
‘n is G’ defined by

nis G = ((nis 1) when G) and ((n is 0) when = G)

We also use a convenient form of expressing the temporal
formula, by using from and fo functions.

ffromitoj =N fand N“"'fand...and N771f

I'This strategy is used for processor verification in the absence of faults as
well.

where the convention is that N°f = f. The interested reader
is referred to [11].

Verification takes place by testing the validity of an asser-
tion or property, of the form (A =-C), where both A and C' are
trajectory formulas. In practice every successful STE run i.e.,
a run that returns the value True, is a theorem that holds for all
the Boolean variables mentioned in the property. However, in
those cases where the STE model checking returns a counter-
example, it can still be turned into a theorem where the
counter-example becomes the assumption under which the
STE property is valid.

V. EXPERIMENTAL RESULTS

In this section we shall examine the fault injection in the
fetch unit of the processor. The fetch unit as shown in Figure 3.
The adder computes the address of the next instruction when
there is no branch detected, and the output of the ALU is not
zero. In case a branch is detected the address comes from the
result of another adder (not shown in the figure) shown as an
AddResult, and the multiplexor selects between this value and
PC+4.

PC+4

4 —

Instruction
Memory

Read
Address

Instruction

clock

Zero

Branch

D

Fig. 3. A simplified fetch unit.

Classes of faults we have looked at are the SEUs affecting

1) a random bit in the PC
2) multiple bits in the PC
3) a random bit in the Instruction Memory
4) multiple bits in the Instruction Memory

We first show that the fetch unit works correctly in the absence
of any fault, and then show the effects of faults.

We begin by showing that the program counter works
correctly, and then we will show what happens when we inject
faults in a random bit, or in multiple bits of the PC.

A. Program Counter Works Correctly

We declare symbolic variables AddResult|7 : 0] to place
on the AddResult bus. We assert AddRes to denote the vector
of new variables AddResult[7 : 0]. We assert that the higher
six bits of the PC take on symbolic values between time 1 and
2. We define this here to verify this later in case of a branch.

let NextPC_is_AddResult = “PC[7:2]” is AddRes from 1to 2;

We declare the assertions that state that the nodes Branch and
Zero take on symbolic values (Branch and Zero respectively),
and the bus AddResult takes on symbolic values.

let Zero_asserted = “Zero” is Zerofrom0to 10;
let Branch_asserted = “Branch” is Branch from 0to 10;

let AddResult = “AddResult[7 : 0]” is AddRes from 0 to 10;

We declare symbolic values for higher (PC[7 : 2]) and lower
bits of the PC ([F,F]), and assign the higher six bits to the
predicate PC_initial. We don’t need to assert any values to
the lower two bits of the PC since we have already clamped
them to logic O in the RTL (to increment PC by 4).

letPC_initial = “PC[7:2]” is PC[7 : 2] from Oto 1;

We state the trajectory formula that the next state of the
PC is incremented by 4. We use the built-in add function
(ADD_int_bvn_fix) on integer vector.

let NextPC_is_PC_plus_4 =
((“pPC[7 : 2]” is (ADD_-int_bvn_fix 1 PC_MSB) and
([“PC[1]”, “PC[0]”] is [F,F])) from 1to2);

We declare a clock below.

let clock = “clock” is FfromOto1 and
“clock” is T from 1 to 2 and

“clock” is T from 9 to 10;

We then verify the property that either the PC is incremented
by 4 or takes on the branch address.

F clock and PC_initial and reset_is_low and AddResult
and Zero_asserted and Branch_asserted
= (NextPC_is_AddResult when (Zero A Branch))

and

(NextPC_is_PC_plus_4 when (—Zero V —Branch));

The reader should note that we have not quantified all the free
Boolean variables in the theorem for the sake of presentation
clarity.

B. Fault Injection in the PC

We have developed a library of functions for injecting faults
in different units of the CPU and they have been written in
the functional language FL. A sample function that injects the
fault in the upper six bits of the PC is shown in the property
below, it takes the 5-tuple representation of the PC and inverts
the symbolic values placed on the PC.

Injecting a bit-flip fault in the higher six bits of the PC,
we will get a counter-example BDD — Branch A Zero. We
still expect to see that the next value of PC is either the result
of branch or a normal PC increment, but we don’t anymore
because of the fault. This is shown as an assumption of the
theorem that represents the outcome of the STE run. What this
means is that if we assert the Branch and the node Zero to be
a logic 1, the PC will work correctly in spite of the fault. This
seems to suggest that in the presence of a branch, the PC is
less susceptible to SEUs in the PC.

F (Branch A Zero) D
(clock and (map(A(a,b,c,d,e).(a,b,c,d,e))PC_initial)

and reset_is_low and AddResult and Zero_asserted
and Branch asserted) =

((NextPC_is_AddResult when (Zero A Branch)) and
(NextPC_is_PC_plus_4 when ((—Zero) V (—Branch))));

We show the effect of injecting a bit-flip in any single bit of
the top six bits of the PC. The outcome of the fault is similar
to the one when we inject the fault in all bits of the PC.

let PC_fault i = clock and (faultPC_initiali)
and reset_is_low and AddResult and Zero_asserted
and Branch_asserted =
((NextPC_is_AddResult when (Zero A Branch)) and
(NextPC_is_PC_plus_4 when ((—Zero) V (—Branch))));

F (Branch A Zero) DVi.(2<1i<7)D (PCfault i)

When we inject a fault in bits 1 and 0 of the
PC we still expect to see that the next value of
PC is either the result of branch or a normal PC

increment, but we get the following counter-example:
AddResult[1] A Branch A AddResult[0] A Zero. What
this suggests is that when an SEU hits only the lower two
bits of the PC, the effect of that can be anulled only if the
node Zero is logic 1, and there is a Branch instruction, and
the lower two bits of the Branch instruction (AddResult)
should be both logic 1.

Now we investigate if the PC values successfully get loaded
onto the Read Address Bus of the Instruction memory in a
fault-free case.

let ReadAddressl =
“ReadAddress[7 : 0]” is AddRes from 1to2;

let ReadAddress2 =
((“ReadAdress[7 : 2]” is (ADD-int_bvn_fix 1 PC_MSB)) and
(“ReadAddress([1: 0]” is [F,F]from1to2));

The following property demonstrates that the interface from
the PC to the Instruction Memory is sound.

F clock and PC_initial and reset_is_low and
AddResult and Zero_asserted and Branch_asserted
= ((ReadAddressl when (Zero A Branch)) and

(ReadAddress2 when (—Zero V —Branch)));

C. Verifying that instruction memory works correctly

Our Instruction Memory is 256 deep and 32 bits wide. Here
we show how we verify that the memory works correctly?. We
assume we have declared a vector of BDD variables denoted
by WD that would be written onto the Write data port of the
memory. We then express the fact that the Write port of the
memory takes on this vector from time O to 1.

letWriteData = “WriteData[31:0]” is WD from Oto1;

Similarly we assume the existence of symbolic BDD variables
for ReadAddress (RAddd) and WriteAddress (WAdd) ports.

let WriteAddress = “WriteAddress[7:0]” is WAdd from O to 1
let ReadAddress = “ReadAddress(7 :0]” is RAdd from 1 to 10;

2The reader should note here that in practice the memory verification runs
were carried out using symbolic indexing [8], not quite literally the way they
have been shown in this paper for presentation clarity.

We define assertions that state the Memory Write and Read is
asserted.

let MemWrite_is_asserted = “MemWrite” is we from O to 1
an
“MemWrite” is F from 1to 10;

let MemRead_is_asserted = “MemRead” is F from Oto 1 and
“MemRead” is T from 1 to 10;

We define 256 distinct constants IMemg...IMemyss that
denote 32-bit names for each of the 256 rows of the memory.
Further, we assume that we have declared 256 distinct 32-
bit symbolic BDD variables to initialise the memory. We will
denote this vector of variables as mem, . . . memyss.

Memory is initialised by assigning symbolic values to the
names of the memory elements.

let Initial memory =
IMem, is memg from O to 1 and

IMem255 is memoss from 0 to l7

We express that new data (WD) is placed at the Write Data port
and writes it to a location selected by the write address (WAdd),
which itself ranges from O (Zero) to 255 (TwoFiftyFive).

let Write_data_to_memory =
(“WriteData[31:0]” is WD from O to 1)
when (we A WAdd = Zero) and

(“WriteData[31:0]” is WD from O to 1)
when (we A WAdd = TwoFiftyFive);

We define the function that constructs the assertion that states
that if the write-enabled is asserted high, then the new data is
written to the location selected by WAdd, else the old state of
the memory (mem;) is retained.

let New_state_of memory =
(IMemo is (we A (WAdd = Zero) — WD | memp) from 1 to 2) and

(IMemgss is (we A (WAdd = TwoFiftyFive) — WD | memoss))
from 1 to 2

We state the property that the Write function to the memory
works correctly.

F clock and WriteAddress and Write_data_to_memory and
MemWrite_is_asserted and Initial memory
= New_state_of_memory;

We would like to check if the read-after-write operation in
the memory works correctly. For this we define a symbolic
function below that says that if the read takes place from
the same location where a new data (WD) has been written,
it should fetch the new data, else the old state of the memory
(mem;) is retained.

let Read_after write fn =

(RAdd = Zero) — ((we A (WAdd = Zero)) — WD | memo)
| (RAdd = One) — ((we A (WAdd = One)) — WD | mem;)

| (RAdd = TwoFiftyFive)
— ((we A (WAAd = TwoFiftyFive)) — WD | memoss)

The following simply assigns the symbolic read-after-write
function to the Read port of the memory.

let ReadData =
“ReadData[31: 0]” is Read after write_fn from 3 to 5;

We now show that the read-after-write property works cor-
rectly.

F clock and WriteAddress and MemWrite_is_asserted
and WriteData and ReadAddress and MemRead_is_asserted
and Initial memory = ReadData

D. Fault Injection in Instruction Memory

We have injected several bit-flip faults in the memory to
examine the path the fault takes from the source to the output
instruction stream coming from the read port of the memory.
The faults we will discuss are single-bit errors (only one bit
anywhere in the memory is infected), and several bits are
infected at once across different parts of the memory. What
we have observed is that for a given row if we inject a bit-flip
in any of the columns of the memory, the counter-example
remains the same. However, from one row to another the
counter-examples vary, and this is for a good reason. Our
memory is organised as a grid of 256 rows (0 to 255) and
32 columns (0-31 bits). There are two different kinds of faults
we will discuss here. First is the case when we inject a fault
in an entire row. We will call these row faults. The other kind
is when we arbitrarily choose a bit anywhere in the memory
and flip its value. We shall refer to this as a bit-fault.

//Checking if read after write property is correct
//when we inject an SEU in row 255

((WriteAddress[7] A WriteAddress[6] A WriteAddress[5]

AWriteAddress[4] A WriteAddress[3] A WriteAddress|2]

AWriteAddress[1] A WriteAddress[0] A we)V

—ReadAddress[7] V —ReadAddress[6] V —ReadAddress[5]

V —ReadAddress[4] V - ReadAddress([3] V —ReadAddress|2]V

—ReadAddress[1] V —ReadAddress[0]) D

F clock and WriteAddress and MemWrite_is_asserted

and WriteData and ReadAddress and MemRead_is_asserted

and Initial memory and (fault_row Initial memory 255)
= ReadData

Let us look at the counter-example in a bit more detail. The
counter-example states in a mathematically concise form what
a designer would expect the memory to do in the presence of
these faults. For example, when we inject the fault in the entire
32 bits of row 255, and check the read-after-write property
again in presence of this fault, we can only obtain the correct
values of memory during the read-after-write operation, if we
do not read from the faulty locations of the memory — which
is exactly what the counter-example for this fault states. The
counter-example says that as long as we write to the address
location indexed by the symbolic values WriteAddress[7 : 0],
and all of them take on a logic 1 value, we have written
the new data at location 255. If we subsequently read from
any other location but location 255, (at least one of the read
address bits amongst ReadAddress[7 : 0] take on a logic 0
value), we will be able to assert that the read-after-write
works correctly. This is exactly the case with each of the

other memory locations when we fault other rows between
0 and 254. Checking the read-after-write for the fault at any
particular bit 5 in a given row, for each different j between 0
and 31, the counter-example generated for each j is identical,
and in fact is the same as the case for the fault in entire
row ¢. The reason is exactly the same as explained above
for the fault in each row. We verified 8192 single-bit-flip
cases, and it comes as no surprise that the bit-faults are a
special case of 256 row faults. The benefit of using symbolic
simulation and model checking is that we did not have to
conduct 2(m*") simulations (for m rows and n columns) for
analysing single-bit errors in the memory; instead we only did
m X n simulations. Whilst performing a single-bit injection,
we could also pick any other arbitrary row to inject a fault,
and we only needed to conduct m X n simulations rather than
2™ X m.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a new methodology of fault injection
that used STE model checking. The novelty lies in how the
fault injection was carried out using the simple, formal and
powerful framework of STE. Not only did this allow us to use
a formal property checking methodology that is underpinned
by strong mathematical semantics, but also the way we used
property checking to perform fault injection, we alleviated the
problem of state-space explosion for fault injection faced by
Leveugle [2], and Krautz et al. [3]. Again, compared to both
Leveugle and Krautz et al. we showed that our language of
choice for property specification i.e., STE is able to easily
express properties — we therefore minimised the possibility
of having complex rules as was the case with PSL in [2,3].
However, with this ease-of-use comes also the limitation on
expressivity. With the restricted synatx of STE, it is not as
expressive as PSL. What we have found though, is that for
our task, STE is very well suited. Also, it is clear that by
keeping the RTL intact, one can evaluate the effect of faults
on the design more faithfully — there remains only one RTL —
the one that has to be investigated for faults. Whereas both
Leveugle and Krautz et al. attempted to formally check a
piece of RTL with fault injection hardware embedded in it,
our focus has been to assess the architectural vulnerabilities
in an unprotected and untarnished RTL in the presence of
faults which we created by architecting faulty properties.
Another strength of our approach has been that it is completely
independent of any applications or benchmark programs, and
is a generic method of analysing an architecture. We have
identified an automated tool flow to obtain FSMs from RTL
which we believe is a useful contribution of our work, since
this enables us and others to conduct formal verification and
fault injection more easily.

We have shown through our case study how using our
approach, one can learn useful aspects about the processor’s
behaviour in the presence of faults, and these can be used to
provide guidelines to architects, for designing a fault-tolerant
microprocessor. As part of our ongoing work we are looking to
investigate another problem which is to work out the minimal
bit of redundancy that is required to accomplish the maximum

fault tolerance for the most critical parts of a processor. This
entails identifying an optimal set of properties that can reveal
the overlap amongst different functional units, during fault
simulation. A substantial challenge here is to identify which
properties define a complete set for fault diagnosis, and how
many properties are adequate, a significant problem that has
been recently studied by Fummi et al [12].

VII. ACKNOWLEDGEMENT

The authors would like to thank Petru Eles and Zebo Peng
at Linkoping University for fruitful discussions, and EPSRC
(UK) for funding this research under grant EP/D057663/1.

REFERENCES

[11 S. Hazelhurst and J. Arlat, “Specifying and Verifying Fault-Tolerant
Systems,” in Proceedings of DCC’02, M. Sheeran and T. Melham, Eds.,
2002.

[2] R. Leveugle, “A New Approach for Early Dependability Evaluation
Based on Formal Property Checking and Controlled Mutations,” IOLTS
2005, vol. 00, pp. 260-265, 2005.

[3] U. Krautz, M. Pflanz, C. Jacobi, H. W. Tast, K. Weber, and H. T.
Vierhaus, “Evaluating coverage of error detection logic for soft errors
using formal methods,” in Proceedings of the DATE 2006 conference,
2006, pp. 176-181.

[4] S. Han, K. Shin, and H. Rosenberg, “DOCTOR: An Integrated Software
Fault Injection Environment for Distributed Real-Time Systems,” 1995.

[5] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and M.
Violante, “Exploiting FPGA for Accelerating Fault Injection Experi-
ments,” in IJOLTW 2001. 1EEE Comp. Soc., 2001, p. 9.

[6] Mei-Chen Hsueh and Timothy K. Tsai and Ravishankar K. Iyer, “Fault
Injection Techniques and Tools,” IEEE Computer, vol. 30, no. 4, pp.
75-82, 1997.

[7] Jeffrey A. Clark and Dhiraj K. Pradhan, “Fault Injection: A Method for
Validating Computer-System Dependability,” Computer, vol. 28, no. 6,
pp. 47-56, 1995.

[8] C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D. Aagaard,
C. Barrett, and D. Syme, “An Industrially Effective Environment for
Formal Hardware Verification,” IEEE TCAD, vol. 24, no. 9, pp. 1381-
1405, 2005.

[9] James O. Hamblen and Michael Furman, Rapid Prototyping of Digital

Systems: A Tutorial Approach, 2nd ed. Springer, 2001.

S. Hazelhurst and C.-J. H. Seger, “A Simple Theorem Prover Based

on Symbolic Trajectory Evaluation and BDDs,” IEEE Tran. on CAD of

Integrated Circuits, vol. 14, no. 4, pp. 413-422, 1995.

C.-J. H. Seger and R. E. Bryant, “Formal Verification by Symbolic

Evaluation of Partially-Ordered Trajectories,” Journal of FMSD, vol. 6,

no. 2, pp. 147-189, 1995.

[12] Franco Fummi and Graziano Pravadelli, “Too few or Too Many Prop-

erties? Measure it by ATPG!” Journal of Electronic Testing, vol. 23,
no. 5, Oct 2007.

[10]

[11]

