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Abstract—Many acoustic factors can contribute to the developed for acoustic vehicles classification only casrsid
classification accuracy of ground vehicles. Classification based one major feature set. However, the overall acoustic sighal
on a single feature set may lose some useful information. To running vehicle could be much more complicated; the velsicle

obtain more complete knowledge regarding vehicles’ acoustic nd m me from multipl urces. not exclusively b
characteristics, we propose a fusion approach to combine two sou ay come 1Iro uftiple so ’ y by

sets of features, in which various aspects of acoustic signaturesthe engine, but also from tires, brakes, etc. Relying on one
are emphasized individually. The first set of features consists particular feature extraction approach is therefore yikelloss

of a number of harmonic components, mainly characterizing information. This could become even worse when the number

engine’s noise. The second set of features is a group of keysf mogels’ parameters is further restricted by other fagtor
frequency components, designated to reflect other minor but ats h the di . lity of lassifier inbut
important acoustic factors, such as tires’ friction noise. Fusing suc a; e |menS|ona|y9 a cas; e . put.
these two sets of features provides a more complete description In this paper, we focus on information fusion approaches for

of vehicles' acoustic signatures, and reduces the limitation of acoustic vehicle classification. We argue that the capglgiép
relying one particular feature set. Further to a feature level petween different feature sets can provide potential tadve
fusion method, we propose a modified Bayesian based fusionye c|assification accuracy by information fusion. Morepve

method to take advantage of matching each specific feature set the inf i fusi leviate th traint th
with its favored classifier. To assess the proposed fusion method, € Information fusion may alleviate the constraint on the

experiments are carried out based on a multi-category vehicles input’s dimensionality for certain classifiers. For exaenpt
acoustic data set. Results indicate that the fusion approach can a decision level fusion, several classifiers can be appbed t
effectively increase the classification accuracy compared to tse egch feature set individually, and the overall dimensional
using eag:h individual set of fe.atulr.es. The Bayesian based decisionof input is divided by the number of the classifiers.
level fusion is found to be significantly better than the feature .
level fusion approach. In .the proposed fusion approach, a group of new features
are firstly extracted to amend the existing harmonic feature
Keywords: Acoustic vehicle classification, information The added features are named as key frequency components,
fusion, feature extraction, mutual information, Bayesian and they are selected by mutual information (MI), a metric
decision fusion. based on the statistical dependence between two random
variables [8], [9]. Selection of the key acoustic featurgghe
mutual information can help to retain those frequency compo
Acoustic sensors can collect acoustical signals to identifients that contribute most to the discriminatory informati
the type of running ground vehicles. Acoustic sensors can lieeting our goal of fusing information for classification.
used in many sensors networks for the applications such aJo keep the same dimensionality as the original feature
battlefield monitoring and surveillance. They become mospace, a feature level fusion is first designed by repladieg t
and more attractive because of their rapid deployabilitg amigher order (or other less important) harmonic components
low cost [1]-[4]. In acoustic sensors processing, clasgifio  with the same number of key frequency components. For the
algorithms play a critical role to identify the type of veleic purpose of fusion, the key frequency components are deliber
and help to improve the performance of tracking [3], [5]. ately selected to be unrelated with the fundamental freqquen
Many acoustic features can be extracted for classificationthis scheme adds no extra cost in the classification algoyith
running vehicles. The commonly-used features are thedevelt has potential to increase discriminatory capabilitexty\
of various harmonics [6], [7]. The harmonics features hawan improved Bayesian based decision level fusion is prapose
achieved good classification performance, with a stable atwdtake advantage of matching each specific feature set with
compact representation [3], [5]. Although many encourgginits preferred classifiers. To assess the proposed Ml-based
results on acoustic vehicle classification have been shawnaicoustic feature extraction and the subsequent fusionausth
the previous research [1], [3]-[5], it still remains a ckaljing experiments are carried out based on a multi-category heshic
problem due to the complexity of vehicle acoustic signdis, t acoustic data set.
great variation of ambient interferences, etc. The rest of this paper is organized as follows. In Section |,
In particular, most classification algorithms that haverbeave argue that multiple feature sets are needed to improve

I. INTRODUCTION



the vehicles’ classification accuracy. Next in Section llfusion approach are:

we discuss how to use the mutual information to extract, How to select the key frequency features, which will
the key frequency components to obtain the necessary new pe discussed in Section IlI; and

information. Subsequently, to combine the harmonics featu , How to develop a suitable fusion scheme, which will be
and the key frequency features, we design a feature level (iscussed in Section IV.

fusion in Section IV-A and propose a modified decision level

fusion in Section IV-B. Experimental results are presentddl. EXTRACTING NEW FEATURES FOR HARMONICSBASED

in Section V. Finally, we end this paper with conclusion in VEHICLE CLASSIFICATION

Section VI. According to our discussions in Section I, the feature
vector xy, is intended to provide different information to the
harmonics feature vectox,. Thus, a practical solution to
extract x;, is by searching the residual inharmonics for a
Differing from the previous research [1], [3]-[5], we firstgroup of key frequency components, in which the contained
argue that multiple feature sets should be considered folingormation will be naturally differ from the harmonics.
more effective acoustic vehicle classification. To find the key frequency components, an ideal search
It is known that the acoustic signature of a running vehicl@etric would be the classification accuracy or inversely the
is made up of a number of individual elements, such as engiBgyes classification error. However, feature selection by d
noise, tire friction noise, etc. Many classification altyumhs rect]y m|n|m|z|ng the Bayes error is difficult to be ana|yﬂb/
that have been deVElOped in acoustic vehicle ClaSSiﬁC&tiQ@rformed’ and an alternative discriminatory metric has to
were based on the harmonic features, and have been sh@ansought. In this research, we applied an effective feature
effectiveness [1], [3]-{7]. However, our further discus® selection method based on mutual information, which has bee
can suggest that the harmonics features may be incapaigeloped in our previous project [9], [11], [12]. To keep
to capture the whole acoustic signatures. For examples, Hfnpleteness of presentation, we first recapitulate pattief

tire noise is generated by the friction between the tires ajfiportant equations as already described in [9], [11].
road. The useful information embedded in this noise may

not necessarily relate with the fundamental frequency &nd f- Feature selection by mutual information criterion

integral multipliers. This indicates that the harmonicsyrbe Mutual information measures the statistical dependenee be

unable to capture the useful distinguishing informatiorhis tween two random variables and so can be used to evaluate the

particular element. relative utility of each feature component to classificatj8],
Though the tire friction noise seems to be a minor cof9]. Considering that the Bayes error is bounded by mutual

stituent of the whole vehicle’s sound, it could contain dille information [13], the key frequency components selected by

acoustic signature, and sometimes could be important futual information analysis is actually approximated to a

vehicle classification. For example, the tires friction s&oi criterion by optimizing the Bayes error. Therefore, a talka

can reflect the information regarding tires’ thread and eubband realistic performance can be assured to some extentr(i.e

blocks. These factors are closely linked with the type @he meaning of Bayes error bound). Also, the implementation

vehicle, and should not be omitted for classification. Tfaes  of mutual information needs relatively lower computationa

to improve the accuracy of acoustic vehicle classificativ@, cost [14], [15], which further makes it more attractive than

propose to apply information fusion to include more usef@ther metrics.

acoustic information. In information theory, the mutual information is a quantity
In the proposed fusion approach, two sets of featurésat measures the mutual dependence of the two variablgs, an

are extracted individually to capture different aspectdh& s defined as:

acoustic signature. The first one is a commonly-used hamnmoni ( Y)

feature vector [3], [5]-[7], named as;, which is used I(X,Y) // r,y) 1Og @) p(y) dedy, (1)

to account for the engine noise. The second one is a key

frequency feature vector, named>gs which is aimed at other where p(z,y) is the joint probablllty density function of

useful information, such as the acoustic signature emtsedd®ntinual random variableX andY’, andp(z) andp(y) are

in the tires’ friction noise. the marginal probability density functions respectivéliyitual
Based on the above feature extractions, the amended acdtrmation is related to entropy as:

tic signature consists of two partg; and x;, respectively.

Il. USING MULTIPLE FEATURE SETS FOR ACOUSTIC
VEHICLE CLASSIFICATION

To explore this structure, a natural approach is by data IX.y) = HX)-HX]Y)
fusion [10]. Because two sets of features characterize the = H(Y)-H(YI[X) )
acoustic signals from different aspects, combining thes ha = HX)+HY)-H(X,)Y),

potential to provide more information regarding the themées
vehicle acoustic signature.

The methods on extracting the harmonic featwgsan be Zp )log p(x (3)
found in [6], [7]. Thus, the major problems remained in this

given the Shannon entropy (discrete) defined as:



According to the definition of mutual informatiofi) and the random variable corresponding class label. The mutual
its relations to the entrop{), the use of mutual information information between them can be written as:
for key frequency selection can be initially justified adduls.

Let Y be a random variable standing for the class label IxY) = 1((X1, Xz,..., Xn), Y). ®)
(e.g., the vehicle type), and” be another random variable |f x only has two components, i.ex = (X7, X3), (5)
denoting the amplitude for a frequency bin. The entréfy’) pecomes:
is known to be a measure of the amount of uncertainty
aboutY (i.e., the objective of prediction), whiléf(Y|X) Ix,Y) = I((X1,X2),Y)
is the amount of uncertainty left i’ when knowing an = H(X1,X,)— H(X1, X2lY). (6)
observationX. From (3), I(X,Y) is the reduction in the
uncertainty of class labal by the knowledge or measurement From(3), we can
obtained at frequency biX. Hence, mutual information can H(X1, Xo) = H(X1) + H(Xs) — I(X1, Xo), @)
be interpreted as the amount of information that the feadtire
frequency binX contains about the class labgl (see Venn and
diagram in Figure 1). In other words, mutual information is
capable to reflect the amount of information that a frequenc;l/q(Xl’X2|Y) = HXY) + H(X|Y) = 1(Xy, Xo|Y). (8)
bin X contains about the class labEl. Since the variable SubstitutingH (X1, X») and H(X1, X»|Y) of (6) into (7)
defined by class label is the required classification resuﬁmd(g), we get:
the mutual information measures the capability of using thi
frequency bin to predict the class label, i.e., the vehicle! (x,Y) = H (X1, X3) — H (X1, X,[Y)
|dent|ty = H (Xl) + H (XQ) — I(Xl,XQ) — H(X1|Y)

—H (X2|Y) + 1 (X1, X2]Y)

= > I(X:,Y)—I(X1,X2)+ (X1, XalY).
i=1,2

— 9)

Extending(9) to more than two components, we have the
following equation:

derive the following two equations:

H(Y) H(Y|X) IX,Y) = H(Y) - H(Y|X) I1(x,Y) = ZI X;,Y) - ZZI (X, X;)
i J>i
Figure 1. [lllustration of mutual information + Z Z [ X“ X |Y (10)
i J>1

B. Maximization of mutual information According to(10), the mutual information between a vector
After the above justifications, we show how to select and a scalef can be decomposed by evaluating the Ml
the key frequency components based on mutual informatigietween the componer¥; andY, and the MI between pairs
The framework of the Ml-based feature selection can kg componentsX; and X;. All of them are one-dimensional
described as follows: given a set of original feature vexc#dr mutual information, which can be effectively implemented.
with M components or variables, arid the corresponding  To calculate one-dimensional MI, we can treat the amplitude
output class label (e.g., the vehicle type), find a subset vasf each frequency bin as a random variailewith continual
ablesx C x" with N components § < M) that maximizes value, and its category label &5 with discrete class labels

Ml I(x,Y), i.e., (e.g.,w1, wo, ..., etc.) respectively. Thus, the Ml betwedn
J (x%) = max I (x,Y). (4) andY can be evaluated as follows (with a similar formula for
xCx/ I(Xi, Xj))

To effectively implement(4), there are two obstacles to
overcome: I(X,Y) = */ p(x) log p(x dX*ZP ) log P(y
o How to evaluate a multi-dimensional mutual information; X
and /
+ x,y) logp(x,y) dx.
« How to search the maximum. Z

Aiming at these problems, we have developed a gradient
ascent optimization strategy to maximize Ml in [9], [11]
[12]. First, we show that a multi-dimensional MI can be*
decomposed into a series of one-dimensional Mls: XY =max T (X;,Y),

Let x = (X1,Xs,...,X) be a random vector repre- ‘
senting the selected features;,i = 1,2,...,M, and Y where X} represents the result of maximization at step

Meanwhile, based on equatig¢m0), to maximizel (x,Y),
= (X1, Xo,..., X), the first variable can be chosen as:



Then, the second variable is chosen as: where the superscribes represent different harmonic srder
and the key frequency feature vector denoted as

X = max |[I(X;,Y) - Z I(X;,XY) Xp = {2, 23, L Tp |

. 0
XA XS where the superscribes represent different frequency thies

feature level fusion can be simply implemented by concate-

0 . .
+ Z 1 (Xi» Xi ‘Y) : nating the two sets of features, and the fused feature vector
Xi# X7 formed as follows:
The remaining variables are chosen in the same way until Xpe = {@p, 27, T - S 795,2\’} (11)

the pre-specified numbeld, of variables is reached: ) . . o )
One of the aims of this research is to testify if the fusion of

two set of features can improve classification accuracy.i fa

X, = max |I(X;Y)~ Z Z I(X;,X7) assessment should be based on the feature vectors with the
’ i Xi#XY same dimensionality. Hence, the above fusion can be revised
as:
+Z Z I(XZ,XJO‘Y) . X;Lk:{w}lwx%w"' 7‘%%755]%:71:27"' 7$£<}7 (12)
i Xi#X] where K + L = M, and M is the dimensionality of the pre-

specified harmonics feature space. The fused feature gector
now have the same dimensionality as the harmonic features’,
but with theL higher order (or other less important) harmonics
réBlaced by the same number of key frequency components.
In this feature level fusion, since features from different
extraction methods are augmented directly, a proper nermal

mErerr;]('el?tall.lly.bThls IIS a.sr:mllar idea to the gradient asaent ization should be applied to address the difference in the
other hill-climbing algorithms. measurement scale.

Although we have shown that the key frequency features according to our previous discussion, the fused feature

selected by mutual information can effectively provide -Usgegctorx, , or x},. tends to depict the acoustic signature more
ful discriminatory information, it is not recommended (G- the harmonics characterize the major noise sources a
completely r_ep_lace the existing features, i.e., the haresony iine the global spectrum; the key frequency components
features. This is because the new features are extractetypubrovide other localized details of the spectrum.

on the discriminatory analysis. The amount of information the jmplementation of this feature level fusion is straight
extracted can be guaranteed, but the stability of the featisr ¢\ o4 However, one major problem associated with this

unsure. For example, the velocity change of vehicles isylikeg sjon scheme is that a same classifier has to be applies
to affect the selected _results. So the key frequency f_eatugs the fused feature set, which means that the two feature
should be better considered as a supplemental constitaentlys il pe classified by the same classification algorithm.

the major features, and a fusion approach should be appliedrjs js a unwanted consequence for this application, becaus
utilize both of them. As long as this strategy is followed? th,coring to Section 11 the two feature sets have different

final performance could be improved if the the key frequenqyijities and may have their individually favored classiie
components captured the new information, but will not dégra js known that classification performance depends grestly
significantly even if they failed. the characteristics of the data, and there is no singleifitass
that works best on all given data sets. Hence to achieve a
better performance, the following decision level fusiomliso

A natural way to combine the multiple feature sets fofvestigated.
class.lflcatlon' is by mfo_rmatlon fusion [10], ['16], [17]. BV B Dpecision level fusion
possible fusion strategies that can be applied for this task . o _ .
are feature level fusion and decision level fusion, whick ar 1he decision level fusion is a high-level fusion, where

where X]Q,j = 1,2,---,n — 1 are the variables already
selected.

The above strategy selects features sequentially, and
avoids the problem of ‘combinatorial explosion’. At eacbst
the next feature will be selected so as to maximize,Y’)

IV. FUSING ACOUSTIC FEATURE SETS

discussed as follows. separate intermediate decisions can be drawn from each
individual features-set firstly and then combined to reach a
A. Feature level fusion global decision.

In pattern classification, choosing a suitable classifier fo

The feature-level fusion is a medium-level fusion strategy given feature set is usually carried out by empirical tests
where some features extracted from raw data are combingdipis application, followed by the previous research [3],
for decision. Given the harmonics feature vector reprembnt[5], we choose the multivariate Gaussian classifier (MGE) fo
by the harmonic features. Currently-popular support vectar m
xp, = {ap, - ap) ), chines (SVMs) [18], [19] have shown competitive performanc



with the best available algorithms in many classificatiomear wherex;, andx; represent the harmonics features and the key
so were chosen as the classifiers for the key frequency cdmequency features respectivelyx, (xn|y) = P (xnly, xx) iS
ponent features. To combine the outputs from the classifiens estimate op (x,|y, xx) given knowledge o (x;|y) and
MGC and SVM to reach a global decision, a Bayesian-basgd. To getpy, (x1|y), we propose an approach based on a
decision fusion is investigated, described as follows. simple information-theoretical criterion, presented altofv.

1) A modified Bayesian decision fusion method: 2) Modulating multi-dimensional Gaussian distribution:

In the traditional Bayesian framework, several approachesThe previous research [3], [5] has shown that the multi-
are adopted to combine probabilistic information. Let dimensional Gaussian distribution is an effective estiomat
i=1,2,...,N be N information sources, angl the decision for the probability density of the harmonic features. Saxgt
result, according to thmaximum a posteriol(MAP) criterion, be ad-dimensional harmonics feature vector, the likelihood
two usually-used fusion methods are listed as follows [10]: function will be:

N 1 1 Ty—1
s )« oy, a3 P g exp (=600 = 1) =)
i=1 (29)
and wherey andy are the mean vector and the covariance matrix
N respectively.
p (y|x1,%2,. .., XN) o(p(y)Hp(Xi|y), (14) Because the feature vectar, is not independent toxy,
i=1 the appearance ok, will reduce the uncertainty ofk;.

Iﬂ information theory, the uncertainty is usually measured

It is known that both of the methods are based on certa&é\é nir So t timat from 0
independence assumptions. However in our application, thg €NTOPY. =0 10 €S atp (xxly, xi) from p(xaly), one

two feature sets are extracted from the frequency respdnsec?)nvemem approach (based on the above b asic _|nformat|on
?Sorem) is to reduce the entropy@fxy|y) by including the

the same acoustic signal, and the independent assumptio ) -
very unlikely to hold. So directly applying the above fusio nowledge ofx;. It is known that the entropy of19) is:

rules will result in larger discrepancy from the expected RMA | 5 |y 20
result. To obtain a more accurate fusion, we propose the n{y/@me)?(Z]). (20)

following improved fusion criterion. .

First, based on our application scenario, two information To reduce(20), we may modulate the covariance mattix
sources, i.e.x; and x5, are considered. According to the y: o _ (1 > 21
Bayes rule, the posterior probability can be written asofed: =(1-h)%, (1)

whereX* is the updated covariance matrix, afds a mod-
pGa)p (y|xl)p(x2|y’xl). (15) ulation factor, decided by;. Using the Gaussian functiog,
p(x1)p (x2fx1) can be defined as follows:
For the decision purpose, equation (15) can be simplified

P (ylx1,%x2) =

as: B = exp{—7llxn —xxll}, (22)
argmax p (y|x1,%x2) x p (y|x1) p (x2|y,x1).  (16) where coefficienty controls the depth of modulation, and its
Y suitable value can be empirically decided by cross-vabdat
It can be found that16) will be reduced to(14) if x; is  Thus, the conditional probability (x,|y,xx) is estimated
independent toxs. by modulating the covariance matr¥X of p (x,|y), i.e.,

To implement the fusion in16), the conditional proba- . - *
bilities p (y|x1) and p(xz2|y,x;) are needed. Through our P (xnly, %) ~ N p £7), (23)
previous discussion, the posterip(y|x;) can be effectively where ¥* is the updated covariance matrix, including the
obtained from the SVM’'s output (see Section IV-B3 focorrelation betweer, andx; ( see(22)).
details), and the likelihoodp (x2]y) can be conveniently I , i
obtained from the outputs of the MGC. Then a major problem 3) Calibrating SVMs" output to probability:
is to estimatep (x2|y,x1) based on all available information, After obtaining the likelihood from MGC, to implement
which can be formulated as follows: the fusion approach irf18) we still need another posterior

probability from the SVM classifier, i.ep (y|x;). However,
Px (Xnly) =D (x2ly, x1) « {p (x2]y) ,x1,%2}  (17) the Standard SVMs do not provide posterior probability. To
find this probability, one of the convenient ways is by tragi
3% additional sigmoid function to approximate a posterior
probability [20]. To explain the method, we need to firstly
introduce several necessary SVM formulas [21], [22].

Let x; be a feature (data) vectay; € (+1,—1) be the class

~ pylxp)px, Xnly), (18) label, o = (a1,a2, - ,ar), be the Lagrange multiplierd,

So, according to our specific application a more accur
MAP decision rule can be re-written as:

argmax p (y|xn, xx) o p(y[xk)p (Xnly, xk)
Yy



- Table |
the number of examples amca threshold. The SVM classifier  1.e numser oF RUNS AND THE TOTAL SAMPLE NUMBERS FOR FIVE

can be represented as: TYPES OF VEHICLES TRACKED VEHICLES V1¢ AND V2¢; WHEELED
VEHICLES V3w, V4w AND V5.

L
f (X) = Z yio; K (Xia X) +b, Vehicle Class  Number of Runs  Total Number of Samples
i=1 V1 6 1734
where K (x,x’) = ®(x)T®(x') is an appropriate kernel func- V2 6 4230
tion which has a corresponding inner product expansian, V3w 6 5154
The commonly-used functions are polynomials and Gaussian ¥4w 6 2358
V5w 6 2698

radial basis functions (RBFs):

K (x,x') = (XTX' + l)d, (24)
track at different time, and the corresponding acoustinai
—||x — x/||? are recorded for the assessment.
T} (25) To obtain frequency domain representation, Fourier trans-
] - ) _form (FFT) is firstly applied to each second of acoustic
To get the posterior probability, we applied a mappingignal with Hamming window, and the output of the spectral
method introduced |n_[20], where an additional s_lgm0|_d fur_“ijata (i.e., a 351 dimensional frequency domain vestpis
tion is used to approximate the necessary posterior prifyabi considered as one of the samples for these five vehicles. Then
In detail, the posterior probability is trained by a sigmoigeature extraction is carried out on the sampl® get the two
function: ) 1 sets of features, i.e., the harmonics feature vegjpand the
pyx) = ) (26) key frequency feature vector;,. Subsequently, these feature
L+exp(Af (x) + B) ve)étorsqare feyd into the classifier(s), ar?d the >f/inal clasgifio
where parametersl and B are found by minimizing the result will be obtained from the fusion algorithms.
following cross-entropy error function: The type label and the total number of spectral vectors for
L each vehicle are summarized in Table I. A ‘run’ is assumed
argmin _Zti log (p (y|x;)) + (1 —t;) log (1 — p (y|x;))|, tO correspond to a vehicle moving30° circle around the _
A.B i=1 track, and a sample means the FFT result at one second time

_ . _ _ (27) " interval. Differences in the total numbers of samples reflec
with ¢; = ¥, The details on the calculation ¢27) can be the vehicles’ different moving speeds.

and
K (x,x") = eXp{

found in [20]. _ . o . As we discussed in Section 1V, the features to be fused
Baseq on the above dlscusglons, a decision fusion approgeh came from the harmonic extraction and mutual infor-
can be implemented, summarized as follows: mation evaluation respectively. The left column of Figure V
« A SVM is used to draw a decision based on the keyustrates the 351 dimensional spectral vectors for the fiv
frequency feature vectoty; types of vehicles (corresponding ¥1, - V5, from top to
« A maximum likelihood classifier, i.e. MGC, is applied tobottom). For each type of vehicle, 20 samples are illustrate
the harmonic features vectay,; and Figure V, reflecting the variations at different samplingei
« The improved fusion rule, proposed (il), is then used and different runs. The right column of Figure V shows the
to achieve the final global decision. 21 dimensional harmonic features extracted from the above

Comparing with other Bayesian fusion rules, e(d3) and spectral vectors for these five vehicles. The amplitudes of
(14), the proposed method does not need the independetitese harmonics will form a harmonic feature vector =
assumption, and is based on a more accurate MAP criterifn),, 27, -+, 23" }.

(see(11)). Meanwhile, benefiting from the specific characters From Figure V, it can be seen than the spectral responses
of the application data (e.g, the Multivariate Gaussiatriths- of vehicle’s sounds are quiet complex, consisting of many
tion for harmonic features), its implementation is simplifi formants that did not appear at the exact positions of the
avoiding those more complicated methods, such as Bayesiaiegral multipliers of the fundamental frequency. There a
inferences. also severe within-class variations in the acoustic festur
(see the extracted harmonics features). As for the between-
V. EXPERIMENTAL RESULTS class variations, there are many overlapped formants among

To assess the proposed information fusion approach, é&vehicles. For examples, Figure V(a) and (g) have similar
periments are carried out based on a multi-category vehiclgeaks around frequency 50 Hz and 100 Hz; Figure V(g) and
acoustic data set from US ARL [3]. The ARL data set consistd show similar frequency response between 1-50 Hz. These
of recoded acoustic signals from five types of ground vehijcleevidences show that vehicle noises are much more complex,
named asVl, V2, V3,,, V4,, and V5, (the subscript and a single feature set may not be able to cover all of the
‘t' or ‘w’ stands for the tracked vehicles or wheeled vehgcleacoustic characters.
respectively). These vehicles run 6 cycles around a pregeh  In the experiments for accuracy comparison, half of runs for
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Figure 2. lllustration of spectrum (left column) and harmofgatures (right column) for five vehiclé€1 (top) - V5 (bottom), respectively; 20 samples
(depicted in different colors) for each class.

each vehicle (i.e., 3 runs) were randomly chosen to estimat® the best values for this SVM, and applied to the following
the statistical parameters for feature extraction, suclhas testing stage. The training data are also used to estimate th
harmonic features’ means vectar covariance matri¥. and mean vector and covariance matrix for MGC.

mutual information/. The remaining half runs form the test set 1, 40id bias on random samplings, the testing was repeated
on which performance was assessed. Next, feature exmactigy imes to allow an estimate of the error inherent in this

are carried out based on the methods introduced in Section E\émpling process. The 10 times classification results based
Following the results in [3], the harmonic number is chosef\tarent feature sets are then shown in Figure 3
as 2%. '

As we discussed previously, SVMs [18], [19], [21], [22]
and Multivariate Gaussian classifier (MGC) [5] were chose o
as the classifiers in these experiments. Because SVMs
inherently binary (two-class) cIassifieréZ) one-against-one
classifiers were used with subsequent majority voting
give a multi-class result. The kernel function used is &
inhomogeneous polynomial. The penalty paramétés tested
between10~3 and10°, and polynomial order is tested from § ™|
1-10 by a two fold validation procedure using only trainin(© *
data. The polynomial order 3 and = 20 were finally found
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1The main reason to choose the harmonics number of 21 is to kefelgure 3. Comparison of classification accuracy for differfature sets
consistent with the previous studies [3]. However, we nbt there may be and fusion methods; 10 times tests with random chosen 3 runsaining
a minimum sufficient number for harmonics but that will depend ifient ~and the remaining 3 runs for testing; the accuracy is the dvesult for all
applications. 5 type of vehicles.



Table I

MEAN CLASSIFICATION ACCURACY OF10 TIME TESTS. gramme.
REFERENCES
Methods Average accuracy (%)
Harmonics feature set 73.44 [1] H. Wu, M. Siegel, and P. Khosla. Vehicle sound signat@eognition
by frequency vector principal component analydiEEE Transactions
Key frequency feature set 77.05 on Instrument and Measureme#8(5):1005-1009, 1999.
Feature-level fusion 77.34 [2] M. Duarte and Y. H. Hu. Vehicle classification in distriled sensor
Decision-level fusion 83.86 networks.Journal of Parallel and Distributed Computin§4:826—838,
. . - . 2004.
Modified Bayesian decision fusion 84.24 [3] T.R.Damarla and G. Whipps. Multiple target tracking anasssification
improvement using data fusion at node level using acoustinatsg
Technical Report, ARL.
From Figure 3, the following results are observed: [4] H. Wu and J.M. Mendel. Classification of battlefield grduwehicles

« For each individual feature sets, the key frequency feature
set (the second column) achieved better classificatioil
accuracy than the the harmonics feature set (the first
column). This testified the effectiveness of using mutuajs
information for feature extraction introduced in Section
Il;

o The feature level fusion (the third column) is slightly 7
better than using each individual feature sets (the first
and the second column) but is very close to the best resdft
from each individual sources. This phenomenon has been
observed in previous sensor fusion research literature; [9]

o The decision level fusion (the fourth and fifth column)
achieved significant improvements than those using each
individual feature sets (the first and second columni}ol
and are also much better than the feature level fusion
(the third column); This demonstrated the efficacy of thgi;
proposed information approach; and

o The improvement of the modified fusion method (pr 12]
posed in Section IV-B) is found consistently in all of 1
times tests (see the fifth column).

The average numbers for the above 10 times tests’ resuyjtg

are summarized in Table Il, which further demonstrated the

effectiveness of proposed fusion methods. [14]

VI. CONCLUSIONS

In this paper, we developed an information fusion approagis]
for acoustic ground vehicle classification. First, we adjue
that multiple feature sets are needed to improve the vehjg
cles classification accuracy. Then, a key frequency feature
vector is added to the harmonic feature vector, to amend
the ignored discriminatory information. Finally, a modifie [17]
Bayesian decision fusion was proposed to better combine the
two sets of features. Experiments were carried out to assess
the classification accuracies of the fusion approach, bas[gq
on a multi-category vehicles acoustic data set. The results
showed that significant improvement of classification aacyr
has been achieved by the fusion approach. Future reseaﬁgp
will address the features’ stability with regard to veh&tle
velocity changes, and extended this approach to other m&@
complicated data sets.

ACKNOWLEDGMENTS 21]

We gratefully acknowledge support by ARL/MoD through?2]
IBM on the Information Technology Alliance research pro-

using acoustic features and fuzzy logic rule-based clessifilEEE
Transactions on Fuzzy Systemi§(1):56—72, 2007.

T. R. Damarla, T. Pham, and D. Lake. An algorithm for clagsai
multiple targets using acoustic signature.PFroceedings of SPIE Signal
Processing, Sensor Fusion and Target RecognitkfiD4.

D. Lake. Harmonic phase coupling for battlefield acoudtecget
identification. In Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processitg98.

D. Lake. Tracking fundamental frequency for synchronauechanical
diagnostic signal processing. IRroceedings of 9th IEEE Signal
Processing Workshop on Statistical Signal and Array Preices 1998.
R. Battiti. Using mutual information for selecting featsrin supervised
neural net learninglEEE Transactions on Neural Networks(4):537—
550, July 1994.

Baofeng Guo, S. Gunn, R. |. Damper, and J. Nelson. Adaptived
selection for hyperspectral image classification using munfarma-
tion. In Proceedings of Eighth International Conference of Infotiora
Fusion pages 630-637, Philadelphia, PA, USA, 2005.

J. Manyika and H. Durrant-WhyteData Fusion and Sensor Manage-
ment: A Decentralized Information-Theoretic Approaéiiis Horwood,
New-York, London, 1994.

Baofeng Guo, S.R. Gunn, R.l. Damper, and J.D.B. NelsoandBse-
lection for hyperspectral image classification using muto#drmation.
IEEE Geoscience and Remote Sensing Let#(3):522-526, 2007.
Baofeng Guo and M. Nixon. Gait feature subset seleddipmutual in-
formation. InProceedings of the First IEEE International Conference on
Biometrics: Theory, Applications, and Systemages 1-6, Washington,
U.S., 2007.

K. Torkkola. Feature extraction by non-parametric muinéormation
maximization. Journal of Machine Learning ReseartcB:1415-1438,
2003.

N. Kwak and C-H. Choi. Input feature selection by mutugbrmation
based on parzen windoMEEE Transaction on Pattern Analysis and
Machine Intelligence24(12):1667-1671, 2002.

P. Viola and W. Wells. Alignment by maximization of mutualfon
mation. InProceedings of 5th International Conference on Computer
Vision pages 16-23, 1995.

] G. V. Veres, M. S. Nixon, L. Middleton, and J. N. Carter.usfon

of dynamic and static features for gait recognition over timén
Proceedings of Eighth International Conference of Infotiora Fusion
pages —, Philadelphia, PA, USA, 2005.

A. |. Bazin and M. S. Nixon. Probabilistic combination sfatic and
dynamic gait features for verification. IRroceedings of Biometric
Technology for Human Identification 1l, SPIE Defense anduB8sc
Symposium 577%0rlando (Kissimmee), Florida USA, 2005.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algihm
for optimal margin classifiers. IrProceedings of the fifth annual
workshop on Computational learning theppages 144-152, Pittsburgh,
Pennsylvania, United States, 1992.

C. Cortes and V. N. Vapnik. Support-vector networkdViachine
Learning 20(3):1-25, 1995.

J. Platt. Advances in large margin classifiershapter Probabilistic
outputs for support vector machines and comparison to regethr
likelihood methods. Cambridge: MIT Press, 2000.

C. Burges. A tutorial on support vector machines forgrattrecognition.
Knowledge Discovery and Data Mining(2):121-167, 1998.

V. Vapnik. An overview of statistical learning theoMfEEE Transactions
on Neural Networks10(5):988-999, September 1999.



