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Abstract—Many acoustic factors can contribute to the
classification accuracy of ground vehicles. Classification based
on a single feature set may lose some useful information. To
obtain more complete knowledge regarding vehicles’ acoustic
characteristics, we propose a fusion approach to combine two
sets of features, in which various aspects of acoustic signatures
are emphasized individually. The first set of features consists
of a number of harmonic components, mainly characterizing
engine’s noise. The second set of features is a group of key
frequency components, designated to reflect other minor but also
important acoustic factors, such as tires’ friction noise. Fusing
these two sets of features provides a more complete description
of vehicles’ acoustic signatures, and reduces the limitation of
relying one particular feature set. Further to a feature level
fusion method, we propose a modified Bayesian based fusion
method to take advantage of matching each specific feature set
with its favored classifier. To assess the proposed fusion method,
experiments are carried out based on a multi-category vehicles
acoustic data set. Results indicate that the fusion approach can
effectively increase the classification accuracy compared to those
using each individual set of features. The Bayesian based decision
level fusion is found to be significantly better than the feature
level fusion approach.

Keywords: Acoustic vehicle classification, information
fusion, feature extraction, mutual information, Bayesian
decision fusion.

I. I NTRODUCTION

Acoustic sensors can collect acoustical signals to identify
the type of running ground vehicles. Acoustic sensors can be
used in many sensors networks for the applications such as
battlefield monitoring and surveillance. They become more
and more attractive because of their rapid deployability and
low cost [1]–[4]. In acoustic sensors processing, classification
algorithms play a critical role to identify the type of vehicle,
and help to improve the performance of tracking [3], [5].

Many acoustic features can be extracted for classification of
running vehicles. The commonly-used features are the levels
of various harmonics [6], [7]. The harmonics features have
achieved good classification performance, with a stable and
compact representation [3], [5]. Although many encouraging
results on acoustic vehicle classification have been shown in
the previous research [1], [3]–[5], it still remains a challenging
problem due to the complexity of vehicle acoustic signals, the
great variation of ambient interferences, etc.

In particular, most classification algorithms that have been

developed for acoustic vehicles classification only consider
one major feature set. However, the overall acoustic signalof a
running vehicle could be much more complicated; the vehicle’s
sound may come from multiple sources, not exclusively by
the engine, but also from tires, brakes, etc. Relying on one
particular feature extraction approach is therefore likely to loss
information. This could become even worse when the number
of models’ parameters is further restricted by other factors,
such as the dimensionality of a classifier’ input.

In this paper, we focus on information fusion approaches for
acoustic vehicle classification. We argue that the capability gap
between different feature sets can provide potential to improve
the classification accuracy by information fusion. Moreover,
the information fusion may alleviate the constraint on the
input’s dimensionality for certain classifiers. For example in
a decision level fusion, several classifiers can be applied to
each feature set individually, and the overall dimensionality
of input is divided by the number of the classifiers.

In the proposed fusion approach, a group of new features
are firstly extracted to amend the existing harmonic features.
The added features are named as key frequency components,
and they are selected by mutual information (MI), a metric
based on the statistical dependence between two random
variables [8], [9]. Selection of the key acoustic features by the
mutual information can help to retain those frequency compo-
nents that contribute most to the discriminatory information,
meeting our goal of fusing information for classification.

To keep the same dimensionality as the original feature
space, a feature level fusion is first designed by replacing the
higher order (or other less important) harmonic components
with the same number of key frequency components. For the
purpose of fusion, the key frequency components are deliber-
ately selected to be unrelated with the fundamental frequency.
This scheme adds no extra cost in the classification algorithm,
but has potential to increase discriminatory capability. Next,
an improved Bayesian based decision level fusion is proposed
to take advantage of matching each specific feature set with
its preferred classifiers. To assess the proposed MI-based
acoustic feature extraction and the subsequent fusion methods,
experiments are carried out based on a multi-category vehicles
acoustic data set.

The rest of this paper is organized as follows. In Section II,
we argue that multiple feature sets are needed to improve



the vehicles’ classification accuracy. Next in Section III,
we discuss how to use the mutual information to extract
the key frequency components to obtain the necessary new
information. Subsequently, to combine the harmonics features
and the key frequency features, we design a feature level
fusion in Section IV-A and propose a modified decision level
fusion in Section IV-B. Experimental results are presented
in Section V. Finally, we end this paper with conclusion in
Section VI.

II. U SING MULTIPLE FEATURE SETS FOR ACOUSTIC

VEHICLE CLASSIFICATION

Differing from the previous research [1], [3]–[5], we first
argue that multiple feature sets should be considered for a
more effective acoustic vehicle classification.

It is known that the acoustic signature of a running vehicle
is made up of a number of individual elements, such as engine
noise, tire friction noise, etc. Many classification algorithms
that have been developed in acoustic vehicle classification
were based on the harmonic features, and have been shown
effectiveness [1], [3]–[7]. However, our further discussions
can suggest that the harmonics features may be incapable
to capture the whole acoustic signatures. For examples, the
tire noise is generated by the friction between the tires and
road. The useful information embedded in this noise may
not necessarily relate with the fundamental frequency and its
integral multipliers. This indicates that the harmonics may be
unable to capture the useful distinguishing information inthis
particular element.

Though the tire friction noise seems to be a minor con-
stituent of the whole vehicle’s sound, it could contain valuable
acoustic signature, and sometimes could be important to
vehicle classification. For example, the tires friction noise
can reflect the information regarding tires’ thread and rubber
blocks. These factors are closely linked with the type of
vehicle, and should not be omitted for classification. Therefore,
to improve the accuracy of acoustic vehicle classification,we
propose to apply information fusion to include more useful
acoustic information.

In the proposed fusion approach, two sets of features
are extracted individually to capture different aspects ofthe
acoustic signature. The first one is a commonly-used harmonic
feature vector [3], [5]–[7], named asxh, which is used
to account for the engine noise. The second one is a key
frequency feature vector, named asxk, which is aimed at other
useful information, such as the acoustic signature embedded
in the tires’ friction noise.

Based on the above feature extractions, the amended acous-
tic signature consists of two parts,xh and xk, respectively.
To explore this structure, a natural approach is by data
fusion [10]. Because two sets of features characterize the
acoustic signals from different aspects, combining them has
potential to provide more information regarding the the desired
vehicle acoustic signature.

The methods on extracting the harmonic featuresxh can be
found in [6], [7]. Thus, the major problems remained in this

fusion approach are:

• How to select the key frequency featuresxk, which will
be discussed in Section III; and

• How to develop a suitable fusion scheme, which will be
discussed in Section IV.

III. E XTRACTING NEW FEATURES FOR HARMONICS-BASED

VEHICLE CLASSIFICATION

According to our discussions in Section II, the feature
vector xk is intended to provide different information to the
harmonics feature vectorxh. Thus, a practical solution to
extract xh is by searching the residual inharmonics for a
group of key frequency components, in which the contained
information will be naturally differ from the harmonics.

To find the key frequency components, an ideal search
metric would be the classification accuracy or inversely the
Bayes classification error. However, feature selection by di-
rectly minimizing the Bayes error is difficult to be analytically
performed, and an alternative discriminatory metric has to
be sought. In this research, we applied an effective feature
selection method based on mutual information, which has been
developed in our previous project [9], [11], [12]. To keep
completeness of presentation, we first recapitulate part ofthe
important equations as already described in [9], [11].

A. Feature selection by mutual information criterion

Mutual information measures the statistical dependence be-
tween two random variables and so can be used to evaluate the
relative utility of each feature component to classification [8],
[9]. Considering that the Bayes error is bounded by mutual
information [13], the key frequency components selected by
mutual information analysis is actually approximated to a
criterion by optimizing the Bayes error. Therefore, a reliable
and realistic performance can be assured to some extent (i.e., in
the meaning of Bayes error bound). Also, the implementation
of mutual information needs relatively lower computational
cost [14], [15], which further makes it more attractive than
other metrics.

In information theory, the mutual information is a quantity
that measures the mutual dependence of the two variables, and
is defined as:

I(X,Y ) =

∫

Y

∫

X

p(x, y) log
p(x, y)

p(x) p(y)
dx dy, (1)

where p(x, y) is the joint probability density function of
continual random variablesX andY , andp(x) andp(y) are
the marginal probability density functions respectively.Mutual
information is related to entropy as:

I(X,Y ) = H(X) − H(X|Y )

= H(Y ) − H(Y |X) (2)

= H(X) + H(Y ) − H(X,Y ),

given the Shannon entropy (discrete) defined as:

H(X) = −
∑

X

p(x) log p(x). (3)



According to the definition of mutual information(1) and
its relations to the entropy(3), the use of mutual information
for key frequency selection can be initially justified as follows.

Let Y be a random variable standing for the class label
(e.g., the vehicle type), andX be another random variable
denoting the amplitude for a frequency bin. The entropyH(Y )
is known to be a measure of the amount of uncertainty
about Y (i.e., the objective of prediction), whileH(Y |X)
is the amount of uncertainty left inY when knowing an
observationX. From (3), I(X,Y ) is the reduction in the
uncertainty of class labelY by the knowledge or measurement
obtained at frequency binX. Hence, mutual information can
be interpreted as the amount of information that the featureat
frequency binX contains about the class labelY (see Venn
diagram in Figure 1). In other words, mutual information is
capable to reflect the amount of information that a frequency
bin X contains about the class labelY . Since the variable
defined by class label is the required classification result,
the mutual information measures the capability of using this
frequency bin to predict the class label, i.e., the vehicle’s
identity.

H Y( ) H Y|X( ) I X Y H Y H Y|X( , ) = ( ) - ( )

Figure 1. Illustration of mutual information

B. Maximization of mutual information

After the above justifications, we show how to select
the key frequency components based on mutual information.
The framework of the MI-based feature selection can be
described as follows: given a set of original feature vectors x

′

with M components or variables, andY the corresponding
output class label (e.g., the vehicle type), find a subset vari-
ablesx ⊂ x

′ with N components (N < M ) that maximizes
MI I(x, Y ), i.e.,

J
(

x
0
)

= max
x⊂x′

I (x, Y ) . (4)

To effectively implement(4), there are two obstacles to
overcome:

• How to evaluate a multi-dimensional mutual information;
and

• How to search the maximum.
Aiming at these problems, we have developed a gradient

ascent optimization strategy to maximize MI in [9], [11],
[12]. First, we show that a multi-dimensional MI can be
decomposed into a series of one-dimensional MIs:

Let x = (X1,X2, . . . ,XM ) be a random vector repre-
senting the selected featuresXi, i = 1, 2, . . . ,M , and Y

the random variable corresponding class label. The mutual
information between them can be written as:

I(x, Y ) = I ((X1,X2, . . . ,XM ) , Y ) . (5)

If x only has two components, i.e.,x = (X1,X2), (5)
becomes:

I(x, Y ) = I((X1,X2), Y )

= H(X1,X2) − H(X1,X2|Y ). (6)

From (3), we can derive the following two equations:

H(X1,X2) = H(X1) + H(X2) − I(X1,X2), (7)

and

H(X1,X2|Y ) = H(X1|Y )+H(X2|Y )− I(X1,X2|Y ). (8)

SubstitutingH(X1,X2) andH(X1,X2|Y ) of (6) into (7)
and (8), we get:

I (x, Y ) = H (X1,X2) − H (X1,X2|Y )

= H (X1) + H (X2) − I (X1,X2) − H (X1|Y )

−H (X2|Y ) + I (X1,X2|Y )

=
∑

i=1,2

I (Xi, Y ) − I (X1,X2) + I (X1,X2|Y ) .

(9)

Extending(9) to more than two components, we have the
following equation:

I (x, Y ) =
∑

i

I (Xi, Y ) −
∑

i

∑

j>i

I (Xi,Xj)

+
∑

i

∑

j>i

I (Xi,Xj |Y ) . (10)

According to(10), the mutual information between a vector
x and a scalerY can be decomposed by evaluating the MI
between the componentXi andY , and the MI between pairs
of componentsXi and Xj . All of them are one-dimensional
mutual information, which can be effectively implemented.

To calculate one-dimensional MI, we can treat the amplitude
of each frequency bin as a random variableX with continual
value, and its category label asY with discrete class labels
(e.g.,ω1, ω2, . . . , etc.) respectively. Thus, the MI betweenX

andY can be evaluated as follows (with a similar formula for
I(Xi,Xj)):

I(X,Y ) = −

∫

X

p(x) log p(x) dx −
∑

y

P (y) log P (y)

+
∑

y

∫

X

p(x, y) log p(x, y) dx.

Meanwhile, based on equation(10), to maximizeI (x, Y ),
x = (X1,X2, . . . ,XM ), the first variable can be chosen as:

X0
1 = max

i
I (Xi, Y ) ,

whereX0
k represents the result of maximization at stepk.



Then, the second variable is chosen as:

X0
2 = max

i



I (Xi, Y ) −
∑

Xi 6=X0

1

I
(

Xi,X
0
1

)

+
∑

Xi 6=X0

1

I
(

Xi,X
0
1 |Y

)



 .

The remaining variables are chosen in the same way until
the pre-specified number,N , of variables is reached:

X0
n = max

i



I (Xi, Y ) −
∑

j

∑

Xi 6=X0

j

I
(

Xi,X
0
j

)

+
∑

j

∑

Xi 6=X0

j

I
(

Xi,X
0
j |Y

)



 .

where X0
j , j = 1, 2, · · · , n − 1 are the variables already

selected.
The above strategy selects features sequentially, and so

avoids the problem of ‘combinatorial explosion’. At each step,
the next feature will be selected so as to maximizeI(x, Y )
incrementally. This is a similar idea to the gradient ascentor
other hill-climbing algorithms.

Although we have shown that the key frequency features
selected by mutual information can effectively provide use-
ful discriminatory information, it is not recommended to
completely replace the existing features, i.e., the harmonics
features. This is because the new features are extracted purely
on the discriminatory analysis. The amount of information
extracted can be guaranteed, but the stability of the features is
unsure. For example, the velocity change of vehicles is likely
to affect the selected results. So the key frequency features
should be better considered as a supplemental constituent to
the major features, and a fusion approach should be applied to
utilize both of them. As long as this strategy is followed, the
final performance could be improved if the the key frequency
components captured the new information, but will not degrade
significantly even if they failed.

IV. FUSING ACOUSTIC FEATURE SETS

A natural way to combine the multiple feature sets for
classification is by information fusion [10], [16], [17]. Two
possible fusion strategies that can be applied for this task
are feature level fusion and decision level fusion, which are
discussed as follows.

A. Feature level fusion

The feature-level fusion is a medium-level fusion strategy,
where some features extracted from raw data are combined
for decision. Given the harmonics feature vector represented
by

xh =
{

x1
h, x2

h, · · · , xM
h

}

,

where the superscribes represent different harmonic orders,
and the key frequency feature vector denoted as

xk =
{

x1
k, x2

k, · · · , xN
k

}

,

where the superscribes represent different frequency bins, the
feature level fusion can be simply implemented by concate-
nating the two sets of features, and the fused feature vectoris
formed as follows:

xhk =
{

x1
h, x2

h, · · · , xM
h , x1

k, x2
k, · · · , xN

k

}

. (11)

One of the aims of this research is to testify if the fusion of
two set of features can improve classification accuracy. A fair
assessment should be based on the feature vectors with the
same dimensionality. Hence, the above fusion can be revised
as:

x
′
hk =

{

x1
h, x2

h, · · · , xL
h , x1

k, x2
k, · · · , xK

k

}

, (12)

whereK + L = M , andM is the dimensionality of the pre-
specified harmonics feature space. The fused feature vectors
now have the same dimensionality as the harmonic features’,
but with theL higher order (or other less important) harmonics
replaced by the same number of key frequency components.

In this feature level fusion, since features from different
extraction methods are augmented directly, a proper normal-
ization should be applied to address the difference in the
measurement scale.

According to our previous discussion, the fused feature
vectorxhk or x

′
hk tends to depict the acoustic signature more

fully: the harmonics characterize the major noise sources and
outline the global spectrum; the key frequency components
provide other localized details of the spectrum.

The implementation of this feature level fusion is straight-
forward. However, one major problem associated with this
fusion scheme is that a same classifier has to be applies
to the fused feature set, which means that the two feature
sets will be classified by the same classification algorithm.
This is a unwanted consequence for this application, because
according to Section II the two feature sets have different
utilities and may have their individually favored classifiers.
It is known that classification performance depends greatlyon
the characteristics of the data, and there is no single classifier
that works best on all given data sets. Hence to achieve a
better performance, the following decision level fusion isalso
investigated.

B. Decision level fusion

The decision level fusion is a high-level fusion, where
separate intermediate decisions can be drawn from each
individual features-set firstly and then combined to reach a
global decision.

In pattern classification, choosing a suitable classifier for
a given feature set is usually carried out by empirical tests.
In this application, followed by the previous research [3],
[5], we choose the multivariate Gaussian classifier (MGC) for
the harmonic features. Currently-popular support vector ma-
chines (SVMs) [18], [19] have shown competitive performance



with the best available algorithms in many classification areas,
so were chosen as the classifiers for the key frequency com-
ponent features. To combine the outputs from the classifiers
MGC and SVM to reach a global decision, a Bayesian-based
decision fusion is investigated, described as follows.

1) A modified Bayesian decision fusion method:

In the traditional Bayesian framework, several approaches
are adopted to combine probabilistic information. Letxi,
i = 1, 2, . . . , N be N information sources, andy the decision
result, according to themaximum a posteriori(MAP) criterion,
two usually-used fusion methods are listed as follows [10]:

p (y|x1,x2, . . . ,xN ) ∝
N
∏

i=1

p (y|xi) , (13)

and

p (y|x1,x2, . . . ,xN ) ∝ p (y)
N
∏

i=1

p (xi|y) . (14)

It is known that both of the methods are based on certain
independence assumptions. However in our application, the
two feature sets are extracted from the frequency response of
the same acoustic signal, and the independent assumption is
very unlikely to hold. So directly applying the above fusion
rules will result in larger discrepancy from the expected MAP
result. To obtain a more accurate fusion, we propose the
following improved fusion criterion.

First, based on our application scenario, two information
sources, i.e.,x1 and x2, are considered. According to the
Bayes rule, the posterior probability can be written as follows:

p (y|x1,x2) =
p(x1)p (y|x1) p (x2|y,x1)

p (x1) p (x2|x1)
. (15)

For the decision purpose, equation (15) can be simplified
as:

argmax
y

p (y|x1,x2) ∝ p (y|x1) p (x2|y,x1) . (16)

It can be found that(16) will be reduced to(14) if x1 is
independent tox2.

To implement the fusion in(16), the conditional proba-
bilities p (y|x1) and p (x2|y,x1) are needed. Through our
previous discussion, the posteriorp (y|x1) can be effectively
obtained from the SVM’s output (see Section IV-B3 for
details), and the likelihoodp (x2|y) can be conveniently
obtained from the outputs of the MGC. Then a major problem
is to estimatep (x2|y,x1) based on all available information,
which can be formulated as follows:

pxk
(xh|y)

.
= p̂ (x2|y,x1) ← {p (x2|y) ,x1,x2} (17)

So, according to our specific application a more accurate
MAP decision rule can be re-written as:

argmax
y

p (y|xh,xk) ∝ p (y|xk) p (xh|y,xk)

≈ p (y|xk) pxk
(xh|y) , (18)

wherexh andxk represent the harmonics features and the key
frequency features respectively;pxk

(xh|y) = p̂ (xh|y,xk) is
an estimate ofp (xh|y,xk) given knowledge ofp (xh|y) and
xk. To get pxk

(xh|y), we propose an approach based on a
simple information-theoretical criterion, presented as follow.

2) Modulating multi-dimensional Gaussian distribution:

The previous research [3], [5] has shown that the multi-
dimensional Gaussian distribution is an effective estimation
for the probability density of the harmonic features. So letxh

be a d-dimensional harmonics feature vector, the likelihood
function will be:

p(xh|y) =
1

(2π)d/2 |Σ|1/2
exp

(

−
1

2
(xh − µ)⊤Σ−1(xh − µ)

)

,

(19)
whereµ andΣ are the mean vector and the covariance matrix
respectively.

Because the feature vectorxh is not independent toxk,
the appearance ofxk will reduce the uncertainty ofxh.
In information theory, the uncertainty is usually measured
by entropy. So to estimatep (xh|y,xk) from p (xh|y), one
convenient approach (based on the above basic information
theorem) is to reduce the entropy ofp (xh|y) by including the
knowledge ofxk. It is known that the entropy of(19) is:

ln

(

√

(2π e)d |Σ|

)

. (20)

To reduce(20), we may modulate the covariance matrixΣ
by:

Σ∗ = (1 − β) Σ, (21)

whereΣ∗ is the updated covariance matrix, andβ is a mod-
ulation factor, decided byxk. Using the Gaussian function,β

can be defined as follows:

β = exp {−γ‖xh − xk‖} , (22)

where coefficientγ controls the depth of modulation, and its
suitable value can be empirically decided by cross-validations.

Thus, the conditional probabilityp (xh|y,xk) is estimated
by modulating the covariance matrixΣ of p (xh|y), i.e.,

p̂ (xh|y,xk) ∼ N (µ,Σ∗), (23)

where Σ∗ is the updated covariance matrix, including the
correlation betweenxk andxh ( see(22)).

3) Calibrating SVMs’ output to probability:

After obtaining the likelihood from MGC, to implement
the fusion approach in(18) we still need another posterior
probability from the SVM classifier, i.e.,p (y|xk). However,
the Standard SVMs do not provide posterior probability. To
find this probability, one of the convenient ways is by training
an additional sigmoid function to approximate a posterior
probability [20]. To explain the method, we need to firstly
introduce several necessary SVM formulas [21], [22].

Let xi be a feature (data) vector,yi ∈ (+1,−1) be the class
label, α = (α1, α2, · · · , αL), be the Lagrange multipliers,L



the number of examples andb a threshold. The SVM classifier
can be represented as:

f (x) =

L
∑

i=1

yiαiK (xi,x) + b,

whereK(x,x′) = Φ(x)T Φ(x′) is an appropriate kernel func-
tion which has a corresponding inner product expansion,Φ.
The commonly-used functions are polynomials and Gaussian
radial basis functions (RBFs):

K (x,x′) =
(

x
T
x
′ + 1

)d
, (24)

and

K (x,x′) = exp

{

−‖x − x
′‖2

2σ

}

. (25)

To get the posterior probability, we applied a mapping
method introduced in [20], where an additional sigmoid func-
tion is used to approximate the necessary posterior probability.
In detail, the posterior probability is trained by a sigmoid
function:

p (y|x) ≈
1

1 + exp (Af (x) + B)
, (26)

where parametersA and B are found by minimizing the
following cross-entropy error function:

argmin
A,B

[

−
L

∑

i=1

ti log (p (y|xi)) + (1 − ti) log (1 − p (y|xi))

]

,

(27)
with ti = yi+1

2
. The details on the calculation of(27) can be

found in [20].
Based on the above discussions, a decision fusion approach

can be implemented, summarized as follows:

• A SVM is used to draw a decision based on the key
frequency feature vectorxk;

• A maximum likelihood classifier, i.e. MGC, is applied to
the harmonic features vectorxh; and

• The improved fusion rule, proposed in(11), is then used
to achieve the final global decision.

Comparing with other Bayesian fusion rules, e.g.,(13) and
(14), the proposed method does not need the independence
assumption, and is based on a more accurate MAP criterion
(see(11)). Meanwhile, benefiting from the specific characters
of the application data (e.g, the Multivariate Gaussian distribu-
tion for harmonic features), its implementation is simplified,
avoiding those more complicated methods, such as Bayesian
inferences.

V. EXPERIMENTAL RESULTS

To assess the proposed information fusion approach, ex-
periments are carried out based on a multi-category vehicles
acoustic data set from US ARL [3]. The ARL data set consists
of recoded acoustic signals from five types of ground vehicles,
named asV1t, V2t, V3w, V4w, and V5w (the subscript
‘t’ or ‘w’ stands for the tracked vehicles or wheeled vehicles
respectively). These vehicles run 6 cycles around a prearranged

Table I
THE NUMBER OF RUNS AND THE TOTAL SAMPLE NUMBERS FOR FIVE

TYPES OF VEHICLES: TRACKED VEHICLESV1t AND V2t ; WHEELED

VEHICLES V3w , V4w AND V5w .

Vehicle Class Number of Runs Total Number of Samples

V1t 6 1734

V2t 6 4230

V3w 6 5154

V4w 6 2358

V5w 6 2698

track at different time, and the corresponding acoustic signals
are recorded for the assessment.

To obtain frequency domain representation, Fourier trans-
form (FFT) is firstly applied to each second of acoustic
signal with Hamming window, and the output of the spectral
data (i.e., a 351 dimensional frequency domain vectorx) is
considered as one of the samples for these five vehicles. Then
feature extraction is carried out on the samplex to get the two
sets of features, i.e., the harmonics feature vectorxh and the
key frequency feature vectorxk. Subsequently, these feature
vectors are fed into the classifier(s), and the final classification
result will be obtained from the fusion algorithms.

The type label and the total number of spectral vectors for
each vehicle are summarized in Table I. A ‘run’ is assumed
to correspond to a vehicle moving a360◦ circle around the
track, and a sample means the FFT result at one second time
interval. Differences in the total numbers of samples reflect
the vehicles’ different moving speeds.

As we discussed in Section IV, the features to be fused
are came from the harmonic extraction and mutual infor-
mation evaluation respectively. The left column of Figure V
illustrates the 351 dimensional spectral vectors for the five
types of vehicles (corresponding toV1t - V5w, from top to
bottom). For each type of vehicle, 20 samples are illustrated in
Figure V, reflecting the variations at different sampling time
and different runs. The right column of Figure V shows the
21 dimensional harmonic features extracted from the above
spectral vectors for these five vehicles. The amplitudes of
these harmonics will form a harmonic feature vectorxh =
{

x1
h, x2

h, · · · , x21
h

}

.
From Figure V, it can be seen than the spectral responses

of vehicle’s sounds are quiet complex, consisting of many
formants that did not appear at the exact positions of the
integral multipliers of the fundamental frequency. There are
also severe within-class variations in the acoustic features
(see the extracted harmonics features). As for the between-
class variations, there are many overlapped formants among
5 vehicles. For examples, Figure V(a) and (g) have similar
peaks around frequency 50 Hz and 100 Hz; Figure V(g) and
(i) show similar frequency response between 1-50 Hz. These
evidences show that vehicle noises are much more complex,
and a single feature set may not be able to cover all of the
acoustic characters.

In the experiments for accuracy comparison, half of runs for
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Figure 2. Illustration of spectrum (left column) and harmonicfeatures (right column) for five vehiclesV1t (top) - V5w (bottom), respectively; 20 samples
(depicted in different colors) for each class.

each vehicle (i.e., 3 runs) were randomly chosen to estimate
the statistical parameters for feature extraction, such asthe
harmonic features’ means vectorµ, covariance matrixΣ and
mutual informationI. The remaining half runs form the test set
on which performance was assessed. Next, feature extraction
are carried out based on the methods introduced in Section IV.
Following the results in [3], the harmonic number is chosen
as 211.

As we discussed previously, SVMs [18], [19], [21], [22]
and Multivariate Gaussian classifier (MGC) [5] were chosen
as the classifiers in these experiments. Because SVMs are
inherently binary (two-class) classifiers,

(

5

2

)

one-against-one
classifiers were used with subsequent majority voting to
give a multi-class result. The kernel function used is an
inhomogeneous polynomial. The penalty parameterC is tested
between10−3 and105, and polynomial order is tested from
1–10 by a two fold validation procedure using only training
data. The polynomial order 3 andC = 20 were finally found

1The main reason to choose the harmonics number of 21 is to keep
consistent with the previous studies [3]. However, we note that there may be
a minimum sufficient number for harmonics but that will depend on different
applications.

as the best values for this SVM, and applied to the following
testing stage. The training data are also used to estimate the
mean vector and covariance matrix for MGC.

To avoid bias on random samplings, the testing was repeated
10 times to allow an estimate of the error inherent in this
sampling process. The 10 times classification results basedon
different feature sets are then shown in Figure 3.
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Figure 3. Comparison of classification accuracy for different feature sets
and fusion methods; 10 times tests with random chosen 3 runs fortraining
and the remaining 3 runs for testing; the accuracy is the overall result for all
5 type of vehicles.



Table II
MEAN CLASSIFICATION ACCURACY OF10 TIME TESTS.

Methods Average accuracy (%)

Harmonics feature set 73.44

Key frequency feature set 77.05

Feature-level fusion 77.34

Decision-level fusion 83.86

Modified Bayesian decision fusion 84.24

From Figure 3, the following results are observed:
• For each individual feature sets, the key frequency feature

set (the second column) achieved better classification
accuracy than the the harmonics feature set (the first
column). This testified the effectiveness of using mutual
information for feature extraction introduced in Section
III;

• The feature level fusion (the third column) is slightly
better than using each individual feature sets (the first
and the second column) but is very close to the best result
from each individual sources. This phenomenon has been
observed in previous sensor fusion research literature;

• The decision level fusion (the fourth and fifth column)
achieved significant improvements than those using each
individual feature sets (the first and second column),
and are also much better than the feature level fusion
(the third column); This demonstrated the efficacy of the
proposed information approach; and

• The improvement of the modified fusion method (pro-
posed in Section IV-B) is found consistently in all of 10
times tests (see the fifth column).

The average numbers for the above 10 times tests’ results
are summarized in Table II, which further demonstrated the
effectiveness of proposed fusion methods.

VI. CONCLUSIONS

In this paper, we developed an information fusion approach
for acoustic ground vehicle classification. First, we argued
that multiple feature sets are needed to improve the vehi-
cles classification accuracy. Then, a key frequency feature
vector is added to the harmonic feature vector, to amend
the ignored discriminatory information. Finally, a modified
Bayesian decision fusion was proposed to better combine the
two sets of features. Experiments were carried out to assess
the classification accuracies of the fusion approach, based
on a multi-category vehicles acoustic data set. The results
showed that significant improvement of classification accuracy
has been achieved by the fusion approach. Future research
will address the features’ stability with regard to vehicles’
velocity changes, and extended this approach to other more
complicated data sets.
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