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Abstract

Using formal verification for designing hardware designs free from logic design bugs has
been an active area of research since the last 15 years. Technology has matured and we
have a choice of formal tools such as model checkers, equivalence checkers, and a range
of theorem provers. Hardware reliability and fault tolerance has been studied for a long
time as well, and some good solutions in the form of redundancy are available for making
hardware resilient against faults. However, understanding the impact of a particular kind
of fault known as a single-event-upset (SEU) or a transient fault especially in the context
of low-power design is not well understood, and therefore achieving adequate tolerance for
low-power processors against SEUs is still very much an open problem. A significant bottle-
neck in this has been the traditional fault injection methodology whereby the impact of a
fault is analysed whilst a processor is running a specific binary program image. Thus the
true impact of the fault is limited by the shadow of the particular program. Another key
problem has been the modification of the original design to incorporate fault injection
hardware. Thus, the design being checked for faults is different from the original design.
In this paper we report on our experiences on studying transient fault injection on a 32 bit
multi-cycle RISC processor using the formal specification and verification framework of
Symbolic Trajectory Evaluation (STE). Our approach offers the benefit of studying fault
injection by not modifying the original design and doing it in a program independent way.
The vulnerability of the processor is assessed in terms of its architecural features, which
is possible due to symbolic model checking.
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1. INTRODUCTION

A transient fault or a single-event-upset (SEU) [1] poses a formidable challenge due to the multi-
dimensional nature of the fault. Two dimensions identified earlier [2] have been spatial, and temporal.
We have identified a third one — the data dimension. The spatial dimension means, a transient can
hit any component of a design, which means we need to analyse all components and all paths of a
design. The second is temporal - a transient can hit at any time, thus one needs to cover all temporal
possibilities during the running of a design. The third dimension - data means that a transient can hit a
circuit whilst it is processing some data. This is especially true of processors with their own memory and
they execute a program when a transient hits it. So one needs to analyse the effect of a transient fault
on a design taking into account that the design could be executing any application program (data). A
significant bottle-neck in this has been the traditional fault injection methodology [3-5] whereby the
impact of a fault is analysed whilst a processor is running a specific binary program image. Thus the true
impact of the fault is limited by the shadow of the particular program. Another key problem has been
the modification of the original design to incorporate fault injection hardware. Thus, the design being
checked for faults is different from the original design. The problem of SEUs is better addressed at the
level of server grade processors and desktop processors, since one can incorporate different redundancy
techniques. However, for a low-power processor that runs on battery, incorporating redundancy on the
same lines as for desktop processors does not make sense from energy point of view. Therefore, one
needs to strike a fine balance between tolerance requirements and energy [6, 7], which can only be
achieved by having a precise and comprehensive understanding about the impact of SEUs on simple,
low-power designs.
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FIGURE 1: Traditional Fault Injection. Traditionally fault injection is carried out by comparing the behaviour
of two different RTLs, one that has been instrumented to incorporate faults, and the other — golden RTL —
which expresses the intention of the designer in a fault-free case. Both these RTLs are simulated whilst running
specific binary program images. The comparison is usually done by comparing the output values of gates,
registers, memory elements and so on. Our Approach. The golden properties are instrumented to capture
transient faults, and are then verifed against the golden RTL. The outcome of this is a set of counter-examples
that provide useful insights on how to obtain tolerance. The golden RTL and golden properties are obtained by
iterative refinement of the given RTL, and an initial set of STE properties developed by the designer, through
a formal verification step.

2. STE MODEL CHECKING - A BRIEF INTRODUCTION

We wanted to explore features in our property specification language that would enable us to write
properties about complex hardware designs with ease, that could be used for model checking efficiently.
STE has been used successfully in large-scale datapath verification [8] of microprocessors.

STE gains its strength by combining the ideas of ternary modelling (using 0,1 and X) with
symbolic simulation (using symbolic variables) over time. The presence of Xs provides abstraction
necessary to handle the complexity of verifying symbolic properties during model checking. These
characteristics allow STE to perform property checking more efficiently than conventional model
checking algorithms, which operate over more expressive logics like CTL [9]. Of course, there is a
trade-off, because STE's logic is simple, it may take more properties to verify the same functionality
than in CTL. On the other hand, although the logic of STE seems rather weak, its expressive power is
greatly extended by implementing a symbolic ternary simulation algorithm [10].

Symbolic ternary simulation uses Boolean variables and propositional formulas to represent whole classes
of data values on circuit nodes. The ternary value associated with each node is given by a symbolic
data structure whose variables act as parameters. With this representation, STE can combine many
(ternary) simulation runs—one for each assignment of values to the variables—into a single symbolic
simulation run covering them all. The usual implementation uses BDDs [11], but other representations
are possible.

The formulas representing values at different circuit nodes can have variables in common, so they
can also record interdependencies among node values. Symbolic values therefore greatly increase the
expressive power of the limited temporal logic of STE. For example, input-output relations can be
extracted from a circuit by using symbolic simulation to derive formulas for the values on output nodes
as functions of variables standing for arbitrary values on input nodes. These can then be checked against
a specification in the form of some reference formulas provided by the verification engineer.

Specifications in STE, take the form of what are known as symbolic trajectory formulas. Formally, we
define the syntax of formulas [8, 12] as follows:



Definition 1. Syntax of STE formulas

f 2 nis0 - node n has value 0
| nisl - node n has value 1
| fiand fu - conjunction of formulas
|  fwhenG - f is asserted only when G is true
| Nf - f holds in the next time step

where f; and fy range over formulas, n € string ranges over the nodes of the circuit, and G is a
propositional formula over Boolean variables (i.e. a Boolean ‘function’) called a guard. The advantage
of using a Boolean expression is in specifying conveniently many different operating conditions in a
compact form. The various guards that occur in a trajectory formula can have variables in common,
so this mechanism gives STE the expressive power needed to represent inter-dependencies among node
values. For example, we can associate an arbitrary propositional formula G with a node using the
construct ‘n is G' defined by

nis G = ((nis 1) when G) and ((n is 0) when = Q)

For implementation efficiency Boolean expressions are denoted by binary decision diagrams [13] (BDDs).
Verification takes place by testing the validity of an assertion or property against a given model. Circuit
models in STE are defined on three-valued states, and are constructed on-the-fly during simulation,
from the FSM (.exe) representation of the circuit. A property is of the form (A =-C), where both A
and C are trajectory formulas. Intuitively, the antecedent A provides the stimuli to the circuit, and the
consequent C' expresses what the designer expects to see. In practice, every successful STE run i.e.,
a run that returns the value True, is a theorem that holds for all the Boolean variables mentioned in
the property. However, when the outcome of an STE model checking run is a counter-example, it is an
indication of a bug in the hardware, and in the context of STE, it means that if we can come up with
a satisfying assignment of Boolean values True (logic 1) and False (logic 0) to the Boolean variables
in the counter-example, one can explicitly reveal the trace (consiting of Os and 1s ) that would be
responsible for the bug. Usually there is more than one way to satisfy the counter-example, and this
means that in one symbolic model checking run, we can succintly capture all the possible traces.

STE model checking also encounters state space explosion problem [14], but in practice there is a
deductive layer [8, 15-17] that wraps the model checking engine. This layer is built from a set of sound
inference rules within the logic of STE. These rules are used [16], often repeatedly to decompose the
given original property into smaller properties, and once the smaller properties are checked against the
given model, the overall property verification run is composed back from the inference rules. We have
made good use of the STE inference rules in our task, and have found that they greatly enhance the
overall verification task both in terms of the speed of execution, and the time taken by the model
checker to perform checking.

3. OUR APPROACH

We identified a 32-bit multi-cycle RISC processor to conduct our study of fault injection, using the formal
specification and verification framework of Symbolic Trajectory Evaluation (STE). Our approach [18]
offers the benefit of studying fault injection by not modifying the original design and doing it in a
program independent way. We express faults in properties that are written using the syntax of STE.

We first obtain a golden RTL by verifying fault-free properties against the given RTL. Usually, the
RTL may have logic design bugs and/or the properties themselves may have errors. In either case, the
verification step would produce counter-examples. We use these counter-examples to refine the RTL
and/or properties accordingly and we repeat this process till we stop getting anymore counter-examples.
The RTL obtained at this stage is called a golden RTL and the resulting set of properties - golden set
of properties. A high-level view is presented in Figure 1.

Once we obtain the golden pair of RTL and properties, we modify the golden set of properties, to
capture the transient faults we would like to investigate. The modified set of properties with the fault,



is then verified against the golden RTL using STE model checking. When we verify a property-with-a-
fault against the golden RTL, the fault itself is expressed by modifying A, whilst the expected behaviour
of the circuit expressed in C remains unchanged. The outcome of this model checking run is a counter-
example — a Boolean constraint that needs to be satisfied in order to make the property-with-a-fault
work exactly as the property-without-the fault. This Boolean constraint denoted by a BDD, is an
abstraction of all the possible traces involving Os and 1s, which if fixed would make the circuit work
correctly, for the faulty property. Since the counter-example is made from Boolean variables placed on
the circuit nodes in the antecedent of the property, it gives architectural inter-dependency amongst
the various circuit nodes in the presence of a fault. By using generic Boolean symbols (variables) and
conducting symbolic simulation, instead of simulaton over Os and 1s, one obtains a data independent
way of analysing the impact of faults — a strategy we believe could be useful to the designers and
testing community.

4. RESULTS

In this section we summarise, our findings on the fault injection in different parts of the processor shown
in Figure 2. An important observation in our experiments is that many times in spite of a fault, its effect
may not necessarily propagate to those points in the circuit that we are interested in observing. In this
case we say that the fault has been masked. In our approach, since we construct a fault-free property
and a faulty property, if the effect of a fault (expressed in the faulty property) is not propagated to the
nodes in the consequent of the property then the fault’s effect is said to be masked.
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FIGURE 2: CPU datapath showing functional blocks (adapted from [19]).



Fetch

Properties needed to check the functionality of the fetch unit.

Fy PC gets incremented correctly by 4 or, PC gets the Branch address.
F5 The instruction memory works correctly.

Faults in the Fetch Unit

Property | Faulty Component | Fault Impact
PC Masked if the branch instruction is in the pipeline.
Fy Branch Address Masked if the next instruction is not a branch one.
F Instr Mem Masked if faulty location is not read from
or else over-written with new data.
Decode

Properties required to verify that the decode works correctly.

D, Verifying that the ReadDatal port of the register bank always gets the data from the register
indexed by the address placed on ReadRegisterl port of the bank.

D5 Verifying that the ReadData2 port of the register bank always gets the data from the register
indexed by the address placed on the ReadRegister2 port of the bank.

D3 WriteAddress port of the register bank takes on an address value selected by the RegDst.

D, WriteData port of the register bank takes on the data value selected by MemtoReg.

D5 Registers get updated correctly on a write.

Dg Sign-extension is correct.

Faults in the Decode Unit

Property | Faulty Component Fault Impact
Register Bank Masked if faulty location is not read from
D, or else over-written with new data.
Instr[25:21] Less if data is not read from
the faulty combination of address location.
Register Bank
D, Instr[20:16] similar to Dy
Instr[20:16] Masked if RegDst is enabled.
Ds Instr[15:11] Masked if RegDst is disbaled.
RegDst Masked only when Instr[20:16]=Instr[15:11]
ReadData port of DataMemory Masked if MemtoReg is disabled.
D, ALUResult port of the ALU Masked if MemtoReg is enabled.
MemtoReg Masked only
when ALUResult[31:0]=ReadData[31:0].
Register bank Masked if RegWrite is enabled.
Ds MemtoReg None
RegDst None
WriteRegister Address of the register Bank | None
ALUResult port of the ALU None
ReadData port of the DataMemory None
D Instr[15:0] Severe, can be fixed only if the error
in Instr[15:0] is corrected.
Control

The following control signals take on the appropriate values

Cy RegDst = —lnstr[31] A —Instr[30] A =Instr[29] A =Instr[28] A =Instr[27] A —Instr[26]
Cy Lw = Instr[31] A =lnstr[30] A =Instr[29] A —Instr[28] A Instr[27] A Instr[26]




C3 Sw = Instr[31] A —Instr[30] A Instr[29] A —Instr[28] A Instr[27] A Instr[26]

C4 Beq = —lInstr[31] A —Instr[30] A —Instr[29] A Instr[28] A —Instr[27] A —Instr[26]
Cs5 ALUSrc = lw V sw

Cs RegWrite = Ilw V Rformat
C7 MemRead = lw

Cs MemWrite = sw

Cy Branch = Branch

C10 ALUOpl = Rformat

C11 ALUOPpO = Branch

For properties C; — C4, a fault in a single bit can be masked by coming up with an assignment of
values - logic 0 or 1, to the non-faulty bits, such that the overall value of the control pin for example
RegDst in case of (' stays as logic 0. Thus the control signals in C; — C4 would continue to take on
correct values under a subset of operating conditions. This is due to the fact that all the control signals
in C7 — Cy are logic AND of the inputs.

For properties C5 — Cg, for a fault in one of the input bits, we can mitigate the effect by asserting a
logic 1 at the other non-faulty bit. This is due to the fact that ALUSrc and RegWrite are logic OR of

the inputs.

For properties C'; — Cy1 the effect of fault is severe, since there is no set of operating conditions which
can alleviate the effect of the fault, unless it is fixed at the source.

Execute

Properties required to verify that the Execute works correctly are:

E, ReadDatal output from the Decode stage is copied onto the Ainput.
FE5 ReadData2 output from the Decode stage is copied onto the Binput.

E3 Zero gets a logic 1 on ALUResult being 0.

E4 Branch Adder works corectly.
E5 The output of the branch adder gets transferred to AddResult of the Fetch unit.
Egs ALU operations - Add, Sub, AND, OR and NOT work correctly.

Faults in the Execute Unit
Property | Faulty Component Fault Impact
ReadDatal port of Register Bank | Severe, no mitigation possible
FEq until the fault is fixed at the source.
ReadData2 port of Register Bank | Masked if ALUSrc is enabled.
Es Extend Masked if ALUSrc is disabled.
ALUSrc Masked if ReadData2[31:0]=Extend[31:0]
Es ALUResult[31:0] Masked if one of the bits of ALUResult[31:0] is a logic 1.
Extend Severe, there is no set of operating conditions that can
Ey PC offset the impact of fault in either of these inputs.
FEs AddResult Same as Fj.
Ainput[31:0] The underlying principle is very similar to the case of
Es Binput[31:0] the Control unit as explained earlier.
ALUctl[2:0]

Data Memory

The case of Data Memory is exactly similar to the Instruction Memory for our case study since the two
memories have been designed identical to each other.




5. RELATED WORK

Hazelhurst et al. [20] were the first to note that one can use formal property checking to specify and
verify the effects of stuck-at faults. They proposed using STE to accomplish this, and for this reason
their work is most similar to ours. But there are notable differences between our approach and the
one Hazelhurst et al. proposed. In their method, faults were modelled by decomposing the finite-state
machine representation into smaller components, and each smaller model is modified to incorporate
faults that they investigated. The authors deal with three different FSMs, one that represents the RTL
under investigation, one that injects the faults, and the third that monitors the effect of faults. However,
manipulating low-level FSMs is compute intensive, is less abstract and less intuitive, and is therefore
not desirable. Another shortcoming of their approach was that they hand-converted the VHDL code
into an FSM representation, which obviously limits the applicability of their approach.

Leveugle [21] was the first to show how IBM's Property Specification Language (PSL) based property
checking can be used together with controlled mutations, for transient fault injection. The basic idea is
that the RTL that has to be investigated for faults is instrumented with extra hardware to model faulty
behaviour. The author uses mutants [22] for this precise instrumentation technique. Much care was
taken in developing these mutants, since having too many of them, will result in state-space explosion.
The author noted that using PSL rules in practice was difficult, and often the rules were long and
complex. In addition the tools that are used for model checking were not able to say much in case of
a contradiction, besides saying “over-constrained”. Also the tool Leveugle used was unsound, meaning
the tool okayed the properties whilst there were known counter-examples.

Krautz et al. [23] also used PSL based property checking to evaluate the effect of transients on the
coverage of error-detection logic. The basic approach used by them is very similar to Leveugle —
instrument the VHDL with faulty hardware, and then use PSL property checking to evaluate the
behaviour of the RTL while it executes specific benchmark programs. The authors prefer dealing with
two separate RTLs — one the golden RTL which is fault-free and other the fault injected model.
Tolerance in the form of error-detection-and-correction is encoded in the RTL and PSL is used to
express properties that will check if the tolerance is adequate to mask the faults.

6. CONCLUSION

Property checking and symbolic simulation based methodology provides a systematic method of
conducting fault injection. Though this technique cannot provide tolerance to the effect of fault in
all parts of the CPU, it provides insights into sets of operating conditions under which faults in certain
components can be masked. This information would be useful to an architect for designing optimal
redundant solutions for tolerance. For example if a processor is likely to execute a set of programs
without many Branch instructions, it may not be necessary to provide redundancy against faults in the
Branch side of the fetch unit. Many of the findings discovered as a result of our study seem intuitive,
but it would be extremely difficult if not impossible to unravel these using a traditional fault injection
approach. Due to symbolic simulation, exponential test space is cut down to linear, symbolic, verification
cases. By using a property checking approach, one is able to express the spatio-data-temporal nature
of the bit-flip effectively in the form of small number of properties. The use of STE as a specification
language for properties turned out to be very useful since STE has a very simple syntax, although
restricted when compared to PSL. STE also offers verification efficiency, the interested reader is referred
to [12] for further details. Fault being captured in properties rather than in the RTL [2, 4,21, 23] allows
efficient model checking, and the RTL being checked for faults remains identical to the original RTL.
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