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ABSTRACT
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Doctor of Philosophy

by Stuart David Mowbray

This thesis proposes a new model for describing spatio-temporally deforming objects.

Through a novel use of Fourier descriptors, it is shown how arbitrary shape description

can be extended to include spatio-temporal shape deformation. It is further demon-

strated that these new spatio-temporal Fourier descriptors have the ability to be used

as the basis for both the recognition and extraction of deforming objects. Application of

this new recognition technique to human gait sequences demonstrates recognition rates

of over 86% for individual human subjects, signifying that these descriptors possess

unique descriptive properties. Based upon the new spatio-temporal Fourier descriptor

model, a new technique for the detection and extraction of deforming shapes from an

image sequence is presented through a new variant of the Hough transform (the Con-

tinuous Deformable Hough Transform) that utilises spatio-temporal shape correlation

within an evidence-gathering context. This new technique demonstrates excellent suc-

cess rates and tolerance to noise, correctly extracting human subjects in image sequences

corrupted with noise levels of up to 80%. The technique is also tested extensively using

real-world data, thus demonstrating its worth in a modern-day computer vision system.

Both the spatio-temporal Fourier descriptor model, the Continuous Deformable Hough

Transform, and aspects of their application are fully discussed throughout the thesis,

along with ideas and suggestions for future research and development.
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Chapter 1

Context and contributions

1.1 Allied research areas

Fourier descriptors have been applied successfully to many shape recognition problems

and provide a method of analytically representing a shape’s contour. Many advantages

are gained from having a shape description in an analytic form. If the shape is scaled

or rotated, for example, then the transformations can be simply applied to the analytic

form, which is continuous, and discretisation errors are therefore kept to a minimum.

Further to this, being Fourier-based, Fourier descriptors allow access to any frequency-

based properties that the shape may possess. For example, small details of a shape

are contained in the higher frequencies of the Fourier descriptors, while a more general

definition of the shape is contained in the lower frequencies. This also means that

the general description of the shape is very compact, with very high frequencies usually

containing little information about the actual shape itself. The use of Fourier descriptors

to describe rigid shapes is well established. The use of Fourier descriptors to model

deforming, non-rigid shape sequences however, is something that has not previously

been researched or demonstrated, and it is this new modelling technique, along with its

applications which this thesis presents. The ability to analytically represent a whole non-

rigid shape sequence and to have access to the spatio-temporal frequency components

of the shape as it deforms renders this model extremely flexible. This is demonstrated

by the fact that the model is not only easily generalised to aid in shape detection, but

is also suitable for discriminating between very similar shapes (for example, the shape

of different human subjects).

In a modern computer vision system, a large part of the problem of being able to

successfully interpret a scene is having the ability to identify and extract parameters

(regarding pose and orientation, for example) of specific objects. Due to this, this area

of computer vision has always been a naturally active area. To humans this is a task

that we often do without thinking; it is a cognitive process that we have developed

1



Chapter 1 Context and contributions 2

naturally since birth [4]. However, when viewing a scene, objects are often occluded by

other objects, or subject to lighting variations, which make it very hard for automatic

recognition systems to successfully identify them. Evidence-gathering techniques (or

voting algorithms), such as the Hough transform and its successors [2, 5, 16, 19, 31]

produce a statistical measure for the likelihood of an object with a given set of parameters

being present in a scene, thus identifying a best-fit model of the object in question. Over

the years, variants of the Hough transform have been developed, derived from various

basic object models, with some even making an allowance for the fact that objects can

move through an animated scene. However, none of these variants have considered

objects that deform, of which there are many – particularly in the natural world where

the majority of animals deform in some predictable way as they move. The lack of

development in this area is perhaps due to a lack of suitable models for such objects and

the fact that processing whole sequences of images, rather than just static scenes, only

became a feasible research area in more recent years, as increasing computer processing

power has permitted it within realistic time-scales. As previously mentioned, one of

the aims of this thesis is to demonstrate a new model for such periodically deforming

shapes, and as such it seems only natural to then use this model as the basis for a new

evidence-gathering technique, which is also presented later in the thesis.

1.2 Application domain

One of the most intuitive application domains for the new shape deformation model is

automatic human gait recognition. Human gait is a relatively new biometric, which aims

to recognise people by the way they walk. Gait itself has long been recognised as a very

individual characteristic – a fact that even Shakespeare recognised, as demonstrated in

Julius Caesar (Act 1, Scene 3): “Tis Cinna; I do know him by his gait”. Gait analysis

has received considerable attention in the medical field and is well known as being one

of the most complex of all human motions (and therefore very individual). Gait can also

be monitored and analysed in a non-invasive manner, indeed it is this ability to observe

gait non-invasively that makes it such a desirable biometric. In recent years, research

into gait as a biometric has escalated and its suitability as a biometric has been estab-

lished. The Defence Advanced Research Projects Agency (DARPA) recently funded a

number of institutions to take part in a research program into Human Identification at

a Distance. The participating institutions focusing specifically on gait were: the Uni-

versity of Southampton; the Massachusetts Institute of Technology; Georgia Technical

Research Institute; the University of South Florida; University of Maryland; Carnegie

Mellon University; and the National Institute for Standards in Technology (NIST). With

human gait being such an active research area, it becomes a natural area of application

for the techniques developed throughout this thesis.
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1.3 Scope of this thesis

This thesis proposes a new method of modelling periodically deforming shapes. Based

around the concept of Fourier descriptors, a new spatio-temporal Fourier descriptor

is developed which is capable of capturing periodic shape deformation, such as that

demonstrated by many animals, including humans. Being Fourier-based, this model

provides many inherited advantages, such as being continuous in nature and providing

access to the spatio-temporal frequencies of an animated shape sequence.

Derived from this model, a new evidence-gathering technique, based around the Hough

transform, is also presented. This new technique, named the Continuous Deformable

Hough Transform (CDHT), demonstrates all the same robust features of the original

Hough transform, such as being very tolerant to noise and occlusion. Further to this,

as the CDHT’s kernel is based around the previously developed spatio-temporal Fourier

descriptor model, it also inherits all the benefits of continuous shape representation,

such as the ability to undergo affine transformations with minimal risk of discretisation

errors occurring.

Both the model and the Continuous Deformable Hough Transform developed as part of

this thesis are tested through their application to human gait recognition and detection,

respectively. Specific features of the model are used to test the discriminability of the

model’s parameters, and a ‘generic’ model is used as the basis for the detection of walking

humans in video footage.

The purpose of applying these new techniques to human gait is not necessarily to develop

a fool-proof gait recognition system, but to test the discriminability of the features of the

model and the extraction capabilities of the CDHT. Therefore, throughout the thesis,

the concept of human gait is considered in only a simplified form, where the gait of a

subject is measured from an almost camera-parallel (side-on) perspective, thus appearing

in two-dimensions. In an ideal scenario for these tests, the camera would be precisely

plane-parallel to the subject, and thus gait should appear to be perfectly periodic (within

the limitations of the subject’s capability to perfectly reproduce their movements during

each gait cycle). In reality, however, the data used during this thesis was gathered using

a fixed camera observing each subject walking by. This will inevitably cause slight errors

in the periodicity of the gait cycle, but the skewing of the camera viewpoint introduced

here is considered negligible for the purposes of the work contained in this thesis. Indeed,

it would be very difficult in the real-world application of gait recognition to observe every

moving subject in a plane-parallel manner, and therefore the results demonstrated in

this thesis are more likely to describe the performance of the techniques described when

applied in the real-world, rather than in a perfect environment.
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1.4 Thesis structure

The overall structure of this thesis is split into three conceptual sections. The first section

introduces the background for the research presented throughout the remainder of the

thesis, and lays down the theoretical and formal definitions for the new spatio-temporal

Fourier descriptor model used to describe periodically deforming shapes.

The second section shows how the parameters of the new spatio-temporal Fourier de-

scriptor model can be used to discriminate and classify temporally deforming shape

sequences. In this thesis, this is demonstrated through the application of the technique

to automatic human gait recognition, although it should be noted that this new model

could be applied to any periodically deforming objects or shapes.

The development of a new evidence-gathering mechanism, the Continuous Deformable

Hough Transform (CDHT), is detailed and demonstrated in the third section of the

thesis. The CDHT uses the spatio-temporal Fourier descriptor model as the underlying

kernel model for detecting periodically deforming objects. Again, human gait is the

application domain here, and the thesis demonstrates how the CDHT can be used to

successfully detect and extract the correct model parameters for a range of human

subjects in both artificial and real-world image sequences. This section also details

the performance testing measures carried out to demonstrate the CDHT’s ability to

cope with noise and occlusion.

Chapter 2

This chapter introduces and gives background information relating to the areas of general

shape description, Fourier descriptors, gait recognition, and shape detection. Other

studies related to these areas are discussed and motivations for the remainder of the

thesis are developed.

Chapter 3

This chapter describes and formally defines the new spatio-temporal Fourier descriptor

model. Spatial and temporal normalisation procedures are also discussed here, and

examples of spatio-temporal Fourier descriptors are demonstrated.

Chapter 4

This chapter demonstrates the ability of the new Fourier descriptor model to discriminate

between shape sequences. This discriminability is tested using portions of the University
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of Southampton’s Large Gait Database [38]. During the testing 115 subjects and 1062

gait sequences are used, resulting in a Correct Classification Rate of 86.2%.

Chapter 5

Building on the new Fourier descriptor model, Chapter 5 introduces the theory behind

the Continuous Deformable Hough Transform (CDHT). Spatio-temporal and velocity

scaling mechanisms are described and discussed, and pseudo-code for the CDHT is

presented.

Chapter 6

Chapter 6 takes the CDHT from theory into practice, describing the application of the

CDHT to a real image sequence. Considerations to the practical application of the

CDHT to real image sequences are also discussed here.

Chapter 7

This chapter describes simulated noise tests conducted on the CDHT. Varying noise

levels from 0% – 100% are used, with the CDHT exhibiting excellent tolerance to noise,

even under extreme conditions.

Chapter 8

Chapter 8 describes and demonstrates ‘real-world’ testing on the CDHT, with outdoor

data from the University of Southampton’s Large Gait Database being used for the test

data. The data is used in its ‘raw’ format, to estimate the CDHT’s performance on

such data, and also in a pre-processed form using basic image processing techniques, in

order to test the CDHT’s performance as part of a realistic modern-day computer vision

system.

Chapter 9

In this chapter, the effects of occlusion on the overall performance of the CDHT are

examined, using the results of the real-world data tests from Chapter 8 as a baseline

measure of performance for comparison.
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Chapter 10

This chapter concludes the thesis with suggestions for further research areas, and a

summary and critical discussion of the work.

1.5 Publications resulting from this work

1. Mowbray, S. D. and Nixon, M. S. (2003), Automatic Gait Recognition via Fourier

Descriptors of Deformable Objects, in Proceedings Audio- and Video-based Bio-

metric Person Authentication 2003 (AVBPA 2003), pages 566-573, Guildford, UK,

2003.

2. Mowbray, S. D. and Nixon, M. S. (2004), Extraction and Recognition of Period-

ically Deforming Objects by Continuous, Spatio-temporal Shape Description, in

Proceedings IEEE Computer Society Conference on Computer Vision and Pattern

Recognition 2004 (CVPR 2004), volume 2: pages 895-901, Washington DC, 2004.



Chapter 2

Introduction

2.1 Motivation

Many living objects deform in some way as they progress through their daily lives. A

large majority of these deformations, specifically in animals, are periodic in nature. One

only has to consider the shape formed by an object such as a walking human, or a

cantering horse to observe this periodic deformation. Eadweard Muybridge, a pioneer

in the photography of moving images, studied many such forms of periodic motion in

humans and animals (Figures 2.1(a) and 2.1(b)), and his work is considered by many

to represent the beginning of the science of biomechanics. It is the aim of this thesis

to develop techniques to describe and detect periodically deforming and moving objects

such as these.

The vast majority of previous research in the computer vision community has concen-

trated on the detection, description, or recognition of apparently rigid and stationary

shapes. This was mostly, no doubt, due to the lack of computer processing power and

memory to enable work on more complicated shapes and image sequences. Recently, as

computer power has increased and digital video has become more and more widespread,

we have seen the inclusion of motion in many aspects of computer vision. However,

although these ‘spatio-temporal’ techniques have included motion, the vast majority do

not take into account that objects can, and often do, deform as they move.

Detecting any form of shape or object, either rigid or non-rigid, static or moving, first

requires that the shape in question can be described mathematically in some way. This

could be an image of the shape, with the mathematical model simply being a list of pixel

locations and values, but more often, and more preferably, this will be an analytical

‘model’ of some form or another. Providing one can do this, techniques then need to be

employed to take an image or model of a new scene and efficiently and robustly search

for new occurrences of this shape. The aim of modelling a shape mathematically before

7
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(a) Le galop de Daisy

(b) Sequence of Eadweard Muybridge Walking

Figure 2.1: Eadweard Muybridge’s studies of human and animal motion.

detection is to capture the ‘essence’ of the shape, so that when detection takes place the

detection algorithm isn’t confused by external factors, such a lighting or occlusion.

2.2 Shape description and modelling

To describe a shape in a way that is unambiguous, but also general enough to capture

only the true characteristics of the shape is a problem that has been studied since the

emergence of computer vision, and before this, in cognitive psychology. Although, as

humans, we are very good at ‘seeing’ and recognising everyday objects, one only has

to think of an object such as a table or chair to realise that, when asked to describe it

unambiguously, we often fail miserably. One person may describe a table as having “four

legs and a flat top”, but this description may also describe a bed, a chest of drawers, a

stool, or a number of other objects. Even in most modern object recognition systems,

it is often the responsibility of human operators to first provide a description of the

objects of interest. Given a layperson’s apparent lack of ability in providing these object
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descriptions unambiguously, it is little wonder that some automatic object recognition

systems fail. This is the reason that a good model of an object is essential.

In the field of computer vision, two major schools of research have emerged over the

holistic description of shapes, these being perimeter-based and area-based. Perimeter-

based shape descriptors consider a shape to be defined by its internal and external

boundaries, which often manifest themselves as edges in images. Conversely, area-based

descriptors consider shapes to be defined by the properties of the actual space they

cover.

Perception of both the perimeter of a shape and the area it covers are subject to error,

especially in cases of occlusion. Typically in the case of occlusion, however, the occluding

object obscures more information pertaining to the area of the shape than the perimeter.

2.2.1 Area-based metrics

Perhaps one of the most commonly used area-based shape metric is that of statistical

moments. Low-order statistical moments are encountered in everyday statistics, such as

the zeroth- and first-order moments, which are used to calculate the mass (or area when

applied to images) and the mean (or center of mass) of an object respectively.

When expressed in two-dimensions simple Cartesian moments are expressed as

mpq =

∫

R

∫

R

xpyqf(x, y)dxdy (2.1)

where R is a set of real numbers. For a discrete image Pxy, this becomes

mpq =
∑

x∈R

∑

y∈R

xpyqPxy (2.2)

where (x, y) forms a Cartesian pixel location.

Often, moments are applied to binary images where pixels in foreground objects are

denoted by a 1 and the background is denoted by 0s. In a simple example of a binary

image containing one object, the total area of the shape therefore becomes

A = m00

=
∑

x∈R

∑

y∈R

x0y0Pxy

=
∑

x∈R

∑

y∈R

Pxy

(2.3)
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and the Centre of Mass of the object is found by normalising the two first-order moments

by m00, as shown in Equation 2.4.

x̄ = m10

m00
ȳ = m01

m00

x̄ =
∑

x∈R

∑

y∈R
xPxy

A
ȳ =

∑

x∈R

∑

y∈R
yPxy

A

(2.4)

An example of these basic Cartesian moments applied to a simple binary image can be

seen in Figure 2.2.

y\x 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0

2 0 0 0 1 1 1 1 0 0 0

3 0 0 0 1 1 1 1 0 0 0

4 0 0 0 1 0 0 1 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 1 1 1 1 1 1 0 0

7 0 0 1 1 1 1 1 1 0 0

8 0 0 0 1 1 1 1 0 0 0

9 0 0 0 0 0 0 0 0 0 0

Area: 30, Center of Mass: (x = 4.5, y = 5.0)

Figure 2.2: Example of a binary image and associated zeroth- and first- Cartesian
moments.

Many variations of moments exist, such as centralised moments, which are invariant to

translation, and Hu moments, which are invariant to translation, rotation, and scaling.

More recently, Shutler [37] extended centralised moments to model shapes in motion.

These moments, known as velocity moments, demonstrate how a shape’s statistical de-

scription can be improved by utilising temporal correlation; a concept which is demon-

strated further in this thesis. Recently, Foster [10] also used area-based masks to measure

the dynamics of the changing area of a shape through time as a means of discriminating

between human subjects.

Another often used area-based metric that is worth mentioning is that of projection. In

their simplest form, projections for binary images consist of a summation of each column

and each row of the data to produce individual horizontal and vertical projections.

Again, this is demonstrated in Figure 2.3 using the same binary image that was used in

the previous Cartesian moment demonstration.

Projections are reasonably crude metrics for recording information about a shape’s area,

and are inherently affected by changes in the shape’s orientation or size. However,

they are very quick to calculate when these parameters are known, and as such, this
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technique might lend itself well to areas of computer vision such as Optical Character

Recognition (OCR), or any other other application domain where speed and simplicity

in a constrained environment are required.

y\x 0 1 2 3 4 5 6 7 8 9 H-Proj

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 0 0 0 0 2

2 0 0 0 1 1 1 1 0 0 0 4

3 0 0 0 1 1 1 1 0 0 0 4

4 0 0 0 1 0 0 1 0 0 0 2

5 0 0 0 1 0 0 1 0 0 0 2

6 0 0 1 1 1 1 1 1 0 0 6

7 0 0 1 1 1 1 1 1 0 0 6

8 0 0 0 1 1 1 1 0 0 0 4

9 0 0 0 0 0 0 0 0 0 0 0

V-Proj 0 0 2 7 6 6 7 2 0 0

Figure 2.3: Example of a binary image and associated horizontal and vertical projec-
tions.

Although interesting subject matters in themselves, the metrics and methods of area-

based shape description will not be discussed further in this thesis, as the thesis’ central

research area is derived from the use of perimeter-based metrics; area-based metrics are

presented here merely to juxtapose the two techniques for the reader.

2.2.2 Perimeter-based metrics

We now move on to the area of shape description which this thesis directly addresses and

extends – that of perimeter-based shape description. In contrast to area-based shape

description metrics, which aim to capture properties relating to the space which a shape

covers, perimeter-based metrics use the boundaries of this space.

Early attempts at perimeter description resulted in the Chain codes [12]. Chain codes

represent the perimeter of an object by coding a numerical value representing the relative

direction needed to move from one edge point to another, typically continuing around the

shape’s boundary until the start point is reached. One could think of this as analogous to

the American ‘block’ system used when giving directions, for example, “Walk two blocks

north and 3 blocks east”, which could be represented as NNEEE in this specific chain

code notation. The number of values used to encode a direction change is dependent

upon whether the boundary points around the shape are 4- or 8-connected, as described

in Figure 2.4.

Chain codes represent a complete boundary description, in that a full reconstruction

of the shape’s boundary can be reproduced from the chain code, but are inherently
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2

1 · 3

4

2 3 4

1 · 5

8 7 6

Figure 2.4: 4- and 8-connected chain code coding systems.

difficult to work with in situations where invariance to scale and rotation are needed.

An example of a basic shape and its associated 8-connected Chain Code can be seen in

Figure 2.5.

Figure 2.5: A shape and its associated 8-connected chain code.

More recently, Fourier descriptors have been used with great success to model shapes and

object boundaries. Fourier descriptors transform a space-domain representation of the

boundary pixels (a set of pixel points) into the frequency domain, allowing any periodic

properties of a shape’s perimeter to be analysed. Low frequencies are associated with

macroscopic features of the shape’s perimeter, while higher frequencies are associated

with more microscopic, sharp changes in the perimeter, such as corners.

Fourier descriptors have the advantage that they are reasonably easy to be made invari-

ant to scale, rotation, and start point. Furthermore, as the Fourier descriptor representa-

tion of a shape’s boundary defines an analytic curve, scale and rotation transformations

can be performed in the frequency domain, avoiding many possible discretisation errors

associated with such transformations when performed in the time domain. This can

clearly be seen when comparing Figure 2.6 with Figure 2.7. Figure 2.6 depicts a discrete

method of representing a shapes boundary (a bitmap), whereas 2.7 depicts a continu-

ous, Fourier-based shape description, both of which are rotated and scaled. It is easy

to see that any rotation using a discrete boundary representation can cause undesirable

discretisation effects. Similarly, the bitmap in Figure 2.6 consists purely of a set of dis-

crete sample points, and when scaled these points ‘explode’ out from the origin of the

scaling operation and the shape boundary lacks any continuity. Conversely, the rotated

and scaled boundaries shown in Figure 2.7 demonstrate how a continuous model can be

transformed with very little distortion due to discretisation, with the only significant
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errors being made when sampling takes place to convert this continuous curve back into

the discrete world of computer graphics for display purposes.

(a) scale 1, rot 0 rad (b) scale 1, rot 1 rad (c) scale 1, rot 2 rad (d) scale 1, rot 3 rad

(e) scale 2, rot 0 rad (f) scale 2, rot 1 rad (g) scale 2, rot 2 rad (h) scale 2, rot 3 rad

(i) scale 4, rot 0 rad (j) scale 4, rot 1 rad (k) scale 4, rot 2 rad (l) scale 4, rot 3 rad

Figure 2.6: Discrete shape representation and transformation.

Many studies in computer vision have used Fourier descriptors successfully to model

shape boundaries [15, 25, 29, 35]. Aguado et al [2] was the first to combine Fourier

descriptors and the Generalised Hough Transform to exploit the power of continuous

shape representation and the robustness of the Hough transform to detect static shapes.

2.3 Shape detection

Being able to describe a shape through whatever means, whether area-based or perimeter-

based, naturally leads to the desire to detect that shape when presented with a new

scene. A number of forms of shape detection, some of which are now almost de-facto

standards, have been used for a number of years, two of which are template matching

and the Hough transform and its successors [5, 19].

Template matching involves correlating a kernel (a simple representation of the shape

being sought) with the possible feature points (typically edges pixels) in a new scene.
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(a) scale 1, rot 0 rad (b) scale 1, rot 1 rad (c) scale 1, rot 2 rad (d) scale 1, rot 3 rad

(e) scale 2, rot 0 rad (f) scale 2, rot 1 rad (g) scale 2, rot 2 rad (h) scale 2, rot 3 rad

(i) scale 4, rot 0 rad (j) scale 4, rot 1 rad (k) scale 4, rot 2 rad (l) scale 4, rot 3 rad

Figure 2.7: Fourier-based shape representation and transformation.

The computational complexity of template matching is governed by the dimensionality

and size of this scene and the number of feature points in the kernel, as a correlation

coefficient for each possible feature point in both the kernel and the test feature-space

has to be calculated – the kernel literally has to be tested in every single position to

obtain the maximum correlation coefficient, which hopefully then defines the location

of the shape being sought. It is this high computational demand that often limits the

application of template matching, with more constrained and efficient shape detection

methods being favoured instead.

One of these more efficient shape detection methods is the Hough transform, which

uses a technique known as evidence-gathering. Evidence-gathering techniques work by

allowing any given feature point in the test space (e.g. a binary edge image) to cast

a number of ‘votes’ for the correct parameters (location, size, orientation, etc.) of the

shape being sought. By this process, each feature point suggests ‘evidence’, in the form

of these votes, for a possible shape with a certain set of parameters. The votes are cast

into an accumulator space (also known as a Hough space), the dimensionality of which

is equal to the number of unknown parameters of the shape being sought.
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An example of the original form of the Hough transform – that for straight lines, is given

by first examining the parameterisation for a straight line, as shown in Figure 2.8.

ρ = x cos θ + y sin θ

Figure 2.8: Parameterisation of a straight line.

Given that two of the parameters in this parameterisation, x and y, are known for

each feature point in any given scene, the accumulator for the Hough transform for a

straight line is two-dimensional, with the free (unknown) parameters being ρ and θ –

the distance between the line and the origin, and the angle of the line to the origin

respectively. Similar Hough transforms can be developed for any shape that can be

described parametrically, such as a circle, which is expressed by Equation 2.5, and

therefore has a three-dimensional accumulator, parameterised by a, b, and r, where

(a, b) are the coordinates of the center of the circle, and r is the radius.

(x − a)2 + (y − b)2 = r2 (2.5)

When all votes have been cast for each feature point, the accumulator space is searched

for either a global maximum of votes, if only one shape is being sought, or a number of

local maxima, if more than one shape is being sought. The unknown parameters of the

shapes found then correspond to the location of these maxima in the accumulator.

A number of advancements have been made since the original formulation of the Hough

transform for straight lines, probably the most notable of which is the Generalised Hough

Transform [5], which parameterises arbitrary shapes by forming a table (known as a ’R-

table’) of polar vector mappings from a shape’s edge points to a given reference point

(usually its center of mass).
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The Velocity Hough Transform (VHT) [31] is a more recent development that extends

the concept of the Hough transform by including velocity as a free parameter, allowing

the detection of shapes moving across an image sequence. The commonplace use of video

over the past decade has undoubtedly contributed to the need and practical feasibility

for the development of such techniques. Limited computer processing power ensured

that detection of objects moving through image sequences was something that could not

have even been conceived of at the time of Hough’s original work.

Even more recently, Grant [16] developed the Continuous Velocity Hough Transform

(CVHT). The CVHT further extended Nash’s Velocity Hough Transform by not only

allowing a shape to be tracked across an image sequence, but also by allowing arbitrary

shapes to be used. Furthermore, Grant’s work incorporated Aguado et al’s approach to

modelling the shape continuously – a fact that dramatically reduces discretisation errors

when testing for the presence of a shape at differing scales or rotations, as previously

seen. A variant of the CVHT also featured the inclusion of a non-linear motion model,

allowing for arbitrary (but previously known) patterns of motion to be detected.

2.4 Biometrics

The use of biometrics to uniquely identify a person has grown rapidly over the years.

From the use of fingerprints, to the identification of humans through analysis of iris

patterns, biometric-based techniques are fast becoming commonplace in a variety of

application domains. Biometrics have been used most notably in the areas of security

and surveillance, where reliable verification of individuals, without the risk of forgery, is

essential. Usual methods of personal identification either involve lengthy enrollment and

calculation procedures in order to gain accuracy (such as DNA testing), or are fast but

unreliable (such as a PIN code system). Biometric-based methods, however, have the

potential to provide the end user with an excellent combination of speed and security.

2.4.1 Gait as a biometric

Recently, a significant amount of attention has been devoted to the use of human gait

patterns as a biometric, and to the analysis of human motion in general. Studying this

motion, however, is a difficult task. Studies of human gait have been carried out in many

disciplines, such as psychology, biomechanics, and various medical fields. However, these

studies have usually required human interaction, such as manual labelling of the data or

the use of markers. The aim of computer vision-based analysis of human gait therefore,

is to automatically recover and describe human gait accurately and with minimal human

intervention. Several models have been proposed for the description of the human body

and also for the description of human gait [1, 14, 41]. Human gait has many advantages
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over other biometrics, but perhaps its most notable advantages are that it is non-invasive,

offering a means to verify identity without a subject’s active participation, and that

it offers a means of offering recognition at a distance – something that many other

biometrics are not capable of.

Many descriptors of human gait are kinematic in nature, relying on geometric descrip-

tions of the various body parts and mathematical modelling of the transformations which

describe their movement. A number of kinematic features exist, such as the angles of

various body parts through time, their velocity, and their acceleration. Other stud-

ies have taken a more statistical approach to produce a unique gait descriptor. These

have included the use of Principal Component Analysis (for dimensionality compression)

combined with Canonical Analysis (for classification) [20], the use of velocity moments

[39], and more recently the use of Hidden Markov Models [24]. Other approaches have

included the use of area-based features [11], the analysis of ‘frieze’ patterns [27], and the

use of static parameters, such as height and stride-length [23]. Research has also being

carried out into describing human motion by analysing the bilateral symmetry inherent

in human gait [7, 18].

Most popular models of human gait used in computer vision have taken one of two

forms. One approach has been to model the pendular movement of the human thigh

using simple harmonic motion [9], while the other approach models the thigh and lower

leg movement as coupled oscillators [42]. These models, however, represent only sections

of the human body and do so by finding a best fit of the model to the image data.

Many other approaches have been taken to the recognition of humans from shape statis-

tics and gait models, and good reviews of current state-of-the-art techniques can be

found in [33] and [34].

2.5 Summary and aims

This thesis presents a new and original model for representing periodically-deforming

objects through the novel use of spatio-temporal Fourier descriptors. By utilising this

spatio-temporal Fourier descriptor model, a biometric can be obtained which is capa-

ble of discriminating between human subjects. Further to this, it will be shown how

a normalised version of this model can be used to form a basis for a new variant of

the Hough transform (the CDHT), which is capable of extracting moving, deformable

objects (such as walking human subjects) from an image sequence. This new Hough

transform technique not only proves to inherit many desirable features from the stan-

dard Hough transform, such as its ability to deal with noise and occlusion, but also

provides a continuous, spatio-temporal shape representation to deal with the effects of

discretisation, and has the computational benefit of having a parameter space with a

fixed number of dimensions.
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Throughout this thesis, use of the spatio-temporal Fourier descriptor model and the

CDHT are demonstrated through their application to human gait. More specifically,

this will be shown through demonstrating their application to automatic gait recognition

and to the extraction of walking humans from image sequences.



Chapter 3

Modelling deformable objects

using spatio-temporal Fourier

descriptors

This chapter discusses the concept of extending Fourier descriptors to include temporal

information, rather than just spatial information as used previously. Spatio-temporal

Fourier descriptors offer a continuous method of representing an entire sequence of a

periodically deforming and moving shape in a complete and compact form. In order

to explain the concept of using Fourier descriptors to model sequences of shapes fully,

we will first examine the background theory of Fourier descriptors for two-dimensional

shapes, then progress to develop and explain the theory for spatio-temporal Fourier

descriptors.

3.1 Modelling two-dimensional shapes

If a shape’s boundary forms a closed curve, then this curve c – a function of arc-length,

l, with total arc-length L, can be considered to be periodic such that

c(l + L) = c(l) (3.1)

Two-dimensional shapes are usually represented on a Cartesian plane, where the x and

y coordinates of the shape are a function of the shape’s arc-length. If one defines a

mapping from the Cartesian plane to a complex plane, however, then it is possible to

represent a shape’s boundary as a complex function of arc-length

c(l) = x(l) + j.y(l) (3.2)

19
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A diagrammatic example of this mapping can be seen in Figure 3.1.

Figure 3.1: Cartesian plane to complex plane mapping.

3.1.1 Elliptic Fourier descriptors

Due to the periodicity of c(l) it is possible to represent the shape’s boundary using a

Fourier series, with the coefficients of the series, axk, bxk, ayk, and byk, being the Fourier

descriptors of the shape

c(l) = ax0

2 +
∞
∫

k=1

{axk cos
(

kl2π
L

)

+ bxk sin
(

kl2π
L

)

} +

j

(

ay0

2 +
∞
∫

k=1

{ayk cos
(

kl2π
L

)

+ byk sin
(

kl2π
L

)

}
)

(3.3)

The coefficients of Equation 3.3 describe the boundary of the curve c(l) in increasing

detail as k increases, with the components when k = 0 (the DC component) being

closely related to the center of mass of the shape enclosed by c(l). Figure 3.2 shows how

the inverse function of Equation 3.3 can be used to reconstruct an original shape using

various subsets of the increasing values of k, from just a single component (k = 1) to

the first 256 components (k = 1 . . . 256). It can be seen that at k = 1 the reconstructed

shape consists simply of an ellipse, with the inclusion of increasingly higher harmonic

components revealing more and more detail until, in Figure 3.2(j), the boundary of the

shape is virtually complete at the resolution shown.

For each harmonic in a set of these ‘elliptic’ Fourier descriptors, the Fourier coefficients

axk, bxk, ayk, and byk can be interpreted as a rotating elliptic phasor (a rotating vector),

as l changes, thus giving the name “elliptic Fourier descriptor”. Using this interpretation,

each elliptic phasor orbits around the previous harmonic’s elliptic locus with a speed that
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(a) Original (b) k=1 (c) k=1. . . 2 (d) k=1. . . 4 (e) k=1. . . 8

(f) k=1. . . 16 (g) k=1. . . 32 (h) k=1. . . 64 (i) k=1. . . 128 (j) k=1. . . 256

Figure 3.2: Two-dimensional shape reconstruction from Fourier descriptors using
increasing numbers of harmonic components.

is proportional to its harmonic value k. The original shape is then reconstructed from a

summation of these rotating phasors, as seen in Figure 3.3.

3.1.2 Invariance

Descriptors that are invariant to rotation and start point can be obtained by considering

the lengths of the semi-major and semi-minor axes of each harmonic phasor’s elliptic

locus. The dimensions of these axes are given by [32] as the Euclidean distance between

the origin and the coordinate pairs (axk, ayk) and (bxk, byk) for the semi-major and semi-

minor axes respectively, as shown in Figure 3.4.

However, these measures only hold true when the phasor’s start point is aligned with the

semi-major axis of the elliptic locus. This can be readily seen by studying the equations

for the x and y projections of the elliptic locus in Cartesian space when l = 0, as shown

by Equation 3.4.
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Figure 3.3: Example of how a shape is reconstructed from rotating elliptic phasors.

Figure 3.4: Magnitude of semi-major and semi-minor elliptic axes for a rotating
phasor.

xk(0) = axk cos (0) + bxk sin (0)

yk(0) = ayk cos (0) + byk sin (0)

⇒ xk(0) = axk

yk(0) = ayk

(3.4)

Equation 3.4 demonstrates that the only time for which the locus is defined exactly by

the coefficients axk and ayk is at the start point of the elliptic phasor, when l = 0. This
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will not always be the case, and so for this measure of axes length to hold true, a rotation

operator must be applied to all four Fourier coefficients, as discussed in [25], to align

the start point of the phasor with the semi-major axis of the harmonic’s elliptic locus.

[

a′xk a′yk

b′xk b′yk

]

=

[

cos θk sin θk

− sin θk cos θk

][

axk ayk

bxk byk

]

(3.5)

where θk is the angular rotation of the semi-major axis of the kth harmonic’s elliptic

locus. This is discussed further in [32].

Another, perhaps simpler method for determining the location (and subsequently the

magnitude) of the semi-major axis and semi-minor axis can be demonstrated by finding

the two points of inflexion of a distance function defined from the centre of the ellipse

to its locus, given by

distk(l) =
√

(distxk(l)2 + distyk(l)2)

where

distxk(l) = axk cos
(

kl2π
L

)

+ bxk sin
(

kl2π
L

)

and

distyk(l) = ayk cos
(

kl2π
L

)

+ byk sin
(

kl2π
L

)

(3.6)

These two points of inflexion (one a local maximum and one a local minimum) can be

found by setting the derivative of distk(l) to 0 and solving for l. The first solution which

satisfies this is given at distance

sol1k =
L

4π
tan−1

[

2(axkbxk + aykbyk)

a2
xk + a2

yk − b2
xk − b2

yk

]

(3.7)

with the second solution being most readily found by noticing that the semi-major and

semi-minor axes are orthogonal

sol2k = sol1k − L

4
(3.8)

This gives the solution for a point on the ellipse located π
2 radians around its contour

from the point specified by sol1k.

Substituting sol1k and sol2k into Equation 3.6 gives the length of the semi-major and

semi-minor axes of the kth harmonic ellipse, which can be summed to give a descriptor

for this harmonic which is invariant to both rotation and start point. Invariance to

scale can be easily obtained by normalising each harmonic’s descriptor with respect to

the magnitude of the first harmonic’s descriptor, and invariance to translation can be
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obtained by discarding the descriptors for k = 0, which describes the shape’s center of

mass. Thus, descriptors that are invariant to start point, translation, rotation, and scale

can be defined as

dk = distk(sol1k)+distk(sol2k)
distk(sol11)+distk(sol21) k ∈ Z+ : k 6 ⌊L

2 ⌋ (3.9)

Invariant elliptic Fourier descriptors for the two different shapes featured in Figure 3.5

are shown in Table 3.1. These Fourier descriptors, calculated using the method above,

are shown for the original shape, the shape after a rotation transformation, and after

both a rotation and a scaling transformation.

(a) Shape 1 (b) Shape 2

Figure 3.5: Basic two-dimensional shapes.

Shape Transformation 1st Harm 2nd Harm 3rd Harm 4th Harm

1 Original 1.000 0.149 0.135 0.081
Rotation 1.000 0.149 0.133 0.079

Rotation & Scaling 1.000 0.146 0.135 0.080

2 Original 1.000 0.102 0.083 0.021
Rotation 1.000 0.103 0.083 0.021

Rotation & Scaling 1.000 0.101 0.086 0.021

Table 3.1: Invariant elliptic Fourier descriptors.

It is clear to see that the descriptors for Shape 1, even after several affine transformations,

are very similar, and quite different from those of Shape 2. The slight variations in the

actual values of the descriptors can be put down to discretisation errors. This shows

the uniqueness of the descriptors in describing a shape and also the invariant properties

they possess. It is worth noting that the first harmonic’s descriptor always equals unity

– this is due to the scale normalisation process described earlier.

Making elliptic Fourier descriptors totally invariant in this way is a good method for

analysing basic properties of two-dimensional shapes, but this invariance comes at a

cost: the descriptors lose their ability to reconstruct the shape and therefore lose much
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of their potential descriptive power (in this case they lose information relating to the

rotation, start point, true scale, and eccentricity of the elliptic phasors). Due to this,

when we examine the application of elliptic Fourier descriptors to modelling periodically

deforming shapes in the next section, a different approach to invariance will be used,

which treats a sequence of shapes as a whole, rather than just individual two-dimensional

shapes.

3.2 Modelling periodically deforming shapes

If we now consider a shape which deforms between points 0 and T in time, indexed by

t, we can model the periodicity of the deforming shape s, at arc-length index l as

s(t, l) = s(t + T, l) (3.10)

Given this representation, it is possible to model the whole periodically deforming bound-

ary of a shape in this shape sequence as a two-dimensional complex Fourier series

s(t, l) =

∞
∫

kt=0

∞
∫

kl=0

ŝ(kt, kl)e
j2π(

t.kt
T

+
l.kl
L

) (3.11)

given here in complex form for brevity. The Fourier coefficients of this series then

characterises one whole period of the shape’s movement.

If we consider the discrete case for a periodically deforming and moving shape then T

becomes equivalent to the number of images in one period of motion, L is the length

of the boundary of the object, and the Fourier coefficients, ŝ, can be represented by a

discrete two-dimensional complex Fourier series

ŝ(kt, kl) =
1

T.L

T
∑

t=0

L
∑

l=0

s(t, l)e−j2π(
kt.t

T
+

kl.l

L
) (3.12)

with these spatio-temporal Fourier descriptors then describing the way the spatial fre-

quency components of each frame vary over time.
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3.2.1 A short note on frequency content and boundary length

As each time-domain signal1 (a boundary signal of each frame of the sequence) is of

variable length, and therefore of variable potential frequency content, an unequal number

of spatial frequencies will be available for each shape in a given sequence. It is therefore

necessary to impose a limit on the number of spatial frequencies that are calculated in

order to aid in the calculation of the spatio-temporal descriptors. To ensure that the

Nyquist sampling criterion is satisfied, this frequency limit must be no larger than half

of the length of the shape in the image sequence with the shortest boundary length. A

maximum frequency limit is therefore defined as

kmax =

⌊

min
t

(Lt)−1

2

⌋

t ∈ 0 . . . T − 1 (3.13)

where Lt is the complex time-domain signal length of the tth shape in the sequence.

It should be noted that any truncation of the spatial frequency information, such as

that possibly encountered here, may result in a loss of information relating to small

details in the shape’s boundary. In practice, however, and certainly in the case here,

loss of high order harmonics should not prove to be a hindrance, as the true lengths

of the time-domain signals do not vary by a large amount, resulting in only the loss

of only ‘extreme’ high-order harmonics. These harmonics are likely to be either noise

in the original signal, or extremely insignificant harmonics, which are very probably

contaminated by noise.

Due to this variation in boundary length, the spatial coefficients for each shape in a

given image sequence are calculated and then band-limited during the calculation of the

spatio-temporal Fourier descriptors, so that each signal contains the same number of

spatial harmonics, as follows

ŝ(kt, kl) =
T
∑

t=0

c∗t (kl)e
−j2π(

kt.t

T
) (3.14)

where

c∗kt
(k) =















ckt
(k)

2.kmax+1 k ∈ 0 . . . kmax

ckt
(k+Lt−2.kmax−1)

2.kmax+1 k ∈ kmax + 1 . . . 2.kmax

(3.15)

and

ckt
(k) =

L
∑

l=0

s(kt, l)e−j2π(
kt.l

L
) (3.16)

1Occasionally, especially when referring to core Fourier theory, the term time-domain will be used

to describe the Euclidean description of a shape’s boundary as a function of time. However, as we are

dealing with a two-dimensional shape contour deforming over time, this could become confusing for the

reader. When this is the case, attempts will be made to disambiguate the two concepts.
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The scaling factor encountered in Equation 3.15 ensures that the energy of the signal

is conserved when restricting the number of harmonics in the signal, thus ensuring

that Parseval’s theorem [8], specifying that the energy in both the time and frequency

domains is equal, is still satisfied.

For clarity, the band-limiting function shown here will be omitted from further formu-

lae, but it should be noted that in practice this step is necessary to ensure that the

spatio-temporal Fourier descriptors can be calculated correctly. Band-limiting the spa-

tial frequency domain in this way is equivalent to resampling each curve, c(l), so that

each contains the same number of samples. In this case, however, band-limiting in the

frequency domain is preferred to resampling in the time domain in order to eliminate

discretisation errors when resampling.

3.2.2 Motion model normalisation

A moving shape’s position changes over time. The amount of change in spatial position,

however, is not always directly related to the shape’s size: a tall person walking slowly

may take shorter strides, and will therefore travel less distance, than a short person

taking longer strides, perhaps due to being hurried. It is therefore desirable to normalise

this motion pattern independently of the shape’s size.

When a shape moves it causes the spatial DC components of Equation 3.12, which

describe the shape’s center of mass, to vary, with movement corresponding to changes in

the real and imaginary parts of the DC component for movements in the x-axis and y-

axis respectively. Due to the separability property of the Fourier transform, the spatial

Fourier DC components can be calculated and then normalised with respect to the

whole image sequence before the temporal calculation of the spatio-temporal Fourier

descriptors has occurred, thus creating a motion model which is shape-size invariant.

During this normalisation process the shape’s motion model is translated so that the

center of mass of the first shape in the sequence, at t = 0, is located at the origin (0, 0).

The motion model is then scaled so that the total Euclidean distance that the shape

travels within one period from the origin is unity.

ŝ(kt, kl) =
1

T

T
∑

t=0

[

motionnorm

(

1

L

L
∑

l=0

s(t, l)e−j2π
kl.l

L

)]

e−j2π
kt.t

T (3.17)

where
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motionnorm(f(t, 0)) = ℜ(f(t, 0))−ℜ(f(0, 0))√
ℜ(f(T−1, 0))2+ℑ(f(T−1, 0))2

+ t ∈ 0 . . . T − 1

j.
ℑ(f(t, 0))−ℑ(f(0, 0))√

ℜ(f(T−1, 0))2+ℑ(f(T−1, 0))2

(3.18)

3.2.3 Shape-size invariance

Making the descriptors shape-size invariant is important if we are to neglect the effect of

scale in the shape sequence model (which can be affected by camera-to-subject distance,

for example). Normalisation of the sequence with regard to shape-size is performed with

respect to the largest spatial dimension within the whole shape sequence (in the case of

the human subjects used in this thesis, this corresponds to the largest perceived height

of the subject through a gait sequence). This normalisation process is performed not

only to ensure that the aspect ratio of the shape remains correct, but also to ensure

that any relative changes to the shape’s overall size within the sequence remain intact.

Again, this takes place in the spatial frequency domain, before full formulation of the

spatio-temporal descriptors, thus ensuring that discretisation errors that would normally

affect scaling in the time domain do not occur.

The shape-size normalization process is shown below in Equations 3.19 and 3.20

ŝ(kt, kl) =
1

T

T
∑

t=0

[

sizenorm

(

1

L

L
∑

l=0

s(t, l)e−j2π
kl.l

L

)]

e−j2π
kt.t

T (3.19)

where
sizenorm(f(t, kl)) = f(t, kl)

max
t

(max
kl

(ℑ(s(t, kl)))−min
kl

(ℑ(s(t, kl))))

kl ∈ 1 . . . L − 1, t ∈ 0 . . . T − 1
(3.20)

A graphical example of a shape sequence and the magnitude plot of a subset of its as-

sociated normalised spatio-temporal Fourier descriptors are given in Figures 3.6 and 3.7

respectively. Note that for convenience and clarity the spatio-temporal DC component

has been removed in Figure 3.7 and the descriptors have been rearranged so that the

harmonics run from negative frequencies, through DC, to positive frequencies.

Several artefacts from the segmentation process can be seen in Figure 3.6, such as those

exhibited in Frame 29 and Frame 30, where shadows cast on the floor in the original

image sequence have erroneously been included in the extracted silhouette. These will

obviously affect the resulting Fourier descriptors, but since small artefacts such as these

represent only a small level of detail in the time-domain signal, they shouldn’t affect the

lower range of harmonics (which represent the more general, overall form of the shape’s

boundary) significantly.
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Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 6 Frame 7 Frame 8 Frame 9 Frame 10

Frame 11 Frame 12 Frame 13 Frame 14 Frame 15

Frame 16 Frame 17 Frame 18 Frame 19 Frame 20

Frame 21 Frame 22 Frame 23 Frame 24 Frame 25

Frame 26 Frame 27 Frame 28 Frame 29 Frame 30

Figure 3.6: Example shape sequence of a walking human.
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Figure 3.7: Shifted magnitude plot of spatio-temporal Fourier descriptors for Figure
3.6.
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It can be seen in Figure 3.7 that temporal frequencies drop to near zero at a much

quicker rate than the spatial frequencies. The rate at which the spatial frequencies drop

to zero will be determined by the complexity of the shape in question, and the rate at

which the temporal frequencies drop to zero will be determined by the complexity of

the temporal deformation of the shape. Medical studies have shown that human gait

has a maximum temporal frequency of around 5Hz [3], the Fourier descriptors shown in

Figure 3.7 certainly fit in with this observation for the gait sequence shown in Figure

3.6.

3.3 Discussion

This chapter has shown a new and novel use of Fourier descriptors to model periodically

deforming objects. The descriptive power of these descriptors will now be examined in

Chapter 4, with an application to human gait recognition, before their use as the basis

for a new variant of the Hough transform, specifically designed to extract parameters

for periodically deforming objects, is examined and developed in subsequent chapters.



Chapter 4

Gait recognition using

spatio-temporal Fourier

descriptors

The Fourier descriptor model described in the previous chapter provide a means of

capturing spatio-temporal information which is not only complete (if phase is included),

but also very compact. The majority of the information relating to a deforming shape

is contained within the lower frequencies of the descriptors, with higher frequencies

containing only minor details, which are also much more susceptible to noise.

Access to the spatio-temporal frequency domain of the shape sequence provides a con-

venient method of analysing fundamental structural properties of a deforming shape,

and as such, the spatio-temporal Fourier descriptors provide a good theoretical basis for

discriminating between differing deformable objects.

4.1 Forming a database of shape-sequences

To test the recognition capabilities of this new model, spatio-temporal Fourier descrip-

tors were calculated for each subject in the Large Gait Database at the University of

Southampton [38]. This database consists of 115 subjects and 1062 sequences (only

right-to-left walking sequences were used in this study). In order to extract the bound-

ary for each shape, background extraction (via chroma-keying) was first performed on

each image in a particular sequence. Each image was then thresholded to produce a

silhouette (see Figure 4.1). The boundaries from each subject were then extracted by

following the boundary of each silhouette, starting from the top of the head (thus hav-

ing a consistent start point), to produce a complex boundary signal, from which the

spatio-temporal Fourier descriptors were calculated.

31
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(a) Original Image (b) Extracted Silhouette

Figure 4.1: Silhouette extraction.

The image sequences were captured under laboratory conditions so as to provide accu-

rate segmentation of the subject. Obviously, if these techniques were to be applied to

other data then suitable background subtraction/object extraction techniques should be

applied to provide an accurate segmentation of the objects of interest prior to proceeding

with the calculation of the spatio-temporal Fourier descriptors.

The subject extraction process consists of four major stages: Chroma-key extraction;

image cropping; connected components analysis; and morphological filtering. The first

two of these stages can be considered to be background subtraction stages, while the

latter two stages ‘clean’ the binary image to remove any unwanted artefacts. A more

detailed description of this process is given below.

Chroma-key extraction

The footage from the Southampton database was filmed against a green-screen back-

ground. This green hue was chosen as it would conflict minimally with the clothing of

the subjects being filmed (subjects were not allowed to wear green clothing).

After filming, chroma-key technology was used to perform background extraction on the

image sequence as follows

1. A conversion was made between the RGB (Red, Green, Blue) colour-space to the

HSV (Hue, Saturation, Value) colour-space.

2. A gamut of the HSV colour-space was defined which encompassed an optimal

variation of the background HSV values.

3. All the pixels which had values within the selected HSV region were set to 0 (i.e.

the background), while all other pixels were set to 1 (i.e. the foreground), to

produce a binary image. This process was repeated, from stage 1, for each image

in the image sequence.
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Image cropping

Some regions of the images (such as the ceiling and lights) did not contain any green hue

and as such were assigned to foreground pixels during the chroma-keying process. Since

these regions were consistent throughout the image sequences they could be defined and

then cropped from each image.

Connected components analysis

After cropping each image, analysis of the “connected components” was performed to

produce several labelled areas. The largest of these areas was assumed to be the human

subject and all other areas were assumed to be noise with respect to the image content

and assigned pixel values of 0, rendering them as part of the background.

Morphological filtering

The previous processing stages ensures that a connected area representing the human

silhouette is found. However, ‘holes’ may exist in this binary silhouette. A morphological

‘closing’ operation is performed to eliminate this

1. Dilation is performed to expand the borders of the foreground image, thus filling

in any small holes within the silhouette.

2. The image is eroded to remove the pixels added onto the outer border of the

silhouette. Note that the inner portion of the silhouette will not change here,

hence preserving any filled in holes.

Both the dilation and the erosion were performed using a 3 × 3 square structuring

element.

4.2 Calculation of spatio-temporal Fourier descriptors

Using the silhouettes produced by the methods described above, spatio-temporal Fourier

descriptors were produced using the techniques described in Chapter 3. Measures were

taken to ensure that the start point for each image in the image sequences was kept

consistent. This was achieved by scanning for the start point of the boundary of each

subject from the top-left of the image. Since all subjects were walking upright and right-

to-left, this ensured that the start point for each boundary was located at the left-most

pixel at the top of the head. The effects of rotation were also not considered in this

study, as all subjects were walking on a horizontal plane. Following the production of

the boundary signals, the Fourier descriptors were then calculated.
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4.3 Feature Selection

The resulting descriptors contain a large number of spatio-temporal harmonics, even

though the majority of the information about the subject’s gait is contained in the

relatively small subset of these. In order to use these descriptors for classification pur-

poses it was therefore necessary to reduce the number of descriptors, or ‘features’ for

each subject. This was necessary for two reasons, firstly to extract only the descriptors

that would be useful for classification, and secondly to reduce the dimensionality of the

feature space – ensuring feasible classification speeds.

The primary aim of feature selection in this case is to minimise intra-subject variance

and maximise inter-subject variance, in order to increase the Correct Classification Rate

(CCR). Successfully achieving this will result in good clustering in the feature space,

such as that seen in Figure 4.2, which shows clustering of 4 different subjects using

the three Fourier descriptors which gave greatest class separation. Although only 3

descriptors are used in Figure 4.2 (due to the limitation of only being able to display

a three-dimensional plot) many more descriptors were used in classification, and any

subjects which overlap or lay close in such a three-dimensional feature space should

be separated by the addition of further dimensions found through the feature selection

algorithm explained below.

To obtain a measure of inter-subject variance one can use a variation of the Bhat-

tacharyya distance metric to measure inter-class separation due to mean-difference with

respect to the class covariances [13] – a method also used by Yam [41]. In practical terms

this metric gives a measure of the distance between class means weighted by the amount

of overlap between the two classes due to sample variation from the mean. Figure 4.3(a)

demonstrates two classes with a relatively low Bhattacharyya distance from each other,

with many samples from each class encroaching into the space occupied by the other. In

contrast, Figure 4.3(b) demonstrates two classes with a relatively high Bhattacharyya

distance from each other, with a well-defined space between the samples of each class

being observed; these are classes with good separation.

The separation between the two classes a and b, for a given feature, is given by

Sa,b = [ma − mb]

[∑

a
+
∑

b

2

]−1

[ma − mb]
T (4.1)

where ma is the class mean and
∑

a is the covariance matrix of class a, with equivalent

terms for class b.

To gain a measure of a feature’s ability to separate classes successfully a mean value of

S was determined for each feature as
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(a) View showing separation between Subject 1 and Subject 2
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(b) View showing separation between Subject 3 and Subject 4

Figure 4.2: Clustering of different subjects using three Fourier descriptors:
Subject 1 ◦; Subject 2 △; Subject 3 �; Subject 4 ×.
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(a) Classes with a low Bhattacharyya distance:
Class 1: ×, N(10, 2); Class 2: ◦, N(20, 1)
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(b) Classes with a high Bhattacharyya distance:
Class 1: ×, N(10, 5); Class 2: ◦, N(20, 4)

Figure 4.3: Examples of class separation and associated Bhattacharyya distance met-
rics.

S̄ =
1

N2

N
∑

a=1

N
∑

b=1

Sa,b (4.2)

where N is the number of subjects for the given data set. S̄ is then proportional to the

class separability measure of the given feature, with larger values of S̄ implying good

class separability.

It should be noted that the feature selection process used here was chosen for reasons

of simplicity, but other more sophisticated feature selection algorithms could have been

employed. In particular, the ANOVA (Analysis Of Variance) technique [37], used to test

for significant class mean differences, would be particularly well suited to this. Principal

Component Analysis (PCA) could also be used as a means of reducing the dimensionality

of the data set prior to classification.

4.4 Classification and initial recognition testing

Initial testing was performed using twenty features selected using the method described

above as having the highest class separability values.

Classification was performed using a K-nearest neighbour classifier and cross-validated

with the leave-one-out rule. This classifier assigns a test subject to be the same class

as that of the modal class of the kth nearest neighbouring subjects to it. If no modal

class is found, then the test subject is assigned to the class of the nearest neighbouring

subject. The distance between classes is measured by the Euclidean distance, ED, given

by
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ED =

√

√

√

√

N−1
∑

n=0

(xn − yn)2 (4.3)

where N is the dimensionality of the feature set, and xn and yn are the values of the

nth feature of the samples x and y respectively.

The classification results for k = 1 and k = 3 are shown in Table 4.1.

Table 4.1: Initial results of k-nearest neighbour classification

Database k CCR(%)

SOTON LARGE 1 82.5

SOTON LARGE 3 83.7

4.4.1 The effects of feature selection

The size of the features set used for classification for the initial recognition test was

determined arbitrarily, by choosing the twenty features that had the highest average

Bhattacharyya distance score, thus hopefully separating the subjects well in the feature

space. The number of features used, however, will affect classification performance: use

too few ‘good’ features (features that should increase class separability) and the feature

space will not be separated out enough; use so many features that ‘bad’ features start

to become included and classification performance could be compromised by spreading

well defined clusters in the feature space. The appropriate number of features used when

classifying is therefore an important factor.

To determine the optimal number of features to use, the recognition test described above

was conducted using varying numbers of features1. Figure 4.4(a) shows the Correct Clas-

sification Rate (CCR) for features chosen by applying a threshold to the Bhattacharyya

distance scores, using only features which had a distance score greater than this thresh-

old. On examination of Figure 4.4(b), which shows the asymptotic relationship between

distance threshold and number of features selected, we can see that using a threshold

of zero yields classification with all features, and close to 900 features are selected. As

this threshold is increased, the number of features selected for classification drops off

rapidly until, at a distance threshold of 5, just 39 features are used. It is at this distance

threshold of 5 that the greatest CCR is found, 86.2%, as can be seen in Figure 4.4(a).

From this point, the number of features selected by applying a greater threshold tails off

dramatically (as does the CCR), until at a distance threshold value of 35, no features

are selected.
1It is worth noting that feature selection is dependent upon the data set used, and the features

selected for these tests may not show similar results with different data sets.
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(a) Bhattacharyya distance threshold used during classification vs CCR % (k=3)
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(b) Bhattacharyya distance threshold vs number of features selected)

Figure 4.4: The effects of varying Bhattacharyya distance thresholds on classification
performance.
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In order to examine the relationship between the number of features selected and CCR

further we can examine Figure 4.5, which shows this relationship with the number of

features plotted logarithmically for ease of viewing. It can be seen from this that selecting

a handful of the best features yield recognition rates significantly higher than that which

could occur by chance, with 4 features yielding a CCR of around 50% and 5 features

yielding a CCR of just under 60%. Increasing the number of features past this point

gives smaller, but significant increases in performance, with an increase of 5 features to

10 giving a 15% performance increase, continuing further until at 39 features we reach

our greatest CCR of 86.2%. Adding more features past this point generally causes the

performance to tail-off, and it can be seen that using many more features actually causes

the performance to degrade slightly.
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Figure 4.5: Number of features used during classification vs CCR% (k=3).

From these results, it can be inferred that any features with a Bhattacharyya distance

score of 5 or greater can be classed as ‘good’ features, whilst any with a lesser score

cause breaking down of the clustering in the feature space, and can be classed as ‘bad’

features.

The best classification rates for the University of Southampton’s Large Gait Database

using both k = 1 and k = 3 are shown in Table 4.2.

As can be seen, the selected spatio-temporal Fourier descriptors show a good ability at

being able to discriminate between human subjects. These results compare favourably

with other studies using the same database, with results of 82.9% and 71.2% for k = 1

and k = 3 respectively being reported by [10]. Hayfron-Acquah [17] reported recognition
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Table 4.2: Best result of k-nearest neighbour classification

Database k CCR(%)

SOTON LARGE 1 84.5

SOTON LARGE 3 86.2

rates on the same database using a technique based around spatio-temporal symmetry

of 92.8% for k = 1 and 86.0% for k = 3. Thus showing an improved recognition rate over

the technique discussed here for k = 1, but not for k = 3, with the consistency between

k=1 and k=3 suggesting that this technique produces features that demonstrate better

clustering in the feature space.

4.4.2 The effect of distance or low spatial resolutions on performance

As mentioned in Chapter 1, one of the main advantages of human gait as a biometric

is that it can be captured non-invasively and at a distance. It was therefore deemed

prudent to evaluate the performance and robustness of using Fourier descriptors for the

recognition of deformable objects at varying spatial resolutions, to simulate the effect of

distance.

The effect of distance was simulated by decreasing the spatial resolution of each image

in a given image sequence. The original images were subsampled so that the minimum

height of the subjects were 128, 64, and 32 pixels respectively (see Figure 4.6) and test

feature sets were produced using the same method as the previous recognition test. The

original full resolution feature set for each subject was then used for k-nearest neighbour

classification. It proved difficult to extract boundaries from sequences with a subject

height of less than 32 pixels and so, for the purposes of this test, 32 pixels can be

considered to be the lowest limit at which successful classification can be performed.

With this said, a subject height of 32 pixels mimics a significant camera-to-subject

distance, and could be considered a real challenge for any recognition system.

The results of classification at these resolutions, which are shown in table 4.3, show that

the image resolution can be relatively small without a great loss of resolution.

The fact that such a loss of spatial resolution results in only a small drop in CCR can

be accounted for by the fact that the majority of the information in a given Fourier

descriptor is contained in the low-level descriptors and that for a spatial boundary of

length N we can obtain up to N
2 descriptors. Therefore, so long as we have a sufficiently

large value of N , an adequate number of descriptors can be obtained for recognition.

Discretisation errors introduced at such low resolutions, however, mean that errors will

be introduced into the descriptors, resulting in the drop of CCR seen here.
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(a) 400 (b) 128

(c) 64 (d) 32

Figure 4.6: Varying image resolutions, scaled by subject height.

Table 4.3: Results of k-nearest neighbour classification (k=3) for varying resolutions

Image Height CCR(%)

400 86.2

128 84.5

64 85.7

32 82.4

During the tests presented here, the highest spatial frequency used for recognition was

10Hz (using the same feature set as was previously selected to give the highest CCR),

thus requiring a minimum boundary length of 21 pixels for each boundary signal. This

requirement is more than fulfilled, even at the low resolutions used here.

4.5 Summary and discussion

In this chapter we have put the theory of spatio-temporal Fourier descriptors, as dis-

cussed in the previous chapter, into practice and have formulated descriptors for 1062

image sequences split between 115 subjects. After calculation of the descriptors, fea-

ture selection was performed by calculating the average Bhattacharyya distance between

classes for a given feature, with those features that gave the greatest Bhattacharyya dis-

tance, and therefore the greatest average class-separability potential, being regarded
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as the best features. Classification was then performed using a K-nearest neighbour

classifier.

The results presented in this chapter demonstrate that the spatio-temporal Fourier de-

scriptor model holds a great amount of descriptive power. As Shutler noted [37], a

shape’s statistical description greatly improves with the inclusion of temporal informa-

tion. Recognition rates of over 86% on a large database of subjects are an encouraging

indication that spatio-temporal Fourier descriptors uniquely describe not only a shape’s

spatial description, but also any temporal deformations applied to that shape.

It is clear that gait as a biometric shows promise for recognition of subjects at a distance,

and the use of Fourier descriptors provides a means of capturing and modelling the salient

information required for the discrimination of different subjects at a variety of spatial

resolutions.



Chapter 5

The Continuous Deformable

Hough Transform

5.1 Locating deformable objects

In Chapter 4 it was shown how spatio-temporal Fourier descriptors could be used to

discriminate between human subjects, or more generally between deformable moving

objects. A necessary stage in the extraction of the boundary of a moving shape, however,

is that a clean segmentation of the shape is performed. During the tests carried out in

the previous chapter segmentation was performed via chroma-keying, but this is a very

limited form of segmentation, working only in laboratory conditions, or in situations

where a strong contrast in hue or intensity between the object and the background

exists.

Segmentation could be made much easier if the subject or object in question could first

be located and tracked somehow through a given image sequence – knowing the position

and pose of the an object can form a good initialisation point for object extraction. Most

current techniques for tracking work on a frame-by-frame basis, identifying an object

in one frame and tracking it through successive ones. These techniques, however, often

rely on the presumption that the shape is constant throughout the image sequence and

that the shape’s movement and location is initialised. This is not always the case, and

human gait gives a good counterexample to this, where the general boundary of the

subject deforms and self-occludes as the subject moves with variable velocity. Further

to this, humans demonstrate variation in the way they walk or move. For example, some

people of similar height and stature walk faster or slower than others by taking larger

or shorter strides.

Evidence-gathering techniques have previously been used to detect static rigid shapes

[2, 5, 19], and more recently to detect moving rigid shapes [16, 31] without initialisation

43
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or the need for a strong shape definition. Indeed, evidence-gathering techniques provide

a robust and reliable method of determining the location and other unknown parameters

of a shape, and usually demonstrate good tolerance to noise and occlusion. Shape defor-

mation, which occurs frequently in the real world, has never previously been extracted

using an evidence-gathering approach, but periodically deforming shapes seem an ex-

cellent candidate for such an approach as, through the use of the new spatio-temporal

Fourier descriptor model, shape deformation can now be defined parametrically.

In this chapter we develop a new spatio-temporal form of the Hough transform – the most

common form of evidence-gathering mechanism, which is capable of locating deformable

shapes (in both space and time) in a given image sequence, and which demonstrates

excellent tolerance to noise.

5.2 An introduction to Hough transforms

The Hough transform [19] has been used for many years as a form of perimeter-based

object identification, utilising an evidence-gathering approach. The Hough transform

works by ‘voting’ for unknown (or ‘free’) parameters in a parametric shape model. Typ-

ically the Hough transform identifies the location and size of a shape, but any number

of unknown parameters can be estimated using the technique.

The original Hough transform was used to detect straight lines in edge-detected images,

but since then variants have been developed to detect other parametric shapes, such

as circles and ellipses. A more generalised shape detection algorithm, based on the

Hough transform, was also developed by Ballard [5] in the form of the Generalised

Hough Transform, which allowed the detection of arbitrary two-dimensional shapes.

The concept of parameterising arbitrary shapes for extraction was developed further

by Aguado et al [2] who used a continuous shape model, based around elliptic Fourier

descriptors. Again, this was used as the basis for extracting two-dimensional shapes.

Recent research has further developed the Hough transform to include linear or para-

metrically modelled motion [31], and even more recently to include arbitrary motion

and a continuous shape model [16].

A limitation with all of the previous approaches to detecting moving objects via the

Hough transform is that they all assume a fixed shape model, whereas in the real world

many shapes, particularly the shapes of organic objects, are anything but fixed, and

often deform in a periodic manner. To overcome this, a new Hough transform is pro-

posed and developed, known as the Continuous Deformable Hough Transform (CDHT).

The CDHT uses a continuous, spatio-temporal shape model based around the spatio-

temporal Fourier descriptors developed in Chapter 3 to detect periodically deforming,

moving objects (e.g. humans and animals) within a dynamically changing scene. This
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new Hough Transform’s originality lies in the fact that it deals with the problem of

detecting deformable, non-rigid, objects, whereas previous Hough transforms have only

detected rigid, fixed-shaped objects.

5.3 Foundation theory

Before the CDHT is discussed in full, other spatio-temporal evidence-gathering tech-

niques will be described that form a basis for the work presented through the rest of

this chapter.

5.3.1 The Velocity and Continuous Velocity Hough Transforms

Many image sequences contain a significant amount of temporal correlation, a fact which

is frequently utilised by video compression techniques, such as the MPEG series. Very

few machine vision algorithms take advantage of this fact however. The Velocity Hough

Transform (VHT), developed by Nash [31], was the first evidence-gathering technique

to use this temporal correlation to extract the optimal parameters of a linearly moving

shape (a conic section). Simple extensions to the VHT, made by Grant [16], made it

possible to extract any shape and motion combination, given that both were able to be

modelled parametrically.

The VHT was originally developed as an extension of the Hough Transform for circles

by adding a linear velocity parameter as a free parameter into the formulae used to cast

votes into the accumulator space.

The original Hough transform for circles uses the following formulae to cast votes

ax = cx + r. cos(θ)

ay = cy + r. sin(θ)
(5.1)

where ax and ay are the coordinates of the vote to be cast, cx and cy are the center

coordinates of the circle to be cast into the accumulator (consequently, also the feature

pixels from the test image sequence), and r and θ are the polar parameters of the circle

in question.

The VHT extends these formulae to include velocity as follows

ax = cx + r. cos(θ) + vx.t

ay = cy + r. sin(θ) + vy.t
(5.2)
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where vx and vy describe the linear velocity of the circle and t represents a time reference

relative to the start of the object’s motion (t = 0).

During the voting process, the time reference, t, and the x-axis and y-axis velocities, vx

and vy, are used to determine the location of the center coordinates of the circle in the

initial frame of motion, at t = 0, therefore focusing all votes for the correct circle onto

one set of coordinates in the accumulator. Thus, the parameters voted for when using

the VHT are the center coordinates (ax, ay) of the circle at its initial time reference

(t = 0) with a linear velocity described by (vx, vy).

As an example to illustrate this, one could imagine a circle moving with a velocity of

(vx = 3, vy = 2), so that at the frame at time t = 2 the center of the circle would

have moved by (∆x = 6, ∆y = 4). This information can then be used to back-project

any votes cast to the center coordinates of the circle at t = 0, thus forming one single

maximum peak in the accumulator for the correctly identified moving circle.

A graphical example of the voting algorithm for the VHT for a circle is given in Figure

5.1. Figure 5.1(a) shows the original sequence of three frames, while Figures 5.1(b) to

5.1(d) show the accumulator for this image sequence for a correctly identified set of

parameters after processing each frame of Figure 5.1(a). The votes depicted by dashed

circles in frames 2 and 3 of the accumulator sequence show the original position of the

loci of votes before the velocity information is taken into account, causing the votes to

be back-projected to time t = 0 where all votes for each frame coincide to locate the

correct parameters for the moving circle.

Much in the same way that Aguado et al [2] had extended the Generalised Hough

Transform (GHT) to use a continuous shape model, the VHT was extended by Grant

to create the Continuous Velocity Hough Transform (CVHT) [16]. The CVHT uses a

Fourier descriptor parameterisation of the moving shape being sought, in effect replacing

the R-table of the GHT, and as such provides an analytic and continuous shape model,

ensuring that discretisation errors, usually associated with applying affine transforma-

tions to discrete shape models, can be minimised. However, as was the case with the

VHT, the CVHT is only able to extract rigid moving shapes.

5.3.2 Shape model dimensionality

The VHT inherits many features from the original Hough transform, including, unfortu-

nately, the “curse of dimensionality”, which gets worse as the number of free parameters

in the shape’s kernel increases. The Generalised Hough transform (GHT) goes quite

some way to solving this problem for the case of static, rigid shapes, but suffers from

discretisation problems, especially when searching for shapes at much larger scales than

the original shape model. A solution to this was to derive a continuous shape model
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(a)

(b) (c)

(d) (e)

Figure 5.1: The Velocity Hough Transform (VHT) for a circle.

using Fourier descriptors [2] and use this to derive the vote coordinates in place of the

GHT’s ‘R-Table’.

The CVHT combined the VHT and this continuous variant of the GHT, thus providing

a Hough transform for extracting arbitrary moving objects using a parameter space with

a fixed dimensionality.
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5.3.3 Motion model dimensionality

The original VHT used a very basic motion model, assuming linear motion and a con-

stant velocity scaling factor. The motion model itself is built into the kernel of the VHT

(Equation 5.2), thus changing the motion model requires a change to the kernel itself.

If a more complex motion model is added into the kernel of the VHT, however, the

dimensionality of the accumulator space then increases proportionally with number of

free parameters in the new motion model. Coupled with the fact that the parametric

complexity of the shape model can be large for all but the simplest of geometric shapes,

the VHT can soon become an impractical evidence-gathering technique for all but the

most basic of shape and motion models.

The issue of variable motion is addressed to an extent by a variant of the CVHT that

uses a variable-parameter motion model, termed a “motion template”. These motion

templates assume that the target object’s path of motion is known a priori and that, as

such, they can be modelled using a known motion model. As with the perimeter of the

shape, these motion templates were modelled continuously using Fourier descriptors, and

were allowed to be modified by four free parameters to control spatio-temporal scaling,

temporal phase, and spatial orientation.

5.4 Continuous Deformable Hough Transform theory

All variations of the Hough transform to date have been designed purely with the de-

tection of rigid, non-deformable objects in mind, either static or moving. As previously

mentioned, however, many objects in the real world are not rigid and deform in some

predictable, periodic manner as they move.

One specific application of the CVHT was the detection of moving human subjects, but

the very nature of the CVHT restricted it to finding rigid objects only, meaning that

only parts of the body which were ostensibly rigid could be found using this approach.

A new variant of the Hough transform is now introduced: the Continuous Deformable

Hough Transform (CDHT), which is designed to solve the problem of being able to

detect moving, deformable shapes in image sequences. As with the CVHT, the CDHT

is based around the use of Fourier descriptors, so as to avoid discretisation problems, but

whereas the CVHT uses Fourier descriptors to model a rigid shape and its associated

motion model, the CDHT uses the spatio-temporal Fourier descriptor model developed

earlier in this thesis to model a periodically deforming and moving shape as a single

entity.
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5.4.1 The CDHT kernel model

If we represent a spatio-temporal shape sequence as a set of complex Fourier descriptor,

ŝ(kt, kl), as described in Chapter 3, then a kernel can be defined which casts votes in the

accumulator space for each feature point (i.e. each edge pixel), given a newly presented

image sequence.

The basis for the CDHT kernel is a normalised set of shape sequence descriptors, derived

from Equation 3.19 – a set of complex spatio-temporal Fourier descriptors of the shape

we wish to find. The shape sequence descriptors are normalised so that the shape’s

maximum height and width with respect to the whole shape sequence are set to unity.

One drawback to this approach to normalisation is that the aspect ratio of the shape is

lost. There are reasons for this, however, particularly when the technique is applied to

finding humans, as humans themselves do not have a fixed aspect ratio, and thus allowing

non-uniform scaling of both width and height (and therefore justifying normalisation of

both) is desirable.

The motion model of the shape sequence descriptors, provided by the spatial DC compo-

nents, is also normalised, independently of shape size, so that the linear distance that the

shape travels (in its direction of motion) falls in the range [0, 1) over one period of defor-

mation, with the shape’s initial center of mass at the start of the shape sequence being

located at (0, 0). An example of a reconstructed normalised shape sequence descriptor

set is shown in Figure 5.2.
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Figure 5.2: Example of a normalised shape sequence descriptors.
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During the following formal definition of the kernel of the CDHT, the normalised spatio-

temporal Fourier descriptor set, which we shall refer to as the Shape Sequence Template

(SST), will be represented by the following equivalence, to aid clarity

SST (kt, kl) ≡ norm(ŝ(kt, kl)) (5.3)

where norm is the normalisation function discussed above and ŝ(kt, kl) is the set of

spatio-temporal Fourier descriptors, as described in Chapter 3.

To aid in the definition of the CDHT’s kernel, the following domains are also declared

at this point

Dp All pixels in an image.

Df All frames in an image sequence.

In order to produce loci of votes for given scales and translations (both spatially and

temporally) the SST needs to be transformed. These transformations occur during the

reconstruction phase of the CDHT’s kernel, but before the signals are fully transformed

back into the time domain. Temporal transformations take place in the spatio-temporal

frequency domain, and spatial transformations take place in the spatial frequency do-

main.

Temporal scaling

Since time is one-dimensional, if we wish to scale the SST temporally to extend the

period of deformation over a greater period of time, we simply have to multiply each

spatio-temporal Fourier descriptor by a scalar factor. This increases the overall power of

the spatial frequency deformation described by the spatio-temporal Fourier descriptors

in the SST, in effect normalising the energy contained within this spatial frequency

deformation when observed over a greater period of time

SST (kt, kl) = tsSST (kt, kl) (5.4)

In practice, as discretised frames of spatial data (i.e. shape boundary signals sampled

equally through time) are used to test the CDHT, this scaling mechanism is always used

in conjunction with temporal interpolation during the reconstruction of the CDHT’s

kernel, as discussed later.
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Velocity Scaling

Before we proceed any further, we will define a new term: a Shape Template (ST), which

represents an individual frame of the spatio-temporal Fourier descriptor model in the

spatial frequency domain. The full set of STs can therefore be calculated as

ST (t, kl) =

KT
∫

kt=0

SST (kt, kl)e
j2π

t.kt
KT dkl (5.5)

With the SST now a collection of STs in the spatial frequency domain, the motion

pattern over one period of shape deformation is defined by the varying DC components

of the STs through time, t.

The initial SST normalisation process, as described in Equation 5.3, ensured that the

motion pattern was uniformly scaled to be in the range (0, 1), therefore preserving

the overall motion pattern of the shape in the sequence, but discarding any velocity

information. This was a necessary step, since no assumptions should be made with

regard to the relationship between the shape’s size and its velocity, and as such, spatial

size and velocity may need to be scaled independently. To give an example of why this

is so, one could imagine two people of differing size and stature walking in a busy crowd.

In this situation the two people may well be walking at very similar velocities, even

though their physical sizes are very different.

Velocity scaling is a relatively simple process, requiring only scaling of the spatial DC

components. Since scalar multiplication in the spatial frequency domain is analogous

to spatial scaling by the same factor in the time domain, this is a simple process and

merely involves multiplication of the DC components for each ST by a given velocity

scaling factor. Velocity scaling is therefore defined as

ST (t, 0) = vs.ST (t, 0) t = (0, T ] (5.6)

Spatial Scaling

If it was sufficient to spatially scale each shape in the SST in a uniform manner then

it would be possible to simply multiply every spatial Fourier descriptor for a given

ST (excluding kl = 0, which contains the DC-based motion model) by a scalar value.

Non-uniform scaling, however, as required in the case of the CDHT, is not so simple.

In this situation a problem arises due to the nature of the complex Fourier transform

when using complex time-domain data. This leads to the spectra for both the spatial

x and y projections, which are combined as a complex signal, being combined when

transformed into the spatial frequency domain. In order to perform non-uniform scaling
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it is therefore necessary to decompose each complex ST into its respective x and y

frequency spectrum, then scale each respectively by the associated xs and ys scaling

factors. This decomposition operation ensures that the scaling remains in the spatial

frequency domain, thus reducing the impact of discretisation errors, which may have

been encountered had scaling been applied in the time domain.

The real part of a complex time-domain signal (in this case representing the x axis

projection) produces a frequency spectrum with an even real part and an odd imaginary

part. Conversely, the imaginary part of a complex time-domain signal (representing the

y axis projection) produces a frequency spectrum with an odd real part and an even

imaginary part. In the spatial frequency domain the spectra for the two projections are

therefore combined, but are separable by an odd/even function decomposition.

This spectra decomposition is detailed below in Equation 5.7. For sake of clarity here

we shall refer to the real part of frame t’s spatial frequency domain (representing the

spectrum of the x axis projection) as X(t, ks) and the imaginary part (representing the

spectrum of the y axis projection) as Y (t, ks).

X(t, kl) =











ℜ(ST (t, kl))+ℜ(ST (t, −kl))
2 + j

ℑ(ST (t, kl))−ℑ(ST (t, −kl))
2 kl > 0, t = (1, T ]

ℜ(ST (t, 0)) kl = 0, t = (1, T ]

Y (t, kl) =











ℑ(ST (t, kl))+ℑ(ST (t, −kl))
2 + j

ℜ(ST (t, kl))−ℜ(ST (t, −kl))
2 kl > 0, t = (1, T ]

ℑ(ST (t, 0)) kl = 0, t = (1, T ]

(5.7)

Scaling is then achieved by multiplying each spectrum by its respective scaling factor,

avoiding scaling the DC components, therefore being equivalent to scaling after trans-

lating the shape’s center of mass to the origin.

X̄(t, kl) =











xsX(t, kl) kl > 0

X(t, kl) kl = 0

Ȳ (t, kl) =











ysY (t, kl) kl > 0

Y (t, kl) kl = 0

(5.8)
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5.4.2 Considerations when working with discrete signals

When used with discrete images sequences, the CDHT will use a discretised accumulator

space. Due to this, when transforming the SST into the time domain in order to form

loci of votes in this accumulator, there eventually becomes a need to discretise the

location of the votes with respect to both time (t) and spatial boundary length (l). If

this discretisation is performed incorrectly, and samples become spaced too far apart

from each other, then these loci of votes will appear unconnected, and only a sparse

representation of votes may be formed. This effect can often also be seen when scaling

regular discretised shapes using time-domain scaling, and was demonstrated in Figure

2.6 in Chapter 2.

In order to resample this data into the appropriate number of samples for a given scaling

factor, we draw on the fact that zero-padding in the frequency domain, leads to interpo-

lation in the time domain [28]. Fourier interpolation in the frequency domain essentially

involves zero-padding a signal’s spectrum by appending zero-valued frequencies to the

extremes of both the positive and negative frequency components. When transformed

into the time domain, this results in the addition of evenly spaced interpolated sampling

points. Although no further information or detail can be added to the time-domain

signal through this method of interpolation, it does allow the time-domain signal to be

spread over a larger number of perceived sampling points.

The basic principal of Fourier interpolation is demonstrated in Figure 5.3, where the

time-domain signal in Figure 5.3(a), containing N samples, is first transformed into

the frequency domain, shown in Figure 5.3(b), resulting in K frequency components.

The spectrum of this original signal is then zero-padded (Figure 5.3(c)) to contain K2

frequency samples and scaled by N
N2

, in order to conserve the energy of the signal,

before being transformed back into the time domain, as shown in Figure 5.3(d). This

reconstructed time-domain signal can then observed as the original time-domain signal

interpolated over N2 points.

Conversely, if the number of samples needed to rescale temporally is less than the number

of temporal descriptors available, truncation of the descriptors must occur (removing an

equal number negative and positive frequency-based descriptors). This will inevitably

result in a loss of high-frequency detail, so care should be observed when performing

this operation to ensure that an adequate representation of the time-domain signal is

not lost.

Temporal interpolation

Temporal interpolation dictates the number of samples in time over which one period

of the shape sequence exists. This is always used with a time scaling parameter, ts, as

was described previously.
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(d) Interpolated time domain signal

Figure 5.3: Using zero-padding in the frequency domain to interpolate in the time
domain.

When temporal scaling is required, Fourier interpolation is applied to the temporal

dimension of the SST, which when transformed into the spatial frequency domain inter-

polates the periodic change in spatial frequencies over TS frames, where TS is the total

number of desired samples (frames) in the new temporally scaled shape sequence. As

time is one-dimensional, TS will always equal the temporal scaling factor, ts.

Spatial interpolation

As spatial scaling is two-dimensional and not non-uniform, calculating the number of

samples over which to interpolate is more complicated, and there is not a direct (or a

particularly simple) correspondence between the arc-length of a shape’s boundary and

the spatial scaling parameters xs and ys. The original boundary signals used in this

thesis were sampled with a maximum Euclidean sampling distance of 1 pixel (due to

4-connected boundary sampling), resulting in a total arc-length of L for a given two-

dimensional shape. Basic spatial scaling will simply increase the distance between these

samples, not increase their number, resulting in an incomplete tracing of the loci of

votes in the accumulator space of the CDHT. Given this, resampling is needed if we

wish to maintain a maximum sampling distance of one pixel after spatial scaling has
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taken place. Again this is performed in the frequency domain in order to reduce any

unnecessary discretisation errors.

The total arc-length of the perimeter of a scaled two-dimensional shape can be calculated

by observing that the length of a shape’s perimeter is the sum of all the Euclidean

distances between an infinite number of samples around the shape’s boundary. When

considering this for the application of shapes formed from analytic two-dimensional

curves, this can be calculated by integrating the first-order derivative of a Euclidean

distance function, formed from the analytic descriptions for the x and y projections,

for all values between 0 and 2π around the shape’s perimeter. Thus giving the total

Euclidean distance traversed around the arc-length of the shape’s boundary

Ls =

2π
∫

0

√

x′(l)2 + y′(l)2 (5.9)

Working in the spatial frequency domain, analytic descriptions for the scaled x and y

projections are readily obtained from a Fourier series with coefficients defined by the

spatial Fourier descriptors axk, bxk, ayk, and byk obtained from a given Shape Template

x(l) =
ax0

2
+ xs

[

K
∑

k=1

axk cos(kl) + bxk sin(kl)

]

(5.10)

y(l) =
ay0

2
+ ys

[

K
∑

k=1

ayk cos(kl) + byk sin(kl)

]

(5.11)

with the first-order derivatives of these scaled x and y projections being

x′(l) =

K
∑

k=1

xsk [−axk sin(kl) + bxk cos(kl)] (5.12)

y′(l) =
K
∑

k=1

ysk [−ayk sin(kl) + byk cos(kl)] (5.13)

The total arc-length, Ls, can then be found by substituting Equations 5.12 and 5.13

into Equation 5.9.

Ls then gives a minimum number of samples, and therefore determines the amount of

zero-padding needed in the spatial frequency domain, in order to reconstruct a signal

that has a unitary maximum inter-sample Euclidean distance.
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The CDHT kernel model

With the previous transformations and considerations in mind, the CDHT kernel can

now be defined as being the rescaled version of the SST , for the range of all scale values,

transformed into the time domain.

ω̄(t, l, xs, ys, ts, vs) =

KT−1
∫

kt=0







KL−1
∫

kl=0

SSTscaled(kt, ks, xs, ys, ts, vs)e
j2πkl
KL dkl






e

j2πktt

KT dkt

(5.14)

This kernel defines a scaled spatio-temporal locus of feature points for a set of given

scale parameters, effectively replacing the ‘R-table’ used by the GHT.

5.4.3 The CDHT voting process

The votes to be cast into the accumulator are found by offsetting the CDHT’s kernel

from the coordinates of each feature point in a given test image sequence, IS, defined

by

IS =
{

λ̄(f,p) | f ∈ Df , p ∈ Dp

}

(5.15)

where λ̄(f,p) is a function that defines the feature points p, with coordinates (px, py),

for each frame, f .

Given this, the accumulator vote function is defined as the x and y projections of the ker-

nel model (the real and imaginary parts respectively) back-projected from each feature

point, for a given set of scale and temporal offset parameters

Apf =

{

λ̄(f, px) −ℜ{ω̄(f − t, l, xs, ys, ts, vs)} ,

λ̄(f, py) −ℑ{ω̄(f − t, l, xs, ys, ts, vs)}

∣

∣

∣

∣

∣

t ∈ Dt, l ∈ Dl

}

, f ∈ Df ,p ∈ Dp

(5.16)

for values of f ≥ t (as time is a monotonically increasing function), where Dt is the

domain of the possible temporal locations for the start of the shape sequence and Dl is the

domain of the arc-length parameter of the given temporal sample’s spatial boundary. Apf

then defines a set of vote coordinates, from which votes will be cast into the accumulator.

With the accumulator vote function defined, it is now necessary to define a matching

function that will map the vote coordinates defined by Apf into the accumulator space.

This matching function determines if a point in the accumulator’s parameter space pf ,

should be incremented for a point, ā, in set A, and if so by how much it should be

incremented. The simplest form of matching function simply increments a matched
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accumulator point by unity. Thus given as

M(pf, ā) =

{

1 pf = ā

0 pf 6= ā
(5.17)

This matching function is then applied to Apf for a range of parameter values, thus fully

defining the continuous version of the CDHT as

CDHT (δ, t, xs, ys, ts, vs)=

∫

l

F
∫

t=0

F
∫

f=t

∫

p

M(δ, t, λ̄(p, f) − ω̄(f − t, δ, xs, ys, ts, vs)) dp df dt dl
(5.18)

where δ is the spatial translation vector and t is the temporal translation (in frames) to

the center of mass of the first shape in the shape sequence. In practice, this continuous

parameter space is then sampled into a discrete parameter space, given by

DCDHT (δ, t, xs, ys, ts, vs)=

∑

l∈Dl

F
∑

t=0

F
∑

f=t

∑

p∈Dp

M(δ, t, λ̄(p, f) − ω̄(f − t, δ, xs, ys, ts, vs))
(5.19)

with the global maxima of this space corresponding to the best matches of the recon-

structed SST within the given image sequence.

5.4.4 Pseudo-code algorithm

A pseudo-code algorithm detailing the CDHT voting process is detailed below

For (xs = xsmin...xsmax)

For (ys = ysmin...ysmax)

For (ts = tsmin...tsmax)

For (vs = vsmin...vsmax)

Generate scaled kernel, SSTvst

For (l = L)

For (f = 0...F )

For (frame t...F in the image sequence)

Generate time domain kernel, ω̄(f − t, l, xs, ys, ts, vs)

For (each feature pixel (px, py))

Generate vector δ(ax, ay) from ω̄(f − t, l, xs, ys, ts, vs)

Generate the vote vector (votex, votey)=(px, py)-δ(ax, ay)

DCDHT[(votex, votey), t, xs, ys, ts, vs]++
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5.5 Dimensionality

While computation time for the CDHT will obviously be dependent on the implementa-

tion of the algorithm and the available hardware, it is worth noting that the accumulator

is a fixed seven-dimensional space, with the parameters being

δ a two-dimensional spatial translation vector.

t a temporal translation parameter.

xs a spatial scaling parameter along the x-axis.

ys a spatial scaling parameter along the y-axis.

ts a temporal scaling parameter.

vs a velocity scaling parameter (distance travelled in one period).

5.6 Summary

This chapter has presented the foundation theory for a new form of the Hough trans-

form, the Continuous Deformable Hough Transform, which uses an evidence-gathering

approach to find moving, periodically-deforming shapes. For each feature point in a

newly presented image sequence, loci of votes are calculated from a scaled kernel model,

derived from the spatio-temporal Fourier descriptor model presented in Chapter 3. These

votes are then cast into an accumulator space. After all feature points are processed,

the global maximum of the accumulator space indexes the best-fit parameters of the

model of the shape in the image sequence in question. If more than one shape sequence

is expected to be found in the image sequence then the parameters of the models for

these will be indexed by a number of local maxima.



Chapter 6

Application of the CDHT: from

theory to practice

With the theory of the Continuous Deformable Hough Transform (CDHT) now defined,

this chapter will now demonstrate how it can be applied to a real image sequence to

successfully find the correct parameters for a moving and deforming object. Due to the

constraints of time and processing power, we will perform limited testing on full-sized

image sequences, but shall do so here in order to demonstrate the CDHT’s ability to

work on such data and to enable the reader to fully analyse the voting mechanisms and

potential results obtained from using high resolution image sequences. Performance and

robustness tests, which will be presented later in the thesis, use many image sequences

and will therefore use spatially subsampled images.

6.1 Data and pre-processing

The data used to test the application of the CDHT is taken from the University of

Southampton’s Large Gait Database, consisting of PAL DV image sequences (720 x 576)

at 25 frames per second. This usually equates to a typical gait cycle taking up between

20 and 30 frames of data – more than sufficient to capture the temporal deformation

demonstrated in human gait, which is the primary subject matter.

Prior to being used as input into the CDHT algorithm, the data was processed by edge-

detecting each image using the Canny operator. The parameters for the Canny operator

were judged by eye to give a good balance between clean edges being detected in the

subject and weak or noisy edges being detected in the background. A typical original

frame and resulting edge map is shown in Figure 6.1.

The test was limited to searching for temporal scales (number of frames over which one

full gait cycle is sampled) of between 20 . . . 30, in 1 frame increments, spatial scales of

59
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(a) Raw data

(b) Canny detected edges

Figure 6.1: Raw test data and associated edge map.

between x = 150 . . . 170 and y = 280 . . . 360, in 5 pixel increments, and velocity scales

of 230 . . . 260, also in increments of 5 pixels. While this is not an exhaustive set of free

parameters,1 it was deemed, by examining a number of test image sequences, to be a

sufficient range to cover most of the human subjects in the Southampton database, and

therefore provide a realistic set of search parameters.

1An exhaustive set of search parameters would require an infinite amount of computation time!
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6.2 Generating a generic gait kernel

The CDHT was applied to the image sequence shown in Figure 6.1(b) using a generic gait

kernel model. This kernel was generated by producing an averaged Fourier descriptor

model using ten sequences generated from silhouette data from the Southampton Large

Gait Database. This was produced in the same manner as described in Chapter 4. These

test sequences were chosen manually with the criterion that they should be relatively

clean extractions from the original data, and would therefore form a good representative

model of human gait. An equal number of male and female subjects were chosen, so at

to try to minimise any gender bias in the final kernel model.

Averaging many Fourier descriptor models to produce a single kernel model in this way

can be thought of as analogous to the process of Fourier signal averaging – a technique

used to extract clean signals from noisy data by calculating the mean spectra for many

samples of the same signal. Averaging spectra in this way allows deviations from the

true signal, usually caused by noise, to effectively become averaged out, leaving only

the spectrum for the true signal remaining. However, in the case of the human gait

models used here, the spectra for the models also consist of inter-subject variation,

along with a degree of noise. Averaging different subjects’ gait spectra (so long as they

are normalised with respect to each other) will therefore result in this inter-subject

variance being averaged out, along with the noise. This may not seem a desirable effect,

but given that the aim in this instance is to generate a generic gait kernel model, this is

exactly the desired result.

The generic gait kernel is therefore defined as

SSTgeneric =

N
∑

n

SSTn

N
(6.1)

where N is the total number of subjects used to generate the kernel.

6.3 Results

The parameters extracted after applying the CDHT to Figure 6.1(b) are shown in Table

6.1, with the generic gait kernel, scaled and translated to these parameters shown su-

perimposed over the original image data demonstrated in Figure 6.2 (For brevity, only

selected frames are shown here. The full result sequence can be found in Appendix A).
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Table 6.1: Extracted parameters for the test image sequence.

Parameter Description Value

x Starting location in the x dimension 592
y Starting location in the y dimension 422
t Starting location in the time dimension 6
xs Spatial scaling in the x dimension 160
ys Spatial scaling in the y dimension 330
ts Temporal scaling (period of the sequence in frames) 25
vs Velocity scaling (distance the shape has moved) 255

6.4 Discussion

The results show that the CDHT has performed well in extracting the correct starting

location and scale parameters (in both space and time) for the subject in question. At

first sight, a number of frames in Figure 6.2 seem to show an ill fit to the kernel model,

with various limbs being slightly outside of the model boundaries, or being slightly ahead

or behind in time. However, human gait is very variable – a fact that was actually

exploited in Chapter 4 in order to differentiate between and classify different subjects.

As such, it should come as no surprise that as a generic gait model is being used, the

actual data will show slight variations from this. Indeed, the very fact that there is a

difference between the model and the data, yet the algorithm still detects the location

and scales of the subject correctly, is testament to the robustness of the CDHT. It is

probably worth noting that many applications involving variants of the Hough transform

involve searching for well-defined rigid objects, and as such they are able to use a very

tailored kernel model. As a results of this the model often perfectly fits the test data.

In the tests presented here, however, the shape being sought is not well-defined, but is

an organic, deformable object – a walking human, and as such a generic model must be

used. Given this, it is very unlikely that the model and data will ever match perfectly;

the aim is to extract the best-fit parameters of the subject, not segment it perfectly from

its surroundings.

Figure 6.3 shows a two-dimensional cross-section of the accumulator space for this test

sequence, with the cross-section being drawn from the free parameters x and y, and the

third dimension showing the number of votes cast in the accumulator. Even though the

input data (the edge detected sequence shown in Figure 6.1(b)) is reasonably noisy2,

the number of votes cast by this noise (best seen in Figure 6.3(b)) is relatively low

when compared with the maximal peak in the accumulator, which locates the correct

parameters for the subject. The prominence of this peak can be seen even more clearly

2Noise in this instance is considered to be the set of edge pixels in the input image that don’t belong

to the subject.
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if one examines Figure 6.4, which shows the same cross-section of the accumulator from

two orthogonal side-on views.

6.5 Summary

The transition from the theory to the practical application of the CDHT has been

very successful. Using a relatively unprocessed input sequence, the CDHT coped with

background noise well and correctly located the free parameters of the subject being

sought. The temporal correlation inherent within the CDHT is, no doubt, a major

contributing factor to its success here, as Grant [16] and Nash [31] also found with

their previous incarnations of temporal Hough transforms. Perhaps what makes the

CDHT even more robust, however, is the fact that shape deformation, not only shape

movement, is correlated through time, further decreasing the probability of a “false

positive” peak appearing in the accumulator. How robust the CDHT truly is, however,

will only become apparent with further performance testing, and so it is this area that

the thesis will next address.



Chapter 6 Application of the CDHT: from theory to practice 64

Figure 6.2: Superimposed generic kernel, scaled and translated by the extracted
parameters.
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(a) Two-dimensional cross-section of the accumulator.

(b) View from above.

Figure 6.3: Views of a two-dimensional cross-section of the accumulator.
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(a) View from the x axis

(b) View from the y axis

Figure 6.4: Side-on views of the accumulator.



Chapter 7

Noise performance testing of the

CDHT

The Hough transform and its derivatives are well known to be very robust to noise,

due to their implicit evidence-gathering nature. Noise tends to lead to false feature

points in the input data, and consequently false loci of votes in the accumulator space.

Usually, however, any true feature points (i.e. edge pixels of the actual deformable

shape being sought) remaining after the addition of noise will also cast loci of votes in

the accumulator, which will then hopefully coincide to provide a maximal peak indexed

by the correct parameters of the shape in question. As long as this peak is large enough

so as not to be masked by the noise then the correct shape model parameters should be

found. At some point of noise saturation, however, so many noisy votes may exist that

the peak created by the shape being sought will become swamped with noisy votes, and

at this point the CDHT will fail. Up until this point, a degradation in performance can

be expected, and it is the aim of this chapter to examine this.

To test the degradation of the performance of the CDHT in the presence of additive

noise, it is necessary to start from a known performance level – a “ground-truth” im-

age sequence that causes the CDHT to perform optimally. In order to generate this

ground-truth data set, the image sequence used in these noise performance tests was

derived from the spatio-temporal Fourier descriptor model of the image sequence in

Figure 3.6; it is based on a real-world example simply to provide a realistic shape and

deformation sequence for the purposes of these tests. Using this model, a test sequence

was reconstructed at a low resolution in order to make the computational demands of

the performance tests detailed here feasible. An already segmented image sequence was

used as the basis for generating the test image sequences in this case. Starting with

‘clean’ and human-validated edge data such as this is ideal for the purposes of perfor-

mance testing, as the testing procedure wishes to address the effects of additive noise in

isolation. Using data that needs to be edge-detected prior to testing in this case would

67
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introduce an additional performance variable – the performance of an edge-detector at

removing noise and detecting true edges.

It was noted in Chapter 6 that the use of a generic CDHT kernel was necessary when

using real-world data, as real-world data can vary a great deal. However, the area of

interest here is how the CDHT’s performance degrades when presented with noisy data

added to a ground-truth data set. To produce this ground-truth data set, it is actually

necessary to use an identical kernel model to the shape being sought, in order to force the

CDHT to perform optimally. It is therefore valid, even desirable, to create this ground-

truth data set and kernel model from the same data. This reconstructed ground-truth

image sequence, to which noise will be added during performance testing, can be seen

in Figure 7.1.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 6 Frame 7 Frame 8 Frame 9 Frame 10

Frame 11 Frame 12 Frame 13 Frame 14 Frame 15

Frame 16 Frame 17 Frame 18 Frame 19 Frame 20

Frame 21 Frame 22 Frame 23 Frame 24 Frame 25

Frame 26 Frame 27 Frame 28 Frame 29 Frame 30

Figure 7.1: Low-resolution ground-truth image sequence.
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7.1 Choosing an appropriate noise model

When testing the noise performance of the CVHT using binary images Grant [16] used a

noise model comprising of a zero-mean Gaussian with a standard deviation of 3, using an

additive ‘clipped’ form of Gaussian noise (discussed below). However, as Grant noted,

adding Gaussian noise to binary image data can cause problems. These problems are

now described in order to justify the use of a binary (salt and pepper) noise model,

described in section 7.1.2, as the main noise model over a Gaussian noise model. The

Gaussian noise model that Grant selected will, however, be used for further testing

purposes, but only to form a basis for comparison with Grant’s earlier work.

7.1.1 Problems with additive Gaussian noise and binary data

When added to a binary image, Gaussian noise can produce quite unexpected results.

This is due to the need to deal with “out of range” values when adding positive or

negative noise values. If, for example, a positive noise value is added to a white pixel

(with a value of 1), then a “brighter than white” pixel is produced, and a similar, but

opposite condition exists with negative noise values and black pixels (with a value of

0). Obviously some mechanism needs to be put in place to deal with these out of range

values.

Two mechanisms are available to deal with out of range pixel values: one can clip the

values, as described in Equation 7.1

p =











1 p + n > 1

0 p + n < 0

p + n p + n ∈ [0, 1]

(7.1)

where p and n are the pixel and noise values respectively, or one can make the pixel

values ‘wrap-around’, as described in Equation 7.2

p =











0 p + n > 1

1 p + n < 0

p + n p + n ∈ [0, 1]

(7.2)

However, both mechanisms have their faults. If out of range noise values are clipped,

then pixels with additive noise have a tendency to retain their value, and conversely,

if out of range values are made to wrap-around, then pixels have a slight tendency to

become inverted. To demonstrate this one can imagine a white pixel (pixel value of 1)

that has positive noise added to it. This pixel will now have a value of greater than 1

and in the case of a ‘clipped’ noise model would retain its value. Given a zero-mean
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Gaussian noise model, the probability of this occurring is 0.5 (50% of the time). If

negative noise is added to a white pixel, then the amount of noise added must be greater

than any binarisation threshold that may be subsequently applied to the data (used to

return the noisy image to a binary state and typically a value of 0.5), otherwise the

pixel will again retain its value. The probability of this occurring will be dependent

upon the standard deviation of the Gaussian noise model, but will be always be non-

zero. A similar condition exists for black pixels (pixel value 0). Given these combined

probabilities, it becomes obvious that a ‘clipped’ Gaussian noise model leaves pixels

intact in more than 50% of cases; obviously an undesirable trait for a noise model.

Using a ‘wrap-around’ noise model one sees a similar, but opposite problem. In this

model, a white pixel (pixel value 1) that has positive noise added would ‘wrap-around’

and become a black pixel (pixel value 0), with a similar condition existing for black pixels

and the addition of negative noise. Given a Gaussian noise distribution, the probability

of a pixel being inverted in this case is therefore 0.5. Again, however, there also exists a

problem with binarisation of this model. If negative noise is added to a white pixel (or

positive noise to a black pixel) then there is also a non-zero probability that this noisy

pixel value will be great enough to exceed the binarisation threshold and also invert the

pixel. The result of applying this noise model is therefore to invert pixels in more than

50% of cases; again, not a desirable trait, and one which could lead to an unnatural

inversion of the majority of the image with the appropriate Gaussian noise model.

It might seem that both Gaussian noise models here are equally as flawed, but if one

examines Figure 7.2, which shows the probability distribution function for a white pixel

with zero-mean Gaussian noise added, it can be seen that this is not the case. Figure

7.2 shows that the probability of a white pixel remaining the same using the ’clipped’

Gaussian model is 0.5+a: the probability of either a positive noise value being added and

clipped (0.5), or a negative noise value being added which doesn’t push the noisy pixel

value past the binarisation threshold (a). If one considers the ‘wrap-around’ Gaussian

model, it can be seen that the probability of a pixel becoming inverted is 0.5 + b: the

probability of either a positive noise value being added, wrapping around and inverting

the pixel (0.5), or a negative noise value being added which pushes the noisy pixel value

past the binarisation threshold (b). Since the cumulative probability a is greater than

the cumulative probability b for any given Gaussian, there is a lower probability of a

pixel simply becoming inverted in the ‘wrap-around’ model than a pixel retaining the

same value in the ‘clipped’ model.

7.1.2 A binary noise model

A good noise model for use on binary data should ensure that, after the addition of noise

and undergoing any binarisation process, each pixel value has a 50% chance of being

either a 1 or a 0. Given this, and the problems with using binarised additive Gaussian
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Figure 7.2: Probability distribution function for potential noisy pixel value for a white
pixel.

noise described above, a simple, but adequate alternative noise model was chosen that

satisfies the aforementioned criterion for a good binary noise model and simply assigns

each pixel effected an equal probability of being a 1 or a 0. This is used in conjunction

with a uniform random variable controlling the amount of additive noise. For example,

adding 10% noise in this way would change roughly 5% of the background pixels into

edge pixels (a 1) and roughly 5% of the edge pixels into background pixels (a 0). At 100%

noise, the image would contain a purely random distribution of edge and background

pixels, with any true background or edge pixels remaining with equal probability, and

only by chance. This noise level was also favoured by Shutler on a similar binary data

set [37].

7.1.3 Testing

While the basic binary noise model described above is more applicable to binary data,

noise testing was performed with both this model and Grant’s ‘clipped’ Gaussian noise

model to allow for comparison with the noise performance testing of the CVHT in [16].

The same image sequence used for testing the CVHT cannot be used in these tests,

however, as the kernel used for Grant’s previous noise testing was based around a rigid

shape model, whereas the testing presented here uses a deforming shape model. The

CDHT is more than capable of handling rigid shape kernels, just as the CVHT does, but

as the aim of this thesis is to demonstrate its ability to extract deformable objects, to

extract a rigid shape using the CDHT would undermine its abilities and not demonstrate

its full potential.
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The CDHT was tested for its robustness to noise using 11 noise levels, from 0% – 100%.

The varying noise levels (above 0%) used during testing, added to Frame 16 from the

test sequence, are shown in Figure 7.3 using the basic binary noise model, and in Figure

7.4 using the clipped Gaussian model (post binarisation). The Gaussian noise model

used a zero-mean Gaussian with a standard deviation of 3, as described in [16]. Using a

standard deviation of 3 ensures that the problems associated with the clipped Gaussian

noise model are minimal.

For each noise level, 50 test sequences were produced independently of each other from

the ground-truth (0% noise) test sequence shown in Figure 7.1. These sequences were

then used as input into the CDHT and the extracted parameters found were compared

to the extracted parameters for the ground-truth test sequence in order to produce a

measure of performance degradation. No tolerance to slight deviations in the extracted

parameters was allowed in these tests, and therefore a set of extracted parameters could

be counted as being incorrect, or a ‘miss’, even if there was only a slight difference from

the ground-truth parameters.

10% noise 20% noise 30% noise 40% noise 50% noise

60% noise 70% noise 80% noise 90% noise 100% noise

Figure 7.3: Frame 16 with varying levels of binary noise added.

10% noise 20% noise 30% noise 40% noise 50% noise

60% noise 70% noise 80% noise 90% noise 100% noise

Figure 7.4: Frame 16 with varying levels of clipped and binarised Gaussian noise
added.
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7.2 Results and discussion

The result of the noise performance tests using both the binary noise model and the

clipped Gaussian noise model can be seen in Figure 7.5. Figure 7.6 shows a compari-

son between the Continuous Deformable Hough transform and the Continuous Velocity

Hough Transform, using a similar data set and the same noise model. In these results,

the “hit rate” is defined as the percentage of correctly located subjects, in both space

and time, for the 50 image sequences used in the test, where ground-truth location pa-

rameters for the subjects were taken directly from the model data used to generate the

test image sequences.
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Figure 7.5: Comparison of the noise performance for the CDHT using the binary
noise model and the Clipped Gaussian noise model.

These results, although on a reasonably basic data set, demonstrates that the CDHT

has excellent tolerance to noise. It should be noted that to the human eye, the apparent

motion of the human subject is not visible at noise levels of 60% and above in either

noise model. The CDHT, however, still detects the correct parameters at noise levels

of up to 70% with 100% accuracy. After this point, with both noise models, a drop in

performance to an accuracy rate of around 96% at noise levels of 80% can be observed,

followed by a fairly sharp drop-off to a 70% accuracy rate for the binary noise model,

and 76% for the clipped Gaussian noise model at noise levels of 90%. Using both noise

models, the CDHT failed to detect any sequences correctly at noise levels of 100%. This

is understandable as no original edge data should have been present at this level.
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Figure 7.6: Comparison of the noise performance for the CDHT and the CVHT, both
using the Clipped Gaussian noise model.

Figure 7.7 shows cross-sections of the accumulators, taken along the spatial x and y

dimensions, for typical noisy image sequences from 10% - 100% respectively using the

binary noise model. On examination of these accumulator cross-sections, it can be seen

that there is a well-defined global maximum for each noise level up until the 80% noise

level, from which point onwards the noise in the accumulator starts to mask the peak

formed by the true parameters. Given that to the human eye, the image sequences

containing above 60% noise are unrecognisable as that of a walking human, these are

very encouraging results.

When comparing the CDHT with the CVHT it can be seen that the CDHT is much

more accurate in extracting the correct parameters of the ground-truth shape sequence

model in noise levels of between 40% and 90%, with the CDHT being able to tolerate

a 30% increase in noise before any accuracy is lost. This can be accounted for by

the fact that CDHT is designed to find deformable objects, where the shape of the

object changes throughout the sequence, whereas the CVHT was designed to extract

rigid moving objects. Given this, when applying the CDHT, each frame of data is less

likely to be confused for another frame of data in the sequence at a different time, thus

lessening the probability of confusion in the accumulator space. Combining this unique,

varying shape description with the global nature of the CDHT to gather evidence over

both space and time, ensures that corrupt data can be handled well. It should be noted

that comparing the test results presented here with the test result presented by Grant
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Figure 7.7: Accumulators for varying noise levels.
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in [16] is not exactly comparing like-for-like, as the data used in Grant’s work consisted

of a simple moving rigid object, and if presented with the same data, the CDHT would

probably exhibit similar accuracy to the CVHT. A comparison between the CDHT and

the CVHT is made here simply because the CVHT is the closest technique to the CDHT

for modelling moving objects, and as such it is worth using as a baseline for the work

presented here. The increase in accuracy at higher levels of noise owes as much to the

uniqueness of the temporal deformation captured using the spatio-temporal kernel model

as it does to the design of the CDHT itself. Nevertheless, the combination of these two

powerful techniques has produced very impressive results.

7.3 Summary

This chapter has presented a set of ‘best-case’ noise performance tests for the CDHT.

The results from these tests demonstrate that the CDHT has an excellent tolerance to

noise. The ability to tolerate such extreme levels of noise is, no doubt, due to the global

spatio-temporal evidence-gathering nature of the CDHT. If a frame of the input data is

corrupted to the point where it is no longer recognisable, then the overall impact on the

performance of the CDHT is not as great as it might be when using evidence-gathering

techniques that do not take advantage of this temporal correlation.

The tests presented in this chapter have demonstrated the performance of the CDHT

using pseudo-synthetic edge data, in that the edge data used is far ‘cleaner’ than the edge

data that would be obtained from a real-world scene. With this in mind, the thesis will

now proceed to examine the performance of the CDHT using real-world data, captured

in a natural environment.



Chapter 8

Real-world performance testing of

the CDHT

The results from Chapter 7 indicate that the CDHT works well when presented with a

synthetic input, even in the presence of high levels of noise. When compared to the image

sequence used in the previous chapter, however, edge-detected images sequences in the

real world are rarely so well defined. Typically when looking at real-world data there is

a particular subject, or subjects, of interest, such as walking humans in a busy scene. If

a scene such as this is considered with regard to locating and extracting these subjects

of interest, it soon becomes apparent that most of the image data can be considered to

be ‘noise’ that simply obfuscates the problem. Further to this, certain aspects of image

noise, such as Gaussian noise are usually always present in a recorded image, and even

the best edge detection techniques will result in false edges being detected while true

edges are not. Due to this, formal real-world performance testing was deemed necessary

to prove the CDHT’s worth outside of laboratory or synthesised conditions.

8.1 Test data

The University of Southampton’s Large Gait Database contains image sequences filmed

outdoors, in a natural environment. Fifty of these images sequences, chosen arbitrarily

(the first 50 right-to-left walking sequence for each subject – Subjects 13-631), were

selected to be used as test data for real-world performance testing using the CDHT.

Image sequences were taken for various subjects, but all from camera ‘e’ - “normal

outside”. From these image sequences one whole gait cycle and, wherever possible,

5 frames either side of this, were extracted. Due to computational time restraints,

the image sequences were subsampled spatially by a factor of 2 along both axes and

1Due to incorrect labelling in the database used for testing, the image sequence for Subject 37 was

omitted from testing, being replaced by the first image sequence for Subject 63.
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scale parameters were also estimated and fixed for each sequence, therefore leaving the

temporal start point and the two spatial start points as free parameters.

It should be noted that the data used in these tests differs significantly from the data first

used to test the application of the CDHT to a real image sequence in Chapter 6. The

data presented in Chapter 6 was collected under controlled laboratory conditions, and

as such variables such as lighting and background noise were controlled tightly. Further

to this, the data previously used for testing only ever contained one subject walking

along a well defined path. In contrast, the data used in this chapter was collected

outdoors, where the sun, clouds, and other transient objects cause variations in lighting,

and occlusion and interruption to the subject’s gait are often met due to people walking

into or across the scene. Due to these factors, this data presents a far more significant

challenge to any computer vision techniques, including this one, than the data used in

Chapter 6.

It was decided that a two-tier testing structure would be applied to the real-world data:

the first test to determine the CDHT’s performance when presented with raw edge-

detected image sequences; the second test to determine the CDHT’s performance when

presented with pre-processed image sequences. This decision was made to allow a full

examination and comparison of the CDHT when applied to the real-world data – from

a raw test of the CDHT, to a test more akin to how it might be applied in a real-life

application environment (simple background subtraction is performed). Most applied

computer vision systems pre-process the input data somewhat before presenting it to

any image analysis algorithms, and these second set of tests aim to demonstrate the

CDHT’s performance under these conditions.

8.2 Raw real-world data testing

In order to determine a basic performance measure of the CDHT on the real-world data,

the first tests were conducted using data that was processed as little as possible. The only

pre-processing carried out prior to testing was a colour space conversion, to produce an

intensity image, and edge-detection using the Canny operator (using parameters which

were deemed optimal for the type of data in question. These parameters were consistent

for each image sequence tested). Selected example frames from the image sequence for

Subject 14 showing the original and edge-detected data prior to testing can be seen in

Figure 8.1.

The edge data shown in shown in Figure 8.1 is far from perfect, and a substantial amount

of noise exists in the background. In many frames, the edge detector only manages to

extract partial boundaries for the walking human subject. This was often because the

subject’s clothing was of a similar intensity to much of the background and so didn’t
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Frame 35 Frame 35 - edge detected

Frame 40 Frame 40 - edge detected

Frame 50 Frame 50 - edge detected

Frame 60 Frame 60 - edge detected

Figure 8.1: Original and edge-detected real-world data for Subject 14.
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produce a strong edge response. The binary edge data produced here was fed directly

into the CDHT, which extracted a best-fit model for the free parameters of the generic

gait kernel model for each image sequence.

8.2.1 Analysis of results

When considering the success of the CDHT in the absence of any real ground-truth

data, it was necessary to perceptually analyse whether the model seemed to ‘fit’ the

subject in question. This approach relies on manually identifying cases when the model

deviates from the true data significantly enough to warrant marking it as a ‘miss’. This

is obviously a subjective measure, but due to the subjective nature of vision and image

interpretation as a subject on the whole, this method of verification was deemed suitable

for this set of tests. Later, when we are testing the performance of the CDHT when

subjected to image occlusion, some form of baseline result data will be necessary, as

there will be a need for a benchmark performance score to compare the test results

against. In these tests, however, this is not the case.

Due to the large quantities of image data involved in these tests, only a sample of the

results will be presented in this chapter, but in order to verify the hit rates calculated

by this method of analysis, the first and last frame from each gait sequence found as a

result of these tests, with the shape model overlaid, can be found in Appendix B. The

results from these tests actually demonstrate a mix of either exact or extremely close

hits, or extreme misses, thus further strengthening the argument that the method of

analysis used to verify the hit rates of these tests is sufficient for this particular set of

results.

The hit rate for the whole of this particular data set was 82%, with 41 out of the

50 subjects being correctly located in both space and time. While these results may

not seem as impressive as those for the synthetic data, even when the synthetic data

was subjected to high levels of noise, this is an encouraging result. Given the overall

amount of background edge data in this data set, along with the relatively poor edge

responses at the boundary of the human subject in some images sequences, a slight

drop in performance is quite understandable and, as will be shown, with very basic

pre-processing a great increase in performance can be gained.

Another factor influencing these results is that the model data, which is the generic gait

model detailed in Chapter 6, will not (unless by chance) exactly match the edge data

supplied to the CDHT. Figure 8.2 shows the resulting kernel parameters, in the form

of a reconstructed Shape Sequence Template, scaled and translated in space and time,

overlaid on the same sample frames from Subject 14 as previously presented in Figure

8.1. From this, it can be seen that there is generally a very good correlation between

the real-world gait sequence and the extracted model. However, as a generic gait model
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was used as the kernel for the CDHT, obvious deviations can be seen in the actual data.

In particular, deviations can be seen around the feet in frames 35 and 60, where the

posterior foot during the “toe off” points of the gait cycle extends past the boundaries

of the model, and around the head, due to the subject walking with their head pointing

down towards the ground. Deviations such as these can be observed in the results for

many subjects, but as the fit to the model is otherwise very good, we consider these as

hits.

Frame 35 Frame 40

Frame 50 Frame 60

Figure 8.2: Resulting Shape Sequence Template overlaid on the original image data
for Subject 14.

A cross-section of the resulting accumulator for the image sequence featured in Figure

8.2, taken at the parameters found by the CDHT, is shown in Figure 8.3. It can be seen

from this that the peak of the accumulator is much less pronounced than in the synthetic

data examples shown in Chapter 7, and there are a great many noisy votes cast for areas

of the image sequence that contain background edge pixels. A large number of votes

can be seen that correspond to areas in the original image sequence containing the tree

towards the top left of the scene, and around the cars and buildings to the right, where

there is a large amount of edge information present in the input data.
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(a) Top View

(b) Views along the x and y axes

Figure 8.3: Accumulator for the image sequence ‘Subject 14’.



Chapter 8 Real-world performance testing of the CDHT 83

Many image sequences in the test data set contained other human subjects walking into

view, or cars driving past the road in the background. For some image sequences, the

subject was obstructed from walking normally and their gait became erratic. For patho-

logical examples of this behaviour, the CDHT fails to extract the correct parameters

for the subject in question, but for other examples the CDHT still performs well. One

particular test sequence which demonstrates the CDHT’s resilience to temporal noise of

this kind is that for Subject 25 (Figure 8.4), in which the subject can be seen walking

behind a group of oncoming people, partially occluding the subject for part of the gait

cycle. The CDHT still manages to correctly locate the correct parameters for this sub-

ject. Tolerance to complete frames of subject data being occluded in this way comes as

no surprise, and the successful extraction of the correct parameters in this case is testa-

ment to the CDHT’s spatio-temporal evidence-gathering nature – considering the image

sequence as a whole, rather than just individual frames. An image sequence such as this

would have caused purely spatial variants of the Hough Transform, such as the GHT,

to break down completely. Frames of the result sequence for Subject 25, specifically

showing the subject walking into this period of occlusion, are shown Figure 8.42.

Examination of the accumulator spaces and input data from these tests offers some

insight into why the CDHT failed to extract the correct parameters for 9 of the images

sequences tested. It has previously been mentioned that particularly noisy areas in the

accumulator often relate to areas in the test scene containing trees and buildings, and, in

failure cases, votes cast by these are a major contributing factor to the lack of success in

extracting the correct model parameters. However, another major contributing factor

is the quality of the edge data used as a source of input to the CDHT. In many of

the failure cases there is often limited contrast between the intensity levels around the

boundary of the subject and the background. Due to this, edge detection often fails

to detect a number of true edges around the subject for many successive frames. An

example of this can be seen in Figure 8.5, which shows an original frame of data and the

edge-detected input to the CDHT for a frame in Sequence 31. Figure 8.5 demonstrates

how poor contrast has affected the edge detection process, and the whole of the lower

torso of the subject, which is in shadow, has been disregarded by the edge detector.

Given that in instances such as these, the input data is only partially present, it is not

hard to see why the CDHT failed to extract the correct model parameters, and this

should be seen as a failure of the edge detector rather than the design of the CDHT

itself.

Out of the 9 image sequences from which the CDHT failed to extract the correct model

parameters, 7 demonstrated strong evidence to suggest that poor edge detection, par-

ticularly around the legs, was a major contributing factor in this failure (Sequences 22,

2It is worth noting that the tests presented here used a kernel model specifically designed to find

subjects walking from right-to-left, and as such the people walking into the scene in the other direction,

although causing significant amounts of edge data to be present in the input, would not have been

detected by the CDHT during these tests.
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Frame 66 Frame 68

Frame 70 Frame 72

Figure 8.4: Partial results for Subject 25, showing the subject walking into partial
occlusion.

Frame 59 – Original image Frame 59 – Edge map

Figure 8.5: Original and Canny edge map for Subject 31, showing failure to detect
edges of the lower torso due to poor contrast.
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31, 32, 36, 41, 53, 59). Examination of the accumulator spaces for the remaining two

incorrectly extracted sequences (42, 54), showed that the CDHT produced near misses

(when considering the number of votes cast) to the actual true parameters, with a very

high number of votes being cast into the accumulator at the indices that would have cor-

rectly located the human subject, but not quite a high enough number to create a peak

sufficient to rise above that of the background noise. This can be seen by examining the

cross-section of the accumulator space for Sequence 42, shown in Figure 8.6, in which

a large peak can be seen at position (x ≈ 215, y ≈ 160) relating to the votes cast by

subject of the image sequence. It can be seen that this peak, although very prominent,

just fails to be masked by the noisy votes cast by the trees, centralised around position

(x ≈ 100, y ≈ 70).

Figure 8.6: Cross-section of the accumulator space for Sequence 42, showing a vote-
wise near miss.

8.2.2 Summary

The tests presented above show that the CDHT works well with what can be considered

to be raw real-life data, and manages to deal with noise well if the majority of the

feature points for the subject of an image sequence are present. On the whole, any

lack of success when applying the CDHT to this raw real-life data can probably be

attributed to a failure of the edge detector in detecting true edges, rather than a failure

of the CDHT itself.

In practice, real-life image data is often pre-processed somewhat, often in an application-

specific manner, and the CDHT’s performance should benefit from this. To examine



Chapter 8 Real-world performance testing of the CDHT 86

this further, and therefore give a true feel for the CDHT in a real-life computer vision

environment, the next section will present tests performed using the same data set as

above, but pre-processed using basic, generic image processing methods, which would

be applicable to almost any application domain.

8.3 Pre-processed real-world data testing

When applying the CDHT in a realistic environment, one would usually pre-process the

image data somewhat using heuristics related to the particular application domain, in

order to remove unwanted edge data and noise. In the application domain of this thesis

– finding walking humans, we are only concerned with moving objects and therefore a

realistic and sensible first step in pre-processing the image data would seem to be the

removal of any static features in the scene. In order to therefore test the performance of

the CDHT in a more realistic environment, a simple background subtraction technique

was applied to each image sequence prior to edge detection and being used as input into

the CDHT.

8.3.1 Background subtraction and edge data generation

The simple background subtraction process used during these tests prior to edge-detection

will now be detailed. The various stage of this process can be seen in Figure 8.7.

Before background subtraction, each image was transformed from a 3 channel RGB

image to a single channel intensity image. After this, the background was calculated as

the median, for each pixel using the set of all frames as

background(x, y) = median(x, y, t); (8.1)

where x and y are the spatial pixel coordinates and t is a vector of time offsets for each

frame ranging from 0..T − 1, with T being the length of the image sequence in frames.

The median was used as a preferred method of obtaining an estimate of the average

pixel intensity as it is less affected by statistical anomalies, such as those introduced

when an object passes through a specific pixel region.

For each frame, a difference map was then formed by finding the absolute difference

between the frame and the median background image. In theory, in creating this back-

ground map, differences between each frame and the median background should corre-

spond to non-static (moving) pixels in the scene. In practice, however, if there is little

difference in pixel intensity between the original image and the median background

image then even non-static pixels may be removed.
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(a) Original Image Sequence

(b) Background median image (c) Background difference image
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(d) CDF of background difference image (e) Thresholded difference image
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(h) Canny edge-detected image

Figure 8.7: Background subtraction process.
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In order to produce a binary image with which to mask the original frame data, a

threshold level was calculated by forming a Cumulative Distribution Function (CDF) of

the difference values from the difference image. Using this CDF, thresholding was then

performed by setting the 0− nth percentile of grey levels to 0 and the (n + 1)th − 100th

percentile of grey levels to 1. The images used in these test were thresholded up to the

85th percentile, as this was judged to give optimal removal of background pixels whilst

retaining true foreground pixels.

Due to natural image intensity variation, often caused by variable lighting, this thresh-

olding process inevitably caused some true background pixels to be thresholded as fore-

ground pixels (and unfortunately vice-versa). However, in the binary image produced

from the last step, these background pixels tended to be very isolated and the majority

of these could be removed by a simple median filtering operation. In the tests detailed

here, this was performed using a 3x3 median filter.

To complete the background subtraction process, the median filtered binary image was

used as a mask and applied to the original image data to extract the foreground pixels

only. The resulting images were then edge-detected using the same method as the

previous set of tests prior to being used as input directly into the CDHT.

8.4 Analysis of results

This set of tests was conducted using the same 50 image sequences that was used during

the previous real-world data tests, with the only difference being that pre-processing

was carried out as described above. The hit rate for these tests was impressive, with

the CDHT extracting 100% of the object’s model parameters correctly. Given the hit

rate of 82% for the previous ‘raw’ real-world data tests, this is a significant, but perhaps

not surprising increase. Once again, due to the amount of image data involved in these

tests, only a sample of the results will be presented in this section, with more detailed

results being found in Appendix C.

In order to compare the results of these tests with the results from the previous real-

world tests, which used raw edge-detected data only, we will again look at a cross-section

of the accumulator for Subject 14, shown in Figure 8.8.

It can be seen from this cross-section that the peak of the accumulator is now much

more prominent, and the area surrounding the maximal peak much cleaner, than that

seen when raw edge-detected data was used. This is a result of much less background

noise existing in the edge data prior to the application of the CDHT.

Although there is much less in the way of noise, a significant number of votes have

still been cast that relate to the area occupied by the trees located towards the top-left

of the original scene (which due to the effects of wind, demonstrated some temporal
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(a) Top View

(b) Views along the x and y axes

Figure 8.8: Accumulator for the image sequence ‘Subject 14’ using pre-processed
data.
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variance). The noise created in the accumulator by this area, however, is much less

using the pre-processed data, and the peak-to-noise ratio in this instance is much more

pronounced, increasing the probability of the subject being correctly identified and not

being confused by a local maximum in the background noise.

8.5 Summary

This chapter has presented a comprehensive set of performance tests using the CDHT to

extract spatio-temporal model parameters from a challenging number of real-world data

sequences. The results from these tests have shown that the CDHT is very successful

when working with real-world data, even in the presence of significant amounts of noise,

and in certain cases, partial occlusion, and a hit rate of 82% was obtained using raw

edge-detected image sequences. Through the application of very basic pre-processing

of the image sequences, in order to give a more accurate understanding of the CDHT’s

potential when used in a realistic computer vision system, this hit rate increased to

100%, thus proving that the CDHT is a viable tool for use in practical applications.
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Occlusion testing

Occlusion can cause problems to many computer vision algorithms. Metrics that one

might normally associate with a shape, such as area, boundary, eccentricity, and colour

distribution may not hold during periods of occlusion. As the Fourier descriptor model

is a description of the shape as a whole, and not just one section of the boundary,

regular Fourier descriptor models are usually vastly corrupted by occlusion. Indeed, any

object detection or recognition technique that utilises the whole shape will be affected

by occlusion. Given this, the need for robust computer vision techniques that can cope

well under occlusion is great. It should be noted, however, that to hide part of an object

from view is to hide important information relating to that object’s description, and

no vision system (including the human vision system) can be expected to perform well

when significant proportions of an object of interest are occluded.

When compared to other shape detection techniques, evidence-gathering algorithms cope

well with occlusion. This is largely due to the fact that, when determining whether an

object defined by a specific set of parameters is present, each feature point is independent

in providing ‘evidence’. With Hough transform-based techniques, if a small portion

of these edge points are obscured in some way, then the number of votes cast into

the accumulator should only be reduced slightly if there are still many contributing

edge points remaining. In the case of spatio-temporal evidence-gathering techniques,

such as the Velocity Hough Transform or the Continuous Deformable Hough Transform,

evidential feature points exist in a much greater quantity, with points existing through

both space and time. Given this, one would expect a much greater tolerance to disruption

or absence of features points. Even if whole frames of data are occluded, the other frames

in the sequence should ensure that the object is still detected correctly.

The real-world data used in the previous chapter demonstrated that the CDHT per-

formed very well at detecting periodic shape-sequences in complete image sequences.

Often, however, image sequences in the real-world contain areas of occlusion, in which

the view of the object(s) of interest are temporarily blocked by other foreground objects.

91



Chapter 9 Occlusion testing 92

Indeed, an example of such a condition was described in the previous chapter, when two

people crossed paths whilst walking. To claim that the CDHT is able to cope with large

amounts of occlusion just based on this one example, however, would be foolish, and as

such it was deemed prudent to examine the CDHT’s ability to cope with occlusion using

a set of well-defined tests.

9.1 Test data

To test for a degradation in performance when presented with occluded data, a baseline

result set is needed. To test the CDHT’s ability to handle occlusion, the results from

the pre-processed real-world image set from the previous chapter was used as this result

set. Since the CDHT achieved a hit rate of 100% when applied to this data set, it makes

a good baseline result for testing any further changes to the data.

Occlusion was added as a further step to pre-processing using a static foreground object

(variable width vertical bars), overlaid on top of the original image data in such a way

that the object of interest was obscured. The amount of occlusion was varied between 0%

and 100% of one period of the object’s motion in 10% increments, in order to determine

the level of occlusion at which the CDHT would fail to determine the correct model

parameters for the shape sequence in question.

The process of creating the data for the occlusion tests was derived from the real-world

test results from Chapter 8, Section 8.3 and the real-world test data itself, and minimum

and maximum x-axis values from the reconstructed shape models found during real-world

tests were used as the minimum and maximum values for the occlusion range of one gait

cycle for a given gait sequence. These limits are demonstrated in Figure 9.1.

(a) Start of gait cycle (b) End of gait cycle

Figure 9.1: Occlusion limits for one gait cycle.

To produce the actual test data, vertical blanking was added to the original image data

using a mid grey-level intensity in order to simulate worst-case real-world occlusion.



Chapter 9 Occlusion testing 93

As the tests performed here used the same pre-processing as those in Chapter 8, this

vertical blanking section was effectively removed during the background subtraction

process before edge-detection took place, leaving a zero-intensity period of occlusion in

the resulting edge data. This is a desired effect, however, as any true static occluding

object would be removed in much the same way. Examples of the occlusion levels used

can be seen in Figure 9.2.

The tests were then repeated in the same manner as previous real-world data tests, using

the CDHT to gather evidence and locate the best fit for the kernel model parameters.

9.2 Analysis of results

Before analysing the results of these tests, it is prudent to consider factors that could

affect the performance of the CDHT and cause spatio-temporal “near misses”. Due

to the nature of the Hough transform, as more noise is added to an image, or image

sequence in this case, “peak spreading” can occur in the accumulator. This effect occurs

as the edge pixels become corrupt and false edges occur around the true edge data.

The true peak in the accumulator becomes clouded with noisy votes and more “near

miss” votes are cast, effectively spreading and smoothing the true peak. Even votes

cast by the shape itself may cause a slight spreading of the peak of the accumulator,

as inconsistencies between the input data and the kernel of the Hough transform can

introduce slight averaging errors. Further to this, the effects of discretisation can cause

rounding to occur in the accumulator, with votes being cast either side of the true

location of the peak.

Depending on the application domain of the CDHT, a near miss may actually be inter-

preted as a hit. Given a 360 x 288 image, such as those presented in all real-world tests

in this thesis for example, locating the center of mass of a human subject spatially to

within 2 or 3 pixels may be considered acceptable. For other applications this might be

unacceptable.

With the factors described above in mind, it would be foolish to simply compare the

results from these occlusion tests with the baseline data and look only for exact hits. As

a result of this, no one measure of hit rate will be given for the results in this chapter.

Alternatively, we will present the effective hit rate should a threshold determining what

is considered a hit be applied to the results.

The measure for this threshold will be given by a simple Euclidean distance metric,

which we will term the Maximum Hit Distance, or MHD, and takes three variables into

account: the spatial x and y start point locations, and the temporal start point t, and

is thus given by
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10% 20%

30% 40%

50% 60%

70% 80%

90% 100%

Figure 9.2: Occlusion data.
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MHDseq =
√

∆x2
seq + ∆y2

seq + ∆t2seq (9.1)

where ∆xseq, ∆yseq, and ∆tseq are the respective distances of the differences between

the extracted spatial and temporal start point parameters and the baseline data for the

sequence seq, obtained from the real-world tests in Chapter 8.

A problem with calculating a distance metric threshold such as this is that distances

in time and space are not easy to compare side-by-side. An error of 2 pixels spatially

would probably be considered by most to be acceptable, whereas an error of 2 frames

temporally would probably not. As such, the MHD should only be used as a rough guide

to the proximity of the extracted parameters to the baseline parameters. With this said,

the actual results from these tests showed that the margin of error when locating the

spatio-temporal start point of the CDHT’s kernel model was either within 2 pixels in

either spatial direction or 1 frame temporally (a maximum theoretical MHD value of 3)

of the baseline start point, or an extreme distance away (similar to the results seen in

previous real-world tests), and as such all results could either be considered as hits or

misses with some degree of certainty.

The results of these tests are shown in Figure 9.3. This figure details the hit rate for 50

sequences, using varying MHD threshold values from 0 to 5.

Figure 9.3 is worth taking some time to interpret. It can be seen that strong occlusion

can cause a marked drop in performance, although this is not without obvious cause.

Using a zero-tolerance Maximum Hit Distance (MHD) threshold of 0 yields a hit rate

of only 46% for an occlusion level of 10%, with performance dropping off dramatically

after an occlusion level of 30%, until at 70% no sequences are recognised as a hit.

It is interesting to note, however, that easing this threshold slightly, to a MHD threshold

of 1, shows a large increase in hit rate (almost double) for most occlusion levels. At a

MHD threshold of 1, hit rates of 90%, 74% and 68% are observed at occlusion levels of

10%, 20% and 30% respectively, with hit rates then dropping off again dramatically at

an occlusion level of 40% to only 18%. Again, at this MHD threshold, the hit rate falls

to 0% at a 70% occlusion level.

Increasing the MHD threshold to a value of 2 yields only a slight increases in hit rate

at an occlusion level of 10% to 94%, but a noticeable increase at occlusion levels of 20%

and 30% to 80% and 76% respectively. Again, past this point performance drops off

dramatically, failing at 80%.

At MHD thresholds of between 3 and 5 – the upper limit of this test (as anything

deviating this far from ground truth would definitely be considered a miss), no increase

in hit rate is observed at any occlusion level. This can be explained if one examines

Figure 9.4, which shows the distribution of the Euclidean distances between the baseline
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Figure 9.3: Results for the occlusion tests using varying MHD thresholds.
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data parameters and the extracted parameters for each occlusion level as a box-and-

whisker plot. It can be seen from this that occlusion levels of up to 30% produce results

which all fall within a very small distance from the baseline results (a MHD of 0 - 2).

Occlusion levels of greater than this tend to produce results which fall much greater

distances away from the basline results. Indeed, if we examine the box-and-whisker plot

for the occlusion level of 40% we see that the median distance from the baseline result

is around 17. From this, one can clearly see why increasing the MHD threshold (thus

increasing the distance from baseline results that can be classed as a ‘hit’) would have

little effect on perceived performance between values of 2 and 5. The high hit rates

at occlusion levels of between 10% and 30% can be explained due to the fact that, at

these occlusion levels, the majority of the maxima in the accumulator space fall within

a distance of between 0 and 2 of the baseline location – a very close, if not exact, hit.

At an occlusion level of 40% and above, a much greater tolerance of what one considers

a ‘hit’ is needed to see an increase in perceived performance.

Figure 9.4: Box and whisker plots of the Euclidean distances at varying occlusion
levels

To put this analysis in perspective, if we consider the percentage of the sequences, at

varying levels of occlusion, that fall within 1 pixel, or 1 frame of the baseline parameters,

we obtain the hit rates summarised in Table 9.1. At these resolutions, this threshold is

a reasonable threshold to use, where extraction of the correct parameters with a 1 pixel

or 1 frame tolerance level (equivalent to 1
25

th
of a second in time at the frame rates used

here) could easily be considered a correct hit. These results are drawn from the result
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Table 9.1: Hit rate at varying occlusion levels for results falling within 1 pixel or
frame of the baseline data

Occlusion level (%) Hit rate (%)

10 94
20 80
30 76
40 28
50 22
60 10
70 2
80 0
90 0
100 0

set using a MHD of ≤ 2 (a combination of errors of 1 unit in all 3 dimensions gives a

maximum distance of 1.73, which is below the MDA ≤ 2 threshold).

9.3 Discussion and summary

It would be wise at this point to compare our results with those from other spatio-

temporal evidence gathering algorithms. The algorithm most similar to the CDHT is

the CVHT. Using the CVHT, successful extractions were obtained at up to 70% occlusion

levels [16]. However, this is perhaps not a fair comparison to make as the imagery used

in these test was filmed under laboratory conditions, with fixed and constant lighting

conditions. Due to this, the edge data used as an input into the CVHT for these tests

was much cleaner, and importantly the subject was extracted very well when compared

to the edge data used as an input for the CDHT. The real-world data set used for the

CDHT was also very much more corrupted by noise due to non-static objects, with

swaying trees, passing cars, and in extreme cases, multiple people crossing the field of

view between the camera and subject. While this does not in any way discredit Grant’s

results for the CVHT, the result set for the occlusion tests using the CDHT do perhaps

give a more accurate view of applying spatio-temporal evidence-gathering techniques in

the outside world, where other forms of occlusion and noise are ever-present.

Grant also reported in [16] that testing on the CVHT concentrated specifically on the

upper-torso of the subjects, as the the legs were more difficult to extract successfully

using edge detection. For the tests presented here, the CDHT uses the whole boundary

of the human subject, so includes edge data from these more problematic areas. One

may naively think that using more of the edge data for the subject is a good thing, as

more ‘evidence’ is gathered for the subject in question, but this is only holds true if

the edge data is clean and intact. Using noisy sections of edge data may result in an
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overall drop of performance as near misses of votes cast in accumulator will simply cause

peak-spreading in the accumulator and mask the true peak in more noise. While it is

feasible for the CDHT to use a partial boundary model, such as that used in the tests

on the CVHT, the CDHT’s originality lies in its ability to detect objects that deform in

some periodic way.

The additional noise that occurs in the real-world data set used for testing the CDHT,

along with poor detection of the edges of the subject at times, is without doubt respon-

sible for a marked drop in performance when compared with the results for the CVHT.

The fact that the CDHT still correctly extracts the parameters of the subject 76% of

the time under these conditions when the subject’s gait cycle is occluded by up to 30%,

is a very encouraging result, and it should be noted that appropriate heuristics, which

could be applied to any variant of the Hough transform, would undoubtedly make the

algorithm even more robust.



Chapter 10

Future work and conclusions

10.1 Future work

10.1.1 Application-specific work

Examining a signal in the frequency domain often allows defining characteristics of the

signal to become apparent. In much the same way, the ability to analyse spatio-temporal

gait patterns in the frequency domain should allow defining characteristics of a subject’s

gait to become apparent. In this thesis, this has already been demonstrated by way of

applying the new spatio-temporal Fourier descriptor model to human gait recognition,

where the defining characteristics of a specific human subject are extracted from more

’generic’ human gait characteristics. These characteristic descriptors allowed a simple

classifier (k-nearest neighbour) to discriminate between a large number of subjects with

a high level of accuracy.

Although this thesis has concentrated on the detection and recognition of human sub-

jects, the spatio-temporal Fourier descriptor model developed here is very generic and is

applicable to any forms of periodically deforming objects. There are many fields, such

as those allied to medicine and biology, in which periodic motion is present and the

ability to model it concisely, and to a known level of specificity may be advantageous.

In medicine, for example, various aspects of the cardio-vascular system exhibit periodic

deformation as they respond to the beating of the heart, which in itself demonstrates

strong regular periodic deformation.

Clinical gait analysis

The clinical analysis of gait (an area distinct from gait recognition), is another field

in which the use of a spatio-temporal model of gait with variable generality, such as

100
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that presented in this thesis, could probably be put to good use. A large proportion of

clinical gait analysis is carried out either by eye, or by analysis of marker-based imaging

of subjects, with easily identifiable markers being placed over the subject’s body at

specific known points. The spatio-temporal movement and relationship of these markers

are then used to form a model of the subject’s gait, with this model then being examined

by human analysts to search for abnormalities in gait.

Gait is often analysed for the two quite differing purposes of determining abnormal-

ities and analysing sports performance. Pathological gait may reflect compensations

for underlying problems and diseases, and certain abnormalities in a subject’s gait cy-

cle are often a good cue to these problems. A distinct example of pathological gait is

demonstrated in the walk of somebody with Parkinson’s disease. Often, this includes

bradykinesic shuffling – a term used to describe the associated slow shuffling motion of

a person with Parkinson’s disease, which also often presents with a lack of arm swing,

and a drooping of the head and shoulders [30]. Many such pathological gait disorders

exist, relating to a number of medical conditions, and a list of these along with further

discussion on pathological gait is given in [40].

In direct contrast to pathological gait analysis, sport scientists often use gait to examine

athletes’ performance. For example, being able to analyse the gait of a sprinter may

highlight areas of weakness, which may then enable an appropriately trained physician

to advise the sprinter as to how he or she could enhance their performance.

Areas such as these are obvious candidates for the application of an automatic gait

analysis system based around techniques presented in this thesis.

Subject segmentation

Background subtraction techniques have arguably been a weak point in computer vision

due to a number of technical reasons. This area is often a problematic one, as it is hard

to define what the term ‘background’ means in all contexts. Often this is taken to be

the static, or pseudo-static objects in a scene, such as grass, concrete structures, and

buildings. When observing a scene, however, concentrating purely on this concept of a

‘background’ model is not always what may be required. Within a given scene, vision

systems usually focus their attention on certain objects of interest, and prior knowledge

of these objects could, in many cases, guide their segmentation. Often, especially in

biometric and surveillance systems, these objects of interest are humans, who move in

a periodic manner. The Continuous Deformable Hough Transform has proved to be a

very robust method of detecting periodically, or near-periodically deforming objects, and

given this, the extracted shape and deformation parameters would provide a very good

basis for initialising an intelligent object segmentation system. Better segmentation of

human subjects would inevitably improve automatic gait recognition techniques and
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would also allow more complicated behavioural analysis, as the details of a subject’s

movements could be more accurately extracted.

10.1.2 Technique-specific work and performance enhancements

The algorithms and techniques demonstrated throughout this thesis are shown and have

been applied in a very ‘raw’ form. No heuristics have been used to help guide searching

of the feature space nor has support been provided by prior knowledge of the applica-

tion domain. Additionally, very basic classification and feature extraction techniques

have purposely been used. This is with good reason. The concern of experimenta-

tion throughout this thesis has been in testing the spatio-temporal Fourier descriptor

model and CDHT’s baseline performance. While arguably better classification and fea-

ture extraction techniques could have been used, the aim of the experimentation was

to prove and emphasise the model’s descriptive uniqueness and the CDHT’s robustness

and generality, and not to demonstrate any form of optimised recognition or extraction.

Nevertheless, certain parts of the algorithmic design could benefit greatly from vari-

ous optimisation techniques or performance enhancements, and these are suggested for

further work below.

Parameter space reduction via correlation

Studies have shown that normal human gait exists within a well defined set of limits,

and that these parameters are often strongly correlated, especially for subjects within a

similar age range [40]. Many of these correlations could be directly applied when using

the CDHT to extract human gait parameters. Anatomical correlations would form a

gamut of possible gait models in the CDHT’s feature space, which in turn could be used

to guide and speed up searching of the parameter space, due to the need to consider

only a subset of all possible gait parameters.

If the parameters extracted for the correctly identified real-world image sequences are

examined, it is easy to see that some are highly correlated, even if some variation exists.

Figure 10.1 shows the correlation between the maximum bounding box width and height

parameters (the spatial scaling parameters extracted via the CDHT). If we examine this

figure a correlation can be seen between these two parameters. If we further analyse

this data set, we can obtain a correlation coefficient for these two variables, which for

these specific variables and data set is 0.99, demonstrating that the two variables are

indeed very highly correlated. This is hardly surprising as subject height is well-known

to be highly correlated to leg length, which in turn is highly correlated to the maximum

width of the subject’s stance when walking.

Figure 10.2 shows a similar correlation, for the same data set, between subject height and

the distance that the center of mass of the subject has travelled. This figure also shows
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Figure 10.1: Correlation of maximum bounding box width and height parameters.

the 95% limits of both male and female standard (for British subjects) anthropometric

measures for human subject height and stride length [36], where stride length roughly

equates to the distance that the center of mass has travelled for the parameters extracted

via the CDHT. Given that the test data consisted of both male and female subjects, it

is not surprising that the majority of samples fall within the upper and lower bounds

of both of these limits. The two samples actually falling outside these limits belong

to Subjects 32 (107, 60) and 52 (108, 72). Upon examination of the data for these

subjects, it can be seen that while Subject 54 is merely a slow walking individual,

Subject 32 is actually prohibited from walking at normal speed due to their gait cycle

being interrupted by passers-by (and is therefore a true anomaly). The correlation

coefficient for these two variables is also 0.99, again suggesting a very high degree of

correlation.

Given this high degree of correlation between certain parameters, the parameter space of

the CDHT could be narrowed down significantly when searching for normal gait, using

only the gamut of parameter values that covers the range for human gait. An alternative

to this, that could be used to test for pathological gait as described above, would be to

search for only parameters outside of this gamut (although this would obviously have to

be bounded at some point).
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Figure 10.2: Correlation of maximum bounding box height and velocity scaling pa-
rameters, showing the lower and upper bounds (95% limits) of male (blue) and female

(red) subject height and stride length.

Parallel processing and general heuristics

Although the CDHT’s feature space is of a fixed dimensionality and does not change

with object complexity (contrary to the case with the standard Hough transform), it

still requires a considerable amount of processing time. This processing time is generally

directly proportional to the number of potential feature points in a given image sequence

(edge pixels). The processing required per feature point, is however, totally independent

of the processing of other feature points and the algorithm would therefore lend itself

well to a parallel or distributed method of computation. Theoretically, this could reduce

computation time by a factor equal to the number of parallel nodes available to perform

the processing. A good discussion on the implementation of parallel Hough transforms

can be found in [26].

Pragmatic approaches to reducing computational requirements of the Hough transform

could also be applied to the CDHT. For example, ‘pyramidal’ or multi-stage methods,

such as the Hierarchical Hough Transform [6, 22] or the Adaptive Hough Transform [21]

allow progressive refinement of the accumulator space to speed up computation time,

whilst still retaining a high degree of accuracy.

As we have already seen in Chapter 8, Section 8.3 (Pre-processed real-world data test-

ing), analytically removing feature points that will definitely not contribute to the mean-

ingful interpretation of a scene can be one of the most effective methods of improving
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accuracy. In the case of the CDHT, where the subject of the search is usually mov-

ing, removing static features can greatly improve performance. In this thesis this was

demonstrated through a very basic and crude form of background subtraction, but the

removal of ‘background’ features often inadvertently leads to the accidental removal of

genuine feature points belonging to the subject itself. More sophisticated methods of

determining motion and removing non-salient features, such as incorporating the use of

optical flow, could lead to a dramatic increase in performance and speed. Removing such

features has both the combined benefit of decreasing processing, as there are less feature

points to process, and also causing fewer false votes to be cast in the accumulator space,

thus reducing the probability of any true maximal peaks being swamped by noise.

10.2 Summary and conclusions

The aims of this thesis have been two-fold. In the first instance, the aim was to test

the feasibility of using spatio-temporal Fourier descriptors to model periodically de-

forming and moving shapes, and to test their discriminatory power. In this case, their

discriminatory power was tested by applying the descriptors to the field of automatic

gait recognition. A basic feature extraction technique, based around the Bhattacharya

distance metric to measure inter-class separability, was used to find the spatio-temporal

Fourier descriptors for human gait that would prove most useful in classification. Given

that the aim was to test the basic discriminability of the descriptors alone, a simple clas-

sifier – a K-Nearest Neighbour classifier – was used for classification. The results were

very promising, with Correct Classification Rates of 86.2% being achieved on a database

of 115 subjects, totalling 1062 gait sequences. The effect of varying camera-to-subject

distance on this recognition rate (simulated by sub-sampling in the spatial domain) was

also tested, with only relatively small drops in performance being observed, especially

when considering the drop in spatial resolution.

The second aim of this thesis was to combine the descriptive power of spatio-temporal

Fourier descriptors with the robustness of the Hough transform, resulting in an new

advanced algorithm for the detection and tracking of deformable moving objects – the

Continuous Deformable Hough Transform (CDHT). Throughout the thesis, the CDHT

has demonstrated excellent potential at detecting and extracting deformable objects as

they move through an image sequence. When tested with simulated data, even at noise

levels upwards of 70%, the CDHT demonstrated remarkable tolerance to noise, only

failing totally with a noise level of 100% noise, which is to be expected as the image

sequence at this point consists purely of noise.

On real-world data sets, the CDHT demonstrated its robustness under real-life condi-

tions. Using data obtained outdoors, in which changing lighting conditions and shadows

cause large amounts of image noise and variability, the CDHT still performed well, with
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hit rates of 82% being observed on an arbitrary sample of 50 test sequences using data

that had merely been edge detected, and not ‘cleaned’ in any other way. Removing

static features from these image sequences using very basic image processing techniques

resulted in a hit rate of 100% on the same data set, thus proving the CDHT’s worth

in a practical modern-day computer vision system. When worst-case synthetic occlu-

sion was added to these image sequences, the CDHT demonstrated its ability to deal

with partial occlusion, with 76% of the model parameters being extracted correctly (i.e.

falling within a Euclidean distance of 1 pixel or frame from the true start point) at an

occlusion level of 30%.

The new spatio-temporal Fourier descriptor model presented in this thesis provides a

compact and complete way of representing moving periodic shape deformation. Due to

these descriptors being Fourier-based, both macroscopic and microscopic details of the

shape’s boundary and deformation can be analysed with ease. Further to this, spectral

decomposition of both the shape and deformation ensures that the resulting descriptors

form a good basis for discriminating between a number of deformable objects.

The CDHT effectively provides the user with a model of the most likely model parameters

(location and scale, in both spatial axes, and the temporal axis) of a given deforming

object within a dynamically changing scene. The robustness and effectiveness of the

CDHT owes much to the spatio-temporal Fourier descriptor model described in Chapter

3, and to the fact that the model can be used to describe the shape and spatio-temporal

deformation of an object in both a general form and in detail separately. The technique

also benefits greatly from the CDHT’s spatio-temporal evidence-gathering nature, con-

sidering a period of shape deformation as a whole, rather than just individual frames.

This combination of a powerful shape description model and a robust shape extraction

mechanism ensures that the CDHT is an effective tool for use in the field of computer

vision, and one which can offer many advantages as the field moves more and more into

the realms of video processing.



Appendix A

Results from the image sequence

used in Chapter 6

The following images display the complete results from the application of the CDHT to a

real-world image sequence, as described in Chapter 6. These images are PAL DV frames

(720 x 576, 25 fps), with the Shape-Sequence Template spatio-temporally rescaled and

translated to the parameters extracted by the CDHT, overlaid on the original image

sequence.
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Frame 1 Frame 2

Frame 3 Frame 4

Frame 5 Frame 6

Frame 7 Frame 8
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Frame 9 Frame 10

Frame 11 Frame 12

Frame 13 Frame 14

Frame 15 Frame 16
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Frame 17 Frame 18

Frame 19 Frame 20

Frame 21 Frame 22

Frame 23 Frame 24



Appendix A Results from the image sequence used in Chapter 6 111

Frame 25 Frame 26

Frame 27 Frame 28

Frame 29 Frame 30

Frame 31 Frame 32
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Frame 33 Frame 34

Frame 35 Frame 36

Frame 37 Frame 38

Frame 39 Frame 40



Appendix B

Detailed real-world raw image

data test results

The following images display the first and last frames of each gait cycle identified using

the CDHT from the real-world raw edge-detected data, with the reconstructed Shape

Sequence Template, spatio-temporally rescaled and translated to the parameters ex-

tracted by the CDHT, are overlaid on the original image sequence. The sequence for

Subject 37 was omitted from testing due to it being incorrectly marked in the University

of Southampton’s Large Gait Database as being a Right-To-Left sequence, when it was

actually a Left-To-Right sequence. This was replaced with a sequence from Subject 63.
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Subject 13: First frame Subject 13: Last frame

Subject 14: First frame Subject 14: Last frame

Subject 15: First frame Subject 15: Last frame

Subject 16: First frame Subject 16: Last frame
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Subject 17: First frame Subject 17: Last frame

Subject 18: First frame Subject 18: Last frame

Subject 19: First frame Subject 19: Last frame

Subject 20: First frame Subject 20: Last frame
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Subject 21: First frame Subject 21: Last frame

Subject 22: First frame Subject 22: Last frame

Subject 23: First frame Subject 23: Last frame

Subject 24: First frame Subject 24: Last frame
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Subject 25: First frame Subject 25: Last frame

Subject 26: First frame Subject 26: Last frame

Subject 27: First frame Subject 27: Last frame

Subject 28: First frame Subject 28: Last frame
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Subject 29: First frame Subject 29: Last frame

Subject 30: First frame Subject 30: Last frame

Subject 31: First frame Subject 31: Last frame

Subject 32: First frame Subject 32: Last frame
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Subject 33: First frame Subject 33: Last frame

Subject 34: First frame Subject 34: Last frame

Subject 35: First frame Subject 35: Last frame

Subject 36: First frame Subject 36: Last frame
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Subject 38: First frame Subject 38: Last frame

Subject 39: First frame Subject 39: Last frame

Subject 40: First frame Subject 40: Last frame

Subject 41: First frame Subject 41: Last frame
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Subject 42: First frame Subject 42: Last frame

Subject 43: First frame Subject 43: Last frame

Subject 44: First frame Subject 44: Last frame

Subject 45: First frame Subject 45: Last frame
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Subject 46: First frame Subject 46: Last frame

Subject 47: First frame Subject 47: Last frame

Subject 48: First frame Subject 48: Last frame

Subject 49: First frame Subject 49: Last frame
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Subject 50: First frame Subject 50: Last frame

Subject 51: First frame Subject 51: Last frame

Subject 52: First frame Subject 52: Last frame

Subject 53: First frame Subject 53: Last frame
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Subject 54: First frame Subject 54: Last frame
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Appendix C

Detailed real-world pre-processed

image data test results

The following images display the first and last frames of each gait cycle identified us-

ing the CDHT from the real-world pre-processed image data, with the reconstructed

Shape Sequence Template, spatio-temporally rescaled and translated to the parameters

extracted by the CDHT, are overlaid on the original image sequence. The sequence for

Subject 37 was omitted from testing due to it being incorrectly marked in the University

of Southampton’s Large Gait Database as being a Right-To-Left sequence, when it was

actually a Left-To-Right sequence. This was replaced with a sequence from Subject 63.
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