
Recording Accurate Process Documentation in

the Presence of Failures

Zheng Chen, Luc Moreau

School of Electronics and Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
zc05r@ecs.soton.ac.uk, L.Moreau@ecs.soton.ac.uk

Abstract. Scienti�c and business communities present unprecedented
requirements on provenance, where the provenance of some data item is
the process that led to that data item. Previous work has conceived a
computer-based representation of past executions for determining prove-
nance, termed process documentation, and has developed a protocol,
PReP, to record process documentation in service oriented architectures.
However, PReP assumes a failure free environment. The presence of fail-
ures may lead to inaccurate process documentation, which does not re-

ect reality and hence cannot be trustable and utilised. This paper out-
lines our solution, F PReP, a protocol for recording accurate process
documentation in the presence of failures.

1 Introduction

In scienti�c and business communities, a wide variety of applications have pre-
sented unprecedented requirements [11] for knowing the provenance of their data
products, e.g., where they originated from and what has happened to them since
creation. In chemistry experiments, provenance is used to detail the procedure
by which a material is generated, allowing the material to be patented. In health-
care applications, in order to audit if the proper decisions were made and the
proper procedures were followed for a given patient, there is a need to trace
back the origins of these decisions and procedures. In engineering manufactur-
ing, keeping track of the history of generated data in simulations is important for
users to analyze the derivation of their data products. In �nance business, the
provenance of some data item establishes the origin and authenticity of the data
item produced by �nancial transactions, enabling users, reviewers and auditors
to verify if these transactions are compliant with speci�c �nancial regulations.

To meet these requirements, Groth et al. [7] have proposed an open architec-
ture to record and access a computer-based representation of past executions,
termed process documentation, which can be used for determining the prove-
nance of data. A generic recording protocol, PReP [8], has been developed to
provide interoperable means for recording process documentation in the context
of service oriented architectures. In their work, process documentation is mod-
elled as a set of assertions (termed p-assertions) made by actors (i.e., either



clients or services) involved in a process (i.e., the execution of a work
ow). Each
p-assertion documents some steps of the process, e.g., a client invoked a service
or the amount of CPU an actor used in a computation. A dedicated repository,
termed provenance store, is used to maintain p-assertions. For scalability rea-
son, multiple provenance stores may be employed and process documentation
may end up distributed, linked by pointers recorded along with p-assertions in
each store. Using the pointer chain, distributed process documentation can be
retrieved from one store to another.

Process documentation serves as evidence for what actually happened in
computer systems [9]. Users interpretate such a documentation as statements
made by actors about what they have observed. Therefore, process documenta-
tion should in nature be accurate, i.e., it must document events that happened
in a process and must not be based on inferences. Otherwise, users would not
trust and utilize it when deriving the provenance of their data products.

Recording process documentation in the presence of failures is an issue that
has been lacking attention. PReP assumes a system in which no failure occurs.
However, large scale, open distributed systems are not failure-free [4]. For ex-
ample, a service may not be available and network connection may be broken.
Failures can lead to inaccurate process documentation: documentation may fail
to describe events that occurred, it may describe events that did not happen, or
the pointer chain may be broken. Inaccurate process documentation can have dis-
astrous consequences. For example, in a provenance-based service billing system,
if a user invoked a service, but documentation fails to describe this invocation,
or if a user failed to invoke a service, but its recorded documentation reveals that
the invocation occurred, then the user will be charged too little or too much,
respectively, which is not acceptable. Also, process documentation distributed
in multiple provenance stores may not be retrievable in its entirety because the
pointer chain may be broken due to failures.

To address these problems, we have designed a protocol, F PReP [3], to
record accurate process documentation in the presence of failures. It consists of
three phases: Exchanging, Recording and Updating. In Exchanging phase, two
actors exchange an application message and produce documentation describing
the exchange of that message. Asynchronously, in Recording phase, both actors
submit their documentation to their respective provenance store. F PReP pro-
vides guaranteed recording of documentation in the presence of failures through
the use of redundant provenance stores. If the pointer chain is broken in the two
phases, the Updating phase begins. A novel component, Recovery Coordinator,
is introduced to �x any broken pointer chain. The protocol has been formalised
as an abstract state machine and its correctness has been proved. In this paper,
we outline F PReP, and introduce its formalisation and proof.

2 F PReP Overview

Terminology and Requirements Process documentation describes a process that
led to a result. Such a process is modelled as a set of interactions between actors



involved in that process [7]. Each interaction is concerned with one application
message exchanged between two actors, i.e., the sender and the receiver. Each
actor documents the interaction using p-assertions and records them in a prove-
nance store. Since the two asserting actors in an interaction may use di�erent
stores, they must also record a pointer, termed viewlink, indicating where the
other actor records its p-assertions. After repeating these actions for all interac-
tions of a process, the documentation of that process is obtained resulting in a
bidirectional pointer chain, connecting all the stores hosting the documentation
of that process. Therefore, to record accurate process documentation, we need
to ensure that each interaction record, i.e., the documentation of an interaction,
is accurate preserving the following properties: (1) Each actor's p-assertions de-
scribe what actually happened in that interaction from that actor's viewpoint
(Assertion Accuracy); (2) Each actor's viewlink points to the provenance store
where the other actor recorded p-assertions in that interaction (ViewLink Ac-

curacy). In addition, the protocol needs to enforce that (3) all p-assertions pro-
duced by each actor in an interaction and the actor's viewlink must be recorded
in a provenance store in the presence of failures (Documentation Availability).

Assumptions Our failure assumptions are the following: asserting actors, prove-
nance stores may crash, i.e., they halt and stop any further execution, and never
recover. However, we assume that there is no failure in a provenance store's per-
sistent storage. We assume that each asserting actor keeps a list of provenance
store addresses and at least one store is available. Communication channels can
lose and reorder, but not duplicate messages. Process documentation may be in-
accurate when an actor is maliciously recording incorrect information. However,
we assume this case does not happen.

To ensure separation of concerns, each actor employs a Communication Agent
(CA) to send/receive messages to/from other actors. We assume that the sender
CA can use acknowledgement, timeout and retransmission to reliably deliver a
message, and report the delivery outcome to the sending actor: success or failure.
It reports success noti�cation if the message is acknowledged, indicating that the
receiver CA has received that message. It also reports failure noti�cation if the
message fails to be delivered or it is not acknowledged even after retry attempts.
In this way, our protocol does not have to handle communication details but can
focus on actions in response to the noti�cations (in sending actors) and messages
(in receiving actors) provided by CA.

Exchanging Phase In the exchanging phase, two actors, the sender S and the
receiver R, exchange an application message app and document the interaction,
as demonstrated in Figure 1. To facilitate creating and recording interaction
records, each actor employs a Recording Manager (RM). In order to form a
pointer chain, the two actors also exchange a pointer to their respective prove-
nance store. For this purpose, S embeds its pointer in app, while R informs
S with its pointer in a separate message linkr. Meanwhile, each actor creates
an interaction record which includes the p-assertions describing the interaction,
and a viewlink, i.e., the other actor's pointer. The created interaction record



is accumulated in RM before being sent to a provenance store. This bu�ering
of interaction records is designed to reduce the performance penalty upon the
application by allowing the actor to send interaction records when convenient.

Fig. 1. Exchanging Phase

In order to create an accurate interaction record, an actor must only assert
facts that it can observe. Hence, we specify some rules for asserting actors to
follow. (1) S must assert that an interaction occurred if and only if it receives
SUCCESS noti�cation from its CA for delivering app message; (2) S must assert
failure information when receiving FAILURE noti�cation from its CA for deliv-
ering app message. One reason for this rule is that failure information provides
evidence that an interaction was attempted even if that interaction failed. With-
out such information, there would be no record of the attempted interaction; (3)
S must record R's pointer as its viewlink if it receives the pointer; (4) R must as-
sert that an interaction occurred after it receives app message; (5) R must record
S's pointer as its viewlink after it receives the pointer; (6) R must assert failure
information when receiving a FAILURE noti�cation from its CA for delivering
linkr. This is because S may not receive the pointer, disconnecting the chain. In
this case, S takes no action and the assertion made by R will be used to �x the
broken chain in Updating phase; (7) S and R may generate application speci�c
p-assertions.

Recording Phase F PReP provides guaranteed recording of interaction record
in the presence of failures through the use of redundant provenance stores. Figure
2 illustrates this phase. In Step 1, an actor's RM submits an interaction record
to a provenance store PS. In Step 2, PS stores the interaction record that it
receives in its persistent storage. After successfully recording the interaction
record, it replies the submitting actor with an acknowledgement (Step 3). We
have assumed that there is no failure in persistent storage; hence any interaction
records stored in a provenance store's persistent storage remain available forever.
If the actor's RM receives FAILURE noti�cation from CA for delivering the
interaction record or it does not receive the acknowledgement before a timeout,
then it can imply that failures may have occurred, e.g., PS has crashed. In the
two cases, the RM may resend the interaction record to PS. Since a crashing
provenance store can no longer be used for further recording, the RM needs to
use an alternative store after retry attempts also fail. We have assumed that
each asserting actor keeps a list of provenance store addresses and at least one



store is available, therefore, the use of redundant stores ensures that an actor's
interaction record is eventually recorded. Only after the acknowledgement is
received, can the RM eliminate the accumulated interaction record. The use of
an alternative store would result in a broken pointer chain if an actor's original
pointer has been sent to the other actor, which now does not point to a correct
location. Hence, the RM needs to add an assertion documenting the use of an
alternative store in its interaction record so that actions can be taken to �x any
broken chain in the next phase.

Fig. 2. Recording Phase

Updating Phase In this phase, the protocol updates an actor's viewlink in
order to �x a potentially broken pointer chain. A pointer chain may be broken in
two situations, as demonstrated in Figure 3. (1) R gets a FAILURE noti�cation
when sending linkr to S in Step 2, hence S may not know R's pointer; (2) If
an actor, say S, does not successfully record its interaction record in Step 3 and
selects an alternative store, say PS10, to submit the record, then S's pointer
sent to R in Step 1 does not point to the correct location, PS10. In either
case, an actor has made an assertion documenting failure information when
delivering linkr or the use of an alternative store, as described in the previous
two phases. We use BROKEN to denote any of the two assertions in Step 4, since
either assertion documents a fact that may cause a broken pointer chain. Upon
receipt of a BROKEN, a provenance store requests a novel component, Recovery
Coordinator, to facilitate repairing the broken chain (Step 5). By taking remedial
actions, the Recovery Coordinator updates the viewlink in a destination store
(Step 6) with any broken pointer chain �xed. In the example of Figure 3, when
the protocol terminates, PS10 has a viewlink to PS2 and vice versa.

We assume that the Recovery Coordinator does not fail. There is only one
Recovery Coordinator, so we can use traditional fault-tolerant mechanisms such
as replication to ensure its reliability and availability. Recovery Coordinator is
necessary to �x a broken pointer chain, since both actors in an interaction may
each report a BROKEN, as shown in Figure 3. In this case, direct communication
between two actors' provenance stores does not help, because at that moment,
one does not know which store the other actor is using. For example, in the
�gure, R does not know that S is using PS10 and S does not know where R's p-
assertions are stored. Assuming that the pointer chain is not broken frequently,



Fig. 3. Updating Phase

the Recovery Coordinator is not involved in each interaction and hence does not
a�ect the system's scalability, despite being centralised.

3 Protocol Analysis and Formalisation

Protocol Analysis The agreement on interaction occurrence may not be reached
by the sender and receiver of an application message. If the sender gets a failure

noti�cation, it is impossible for it to decide whether the receiver has received that
message or not [10]. If the receiver happens to receive the application message, an
inconsistency occurs, i.e., the sender asserts failure information while the receiver
documents that the interaction has occurred. Such an inconsistency re
ects the
di�erence between the sender and receiver's knowledge of an interaction, which
does not contradict the Assertion Accuracy requirement. Therefore, our protocol
does not need to remove such an inconsistency.

Concurrency is a major concern to the correctness of the protocol. The pro-
tocol speci�es actions for asserting actors, provenance stores, and Recovery Co-
ordinator, which may co-operate with one another. On receiving messages from
di�erent components, the receiver has to respond properly against all the pos-
sible message arrival orders. For example, a provenance store may concurrently
receive an interaction record from an asserting actor and an update message from
Recovery Coordinator; Recovery Coordinator may receive two repair messages
from two provenance stores in any order. The concurrency issue hence requires
us to rigorously design the protocol.

Formalisation F PReP has been formalised through the use of an abstract state
machine (ASM). The machine's behaviour is described by states and transitions
between those states. Such a formalisation provides a precise, implementation-
independent means of describing the system.

Figure 4 shows the system state space. We identify speci�c subsets of ac-
tors in the system, namely, senders, receivers, provenance stores, and Recovery



Coordinator. Protocol messages are sent over communication channels, denoted
by K. Since no assumption is made about message order in channels, channels
are represented as bags of messages between pairs of actors. The set of each of
protocol messages is de�ned formally as an inductive type. For example, the set
of Application Messages is de�ned by an inductive type whose constructor is app
and whose parameters are from the set of Data, ID and OL1. The set of all
messagesM is de�ned as the union of these message sets. CA's noti�cations are
modelled as two messages: failure(m) and success(m). The power set notation
(P ) denotes that there can be more than one of a given element. We specify
several notations representing p-assertions. The notation Occurrence stands for
an assertion which documents the occurrence of an interaction. The notation
FailureInfo(pa) denotes any assertions describing failure information during the
delivery of an application message, while Broken(pa) represents any assertions
documenting a fact that may cause a broken pointer chain.

The internal functionality of each kind of processes is modelled as follows.
(1) The set ACTOR models all the asserting actors, each identi�ed by an actor
identity. Informally, each asserting actor contains a table (actor T ) that maps an
interaction identity (id) and the actor's view kind (v), i.e., Sender or Receiver, to
a tuple: the state of its ownlink (stl), the state of an interaction record (st), the
actor's ownlink (ol) and its viewlink (vl). An asserting actor's p-assertions are
accumulated in a message queue before being sent to a provenance store. The
queue is modelled by a table (queue T ). The table timer T maintains timing
information such as timer status, current time, timing interval and timeout,
which is used by an asserting actor's RM in Recording phase. The notation
LC de�nes a function that maps a sender identi�er to a natural number, used
to distinguish interactions between the sender and receiver. The sender needs
to ensure that the natural number is locally unique in each interaction. (2)
The set PS models provenance stores, each identi�ed by an actor identity. Each
provenance store contains a table (store T ) that maps an interaction identity (id)
and a view kind (v) to a tuple: recorded p-assertions (pas) and a viewlink (vl).
(3) The set C models coordinators. There is only one coordinator, identi�ed by
ac, and it also keeps a table (coord T ). For each interaction (id) and for each view
kind (v) in the interaction, the table stores a tuple: the destination provenance
store (adps) to be updated and the ownlink (ol) of the asserting actor with this
view kind.

Given the state space, the ASM is described by an initial state and a set
of transitions. Figure 4 contains the initial state, which can be summarised as
empty channels and empty tables in all processes. The ASM proceeds from this
state through its execution by going through transitions that lead to new states.

The permissible transitions in the ASM are described through rules. Rules
are identi�ed by their name and a number of parameters that the rule operates
over. Once a rule's conditions are met, the rule �res. The execution of a rule
is atomic, so that no other rule may interrupt or interleave with an executing

1 An asserting actor's ownlink, OL, refers to the provenance store where the asserting
actor records its own p-assertions.



A = fa1; a2; : : : ; ang (Set of Actor Identities)
SID � A (Sender Identities)
RID � A (Receiver Identities)
PID � A (Provenance Store Identities)
ac � A (Coordinator Identity)

M = app : Data� ID� OL!M (Application Messages)
j linkr : ID� VK� OL!M (R's Ownlink Messages)
j record : ID� VK� VL� P (PAssertion)!M (Interaction Record Messages)
j ack : ID� VK!M (Record Ack Messages)
j repair : ID� VK� DestPS� OL!M (Repair Messages)
j update : ID� VK� OL!M (Update Messages)
j failure :M!M (Failure Noti�cations)
j success :M!M (Success Noti�cations)

ID = fid1; id2; : : : ; idng (Set of Interaction Identi�ers)
VK = fS, Rg (Set of ViewKinds)
OL = PID (Set of an Actor's Ownlinks)
VL = PID (Set of an Actor's Viewlinks)

DestPS = PID (Set of Destination Stores)
PAssertion = fOccurrence; FailureInfo(pa);Broken(pa); pa1; : : : ; pang (Set of P-Assertions)

ACTOR = A! ID� VK! STL� STR� OL� VL (Set of Asserting Actors)
STL = f?; SENT; F;OKg (States of an OwnLink)
STR = f?; SENT;OKg (States of Interaction Record)

QUEUE = A� ID! Bag(PAssertion) (Set of Quened P-Assertions)

TIMER = A� ID! Status� CurrentTime�
Interval�Timeout (Set of Timers)

Status = f?; Enabled;Disabledg (Set of Timer Statuses)
CurrentTime = ft1; t2; : : : ; tng (Set of Current Times)

Interval = f�1; �2; : : : ; �ng (Set of Timing Intervals)
Timeout = fto1; to2; : : : ; tong (Set of Timeouts)

LC = SID! N (Sender's Local Counts)

PS = A! ID� VK! VL� P (PAssertion) (Set of Provenance Stores)

C = A! ID� VK! DestPS� OL (Set of Coordinators)

K = A� A! Bag(M) (Set of Channels)

Characteristic Variables:
a 2 A, as 2 SID, ar 2 RID, aps 2 PID, m 2 M, d 2 Data, pa 2 PAssertion, pas 2 P (PAssertion),
id 2 ID, v 2 VK, adps 2 DestPS, ol 2 OL, vl 2 VL, stl 2 STL, str 2 STR, status 2 Status,
t 2 CurrentTime, � 2 Interval, to 2 Timeout, actor T 2 ACTOR, queue T 2 QUEUE,
timer T 2 TIMER, lc 2 LC, store T 2 PS, coord T 2 C, k 2 K

Con�guration: c = hactor T; queue T; timer T; store T; coord T; ki

Initial State: ci = hactor Ti; queue Ti; timer T; store Ti; coord Ti; kii
where:
actor Ti = �a�idv � h?;?;?;?i, queue Ti = �aid � ;,
timer Ti = �a�idv � h?;?;?;?i, store Ti = �a�idv � h?; ;i,
coord Ti = �a�idv � h?;?i, ki = �aiaj � ;

Fig. 4. System State Space



send app(as; ar; id; ls; d) :
id = newIdentifier(as; ar)

! f
send(app(d; id; ls); as; ar);
actor T (as)(id; S) := hSENT;?; ls;?i ;

g

failure app(as; ar; id; ls; d) :
failure(app(d; id; ls)) 2 k(as; ar)^
fFailureInfo(pa); pa2; : : : ; pang = createPA()

! f
receive(failure(app(d; id; ls)); as; ar);
queue T (as; id) := queue T (as; id)�
fFailureInfo(pa); pa2; : : : ; pang ;
actor T (as)(id; S):stl := F;

g

success app(as; ar; id; ls; d) :
success(app(d; id; ls)) 2 k(as; ar)^
fOccurrence; pa2; : : : ; pang = createPA()

! f
receive(success(app(d; id; ls)); as; ar);
queue T (as; id) := queue T (as; id)�
fOccurrence; pa2; : : : ; pang ;
actor T (as)(id; S):stl := OK;

g

receive linkr(as; ar; id; lr) :
linkr(id; R; lr) 2 k(as; ar)

! f
receive(linkr(id; R; lr); ar; as);
actor T (as)(id; S):vl := lr;

g

Fig. 5. The Sender's rules in Exchanging phase

receive app(as; ar; id; d; ls; lr) :
app(d; id; ls) 2 k(as; ar)^
fOccurrence; pa2; : : : ; pang = createPA()

! f
receive(app(d; id; ls); as; ar);
queue T (ar; id) := queue T (ar; id)�
fOccurrence; pa2; : : : ; pang ;
send(linkr(id; R; lr); ar; as);
actor T (ar)(id; R) := hSENT;?; lr; lsi ;
// business logic

g

failure linkr(as; ar; id; lr) :
failure(linkr(id; R; lr)) 2 k(as; ar)^
fBroken(pa)g = createPA()

! f
receive(failure(linkr(id; R; lr)); ar; as);
queue T (ar; id) := queue T (ar; id)�
fBroken(pa)g ;
actor T (ar)(id; R):stl := F;

g

success linkr(as; ar; id; lr) :
success(linkr(id; R; lr)) 2 k(as; ar)

! f
receive(success(linkr(id; R; lr)); ar; as);
actor T (ar)(id; R):stl := OK;

g

Fig. 6. The Receiver's rules in Exchanging phase

rule. This maintains the consistency of the ASM. A new state is achieved after
applying all the rule's pseudo-statements to the state that met the conditions
of the rule. A rule's pseudo-statements consist of a set of send, receive and
table update operations. Informally, send(m; a1; a2) inserts a message m into
the channel from actor a1 to actor a2, and receive(m; a1; a2) removes m from
the channel between a1 and a2. A table update operation places a message into
a table or changes the state of a table �eld.

Due to space restriction, we only give the Sender and Receiver's rules in
Exchanging Phase in Figure 5 and 6. These rules precisely specify an asserting
actor's behaviour described in Section 2. The whole set of rules can be found
at [3]. The function newIdentifier(as; ar) creates a globally unique interaction
identi�er, which can be a tuple consisting of the sender and receiver's identity
plus a locally unique number managed by the sender, expressed as has; ar; lc(as)i.
The function createPA() generates a set of p-assertions and the operator �
denotes union on bags.

The propertiesDocumentation Availability,Assertion Accuracy andViewLink
Accuracy have been formalised as the following invariants. The notations v and v

stand for the two views in an interaction and actor T (as; id; S):stl = OK marks



the occurrence of an interaction.

Documentation Availability:
(P1) If actor T (as)(id; S):stl = OK, then
8v 2 VK, Occurrence 2 store T (aps)(id; v):pas ^ store T (aps)(id; v):vl 6= ?,
such that aps = actor T (av)(id; v):ol.
(P2) If actor T (as)(id; S):stl = F, then
FailureInfo(pa) 2 store T (aps)(id; S):pas, such that aps = actor T (as)(id; S):ol.

Assertion Accuracy:
(P3) If 8v 2 VK, Occurrence 2 store T (aps)(id; v):pas, then
actor T (as)(id; S):stl = OK, such that aps = actor T (av)(id; v):ol.
(P4) If FailureInfo(pa) 2 store T (aps)(id; S):pas, then
actor T (as)(id; S):stl = F, such that aps = actor T (as)(id; S):ol.

Viewlink Accuracy:
(P5) If actor T (as)(id; S):stl = OK, then
8v 2 VK, store T (aps)(id; v):vl = actor T (av)(id; v):ol,
such that aps = actor T (av)(id; v):ol.

We have proved that these invariants hold when the protocol terminates.
Given an arbitrary valid con�guration of the ASM, our proofs typically proceed
by induction on the length of the transitions that lead to the con�guration, and
by a case analysis on the kind of transitions. We show that a property is true
in the initial con�guration of the machine and remains true for every possible
transition. This kind of proof is systematic, less error prone and can be easily
encoded in a mechanical theorem prover.

4 Related Work and Conclusion

Much research has been seen to support recording process documentation, e.g.,
Chimera [5], myGrid [12], PReP [8, 7] and Kepler [1]. From an analysis of these
works, only PReP provides an application-independent solution to recording pro-
cess documentation. However, all the surveyed systems either assume a failure-
free execution environment or do not discuss this issue.

Redundancy has long been used as a means to provide fault tolerance in
distributed systems [2]. Key components may be replicated (replication in space)
or re-executed (replication in time) to protect against hardware malfunctions or
transient system faults. Our work adopts this mechanism through the use of
redundant provenance stores and retransmission of messages.

Distributed transactions typically requires all-or-nothing atomicity to main-
tain system consistency [6]. The all-or-nothing property is not applicable to our
work. Assume that the asserting actors and provenance stores are the partici-
pants in a transaction. If any participant fails after the interaction took place,
then the recording action is aborted and hence the documentation about that
interaction cannot be recorded. This is not desired since process documenta-
tion must re
ect reality and document events that happened in a process. As



long as the interaction has occurred, its documentation must be recorded in a
provenance store.

In conclusion, we have presented a protocol F PReP for recording accu-
rate process documentation in the presence of failures. Compared with PReP,
F PReP not only keeps the application-independent nature, but also guarantees
that process documentation is accurate and available in a provenance store in
the presence of failures. Also, it enables distributed process documentation to
be still retrievable in large scale distributed environments where failures may
occur. The protocol is being implemented and its performance will be evaluated
in future work.

References

1. Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance collection sup-
port in the kepler scienti�c work
ow system. In Proceedings of the International
Provenance and Annotation Workshop (IPAW'06), pages 118{132, 2006.

2. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11{33, 2004.

3. Zheng Chen. Accurately recording process documentation in the presence of fail-
ures. Mini thesis, School of Electronics and Computer Science, University of
Southampton, UK, http://www.ecs.soton.ac.uk/�zc05r/protocol, 2007.

4. Ewa Deelman and et. al. Managing large-scale work
ow execution from resource
provisioning to provenance tracking: The cybershake example. In Proceedings of
the e-Science 2006 Conference in Amsterdam, the Netherlands, December 2006.

5. Ian T. Foster, Jens-S. V�ockler, Michael Wilde, and Yong Zhao. The virtual data
grid: A new model and architecture for data-intensive collaboration. In CIDR,
2003.

6. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1993.

7. Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, So�a Tsasakou,
and Luc Moreau. An architecture for provenance systems. Technical Report D3.1.1,
University of Southampton, February 2006.

8. Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording provenance
in service-oriented grids. In Proceedings of the 8th International Conference on
Principles of Distributed Systems (OPODIS'04), France, 2004.

9. Paul Groth, Simon Miles, and Steve Munroe. Principles of high quality docu-
mentation for provenance: A philosophical discussion. In Proceedings of Third
International Provenance and Annotation Workshop, Chicago, 2006.

10. Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.
11. Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The requirements of

recording and using provenance in e-science experiments. Journal of Grid Com-
puting, 2006.

12. Jun Zhao, Chris Wroe, Carole A. Goble, Robert Stevens, Dennis Quan, and
R. Mark Greenwood:. Using semantic web technologies for representing e-science
provenance. International Semantic Web Conference, pages 92{106, 2004.


