

ABZ2008 Conference

Short Papers

September 16-18, 2008

BCS London Offices, Covent Garden, London, UK

Egon Börger

Michael Butler

Jonathan Bowen

Paul Boca

ABZ2008 Short Papers

Page

3 Anthony Hall. Integrating Z into Large Projects: Tools and Techniques

6 Joelle Cohen and Anatol Slissenko. Stability of Real-time Abstract State Machines

9 Roozbeh Farahbod and Uwe Glaesser. Dynamic Resource Configuration &
Management for Distributed Information Fusion in Maritime Surveillance

12 Abderrahman Matoussi, Frederic Gervais and Regine Laleau. A First Attempt to
Express KAOS Refinement Patterns with Event B

15 Idir Ait-Sadoune and Yamine Ait Ameur. Verification and Validation of Web Service
Composition Using Event B Method

18 Qing Wang, Klaus-Dieter Schewe and Bernhard Thalheim. XML Database
Transformations with Tree Updates

21 Ali N. Haidar and Ali E. Abdallah. Weaving Authentication, Authorization and Auditing
Requirements into the Functional Model of a System using Z Promotion

22 Ramsay Taylor. Separation of Z Operations

25 Helen Treharne, Edward Turner, Steve Schneider and Neil Evans. Object Modelling in

the SystemB Industrial Project

28 Jean-Charles Chaudemar, Charles Castel and Christel Seguin. Model-based Safety of

FDIR Architectures for Autonomous Spacecraft: Specification and Assessment with
Event-B

31 Ali Abou Dib and Ileana Ober. Using ASM to Achieve Executability within a Family of
DSL

34 Colin Snook and Michael Butler. UML-B: A Plug-in for the Event-B Tool Set

37 Alessandro Cavalcante Gurgel, Cristiano Gurgel Castro and Marcel Vinicius Medeiros
Oliveira Oliveira. Tool Support for the Circus Refinement Calculus

40 El Habib Daho Hocine and Benhamamouch Djilali. Formal Verification of ASM Models
Using TLA+

43 Antoine Requet. BART: A Tool for Automatic Refinement

46 Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede and Laurent Voisin. A
Roadmap for the Rodin Toolset

50 Paulo Matos and Joao Marques-Silva. Model Checking Event-B by Encoding into Alloy

53 Eerke Boiten. From ABZ to Cryptography

56 Angelo Gargantini, Elvinia Riccobene and Patrizia Scandurra. Exploiting the ASM
method for Validation & Verification of Embedded Systems

59 David Deharbe, Bruno Gomes and Anamaria Moreira. BSmart: A Tool for the
Development of Java Card Applications with the B Method

62 Margus Veanes and Ando Saabas. Using Satisfiability Modulo Theories to Analyze
Abstract State Machines

65 Christophe Metayer and Mathieu Clabaut. DIR 41 Case Study: How Event-B can
Improve an Industrial System

68 Takabi Hassan and Ali E. Abdallah. Formalizing Delegation in Role-Based Access
Control Models

69 Miyoung Kang, Dea-Yon Hwang, Junkil Park, Jin-Young Choi and Jong-Gju Hwang.
Formal Requirement Specification for Railway Signaling Systems

!

Integrating Z Into Large Projects

Tools and Techniques

Anthony Hall

Overview
This paper addresses the problem of using Z to specify large software intensive sys-

tems. It is addressed particularly at safety, security or business-critical systems that

require a rich language like Z to specify complex data and behaviour. Examples of

such systems include air traffic control [1] and financial systems [2]. I am particularly
concerned here with the process of writing a system specification.

I have claimed [3] that this process is beneficial in itself regardless of any subse-

quent analysis or proof. The benefits are not automatic, however. The specification is

only useful if
1. it is written as part of the requirements elicitation and analysis process;

2. it is comprehensible to all the stakeholders;

3. it is grounded in the application domain;

4. it expresses all the concepts that are relevant;
5. it is integrated into the rest of the development and verification process.

On a purely practical level, this implies that we want Z to be part of the ordinary

documents that are used every day on the project. That means, in practice, that it has

to be integrated into Microsoft Word. So I first describe a tool for writing and check-
ing Z within the Word environment. That is only the start, however: we also need a

process for writing the specification and guidelines for its structure. I will describe

some progress we have made towards these goals.

A Z Tool for Microsoft Word
The de facto standard for writing Z is the LaTeX mark up first introduced by Spivey

and now incorporated into the Z standard. Industry, however, does not use LaTeX: it

uses Microsoft Word. I have developed, with help from several colleagues, a package

of Z tools for Word. This is in day to day use on a large project and is being made
freely available at http://sourceforge.net/projects/zwordtools.

The tool includes:

1. styles for laying out schemas and other Z paragraphs;

2. a Unicode font that includes all the Z symbols and is visually compatible with
Times New Roman

3. automatic layout of Z paragraphs like the LaTeX equivalent, with italic text, for-

matted keywords and so on: for example

 BirthdayBook

known : ℙ Name

birthday : Name ⇸ Date

known = dom birthday

http://sourceforge.net/projects/zwordtools

4. the ability to enter symbols from a palette or (for died in the wool LaTeX hackers)

typing in the markup;

5. one-click typechecking, with errors highlighted in the Word document;

6. generation of indexes and cross-references to definition and use of Z names;
7. the ability to hide the Z completely so the document can be used by maths-phobic

readers;

8. miscellaneous tools such as checking matching brackets.

The intention of the tool is

 to lower the barrier to the uptake of Z by removing at least one obstacle, the need

to learn another document production method;

 to allow easy integration of Z with natural language, diagrams, tables and other no-
tations relevant to the domain;

 to encourage incremental development of Z specifications by allowing frequent

typechecking;

 to encourage the writing of good natural language by producing documents with

the mathematics hidden.

The tool currently uses Mike Spivey's fuzz as its underlying typechecking engine. It
works by exporting LaTeX mark up and importing the fuzz error report: the intention

is that this mechanism could be used with other tools, in particular tools supporting

the Z standard. Typechecking does not require declaration before use and works

across multiple documents: for example an operations document can be checked
against a separate data model document.

Writing Literate Z

It is crucial to realise that in a Z specification, the mathematics is subsidiary to the

natural language. A piece of mathematics makes no sense unless we know the in-
tended meaning of each construct. We therefore enforce a rule that an English de-

scription must precede the corresponding Z. The English and the Z are complementa-

ry: the English describes the relevant real-world concept and explains the meaning of

every term in the maths; the maths makes precise the relationships between the terms
defined in the English. Note in particular that there is no rule like "In case of a discre-

pancy between English and Z, the Z takes precedence": rather, the rule is that such a

discrepancy is an error which must be corrected.

Data Model
Every schema that defines part of the system state is preceded by an explanation of

what properties of the real world are being described. Here is a small example:

Attribute Name Definition

position The x and y co-ordinates in system coordinates

smoothedAltitude The uncorrected altitude from the mode C in feet.

 Track

Position
smoothedAltitude : optional Altitude

Altitude is a natural number that represents uncorrected height above mean
sea level in feet. It is the height that an altimeter calibrated to a pressure of
1013.2 millibars at sea level would read. Its correspondence with physical
height depends on the current pressure.

Altitude == 

Operations

Here is an example of an operation description in the same style. Again the English

stands alone and explains the real world meaning of the operation.

Issuing a clearance updates the known clearances.
Inputs are
controller?: the controller who is issuing the clearance
flight?: the flight for which the clearance is being issued
clearance? the new clearance.

The operation is only allowed if the conditions described in

IssueClearanceAvailable are met. In that case, the clearance is recorded as is-
sued by the controller.

 IssueClearance
Δ Clearances
controller? : CONTROLLER

flight? : FLIGHT

clearance? : CLEARANCE

IssueClearanceAvailable ⇒clearanceIssuedBy′ =

 clearanceIssuedBy ∪ {clearance? ↦ controller?}

 The new clearance is guaranteed to be unique so clearanceIssuedBy is
guaranteed to remain functional under this update.

The last paragraph is an example of a Z Comment. This is not to explain the real

world meaning, but rather to explain technicalities of the Z. If you hide the mathemat-

ics the Z comment is also hidden, since it is of no interest to readers of the English.

Summary

If we want to use Z to write an overall system specification, we need to integrate it

into a rich set of documents written in natural language and domain-specific nota-

tions. These documents must be easy to write and read by non-mathematicians. I have
described a tool and sketched a set of rules aimed at achieving this. There is much

more to do, both in improving the tool and codifying the process for different do-

mains.

References
1. Anthony Hall, Using Formal Methods to Develop an ATC Information System, IEEE Soft-

ware, March 1996, pp 66-76.
2. Anthony Hall and Roderick Chapman, Correctness by Construction: Developing a Commer-

cial Secure System, IEEE Software, Jan/Feb 2002, pp18 – 25.
3. Anthony Hall, Seven Myths of Formal Methods, IEEE Software, September 1990, pp 11-19.

Stability of Real-Time Abstract State Machines under
Desynchronization

J. Cohen1 A. Slissenko1!

E-mail: {j.cohen,slissenko}@univ-paris12.fr

Laboratory for Algorithmics, Complexity and Logic,

University Paris-East (Paris 12), France

Abstract. We study the stability of real-time multi-agent Abstract State
Machines (ASM) under desynchronization. Real time constraints are de-
fined as linear inequalities with rational coefficients over current time CT
and real-valued internal functions. There are bounded non-deterministic
delays between actions. Our goal is to give sufficient conditions under
which after relaxing the delays we get an ASM (the program remains
the same) whose set of runs is approximately bisimular to the set of runs
of the initial ASM.

Introduction. In our paper [1] we give sufficient conditions that permit to im-
plement a real-time ASM with instantaneous actions (IA-ASM) by an ASM with
delayed actions (DA-ASM) with approximate bisimulation of runs. The time is
continuous and time constraints are linear inequalities with rational coefficients.
(The problems we study are as well relevant for discrete time, but this case is
simpler.) The inputs are predicates and the current time CT . As IA-ASM we
consider ASM whose programs are blocks of if guard then blockOfUpdates.
We take a straightforward implementations by DA-ASM with bounded delays.
Namely, such an implementation work by 2 phases: backup phase memorizes the
values of functions, and update phase makes the updates of the initial IA-ASM
using the backed up values. Such an implementation implies shifts of time in-
stants and, consequently, of the values of the real-valued functions. The approx-
imation of runs is determined by 2 positive parameters (ε, η), where ε bounds
time shifts, and η bounds the deviations of real-valued functions. We introduce a
notion of (ε, η)-sturdy IA-ASM, and prove that the implementation of any such
IA-ASM gives an DA-ASM with (ε, η)-approximately bisimular runs if the delay
satisfies constraints described in terms of (ε, η), number of real-valued functions,
the maximum of absolute values of coefficients, the number of summands in
linear inequalities and the update number bound. The latter, whose existence is
assumed, is a constant ν such that for any instant t there is an instant t′ > t
where at all real-valued functions have their default values, and there are at
most ν updates of these functions between t and t′. (Without a regular reset to
default values or to values depending only on time, one cannot avoid unlimited
accumulation of errors in the general case.)
1 Address: Dept. of Informatics, University Paris 12, 61 Av. du Gén. de Gaulle, 94010,

Créteil, France.
! Member of Scholars Club of Saint-Petersburg Division of Steklov Mathematical

Institute, Russian Academy of Sciences

1

An interesting point is that the sources of desynchronization that destroy the
bisimulation are much more subtle and numerous than one can think a priori.
Another conceptual consequence concerns the adequacy of the notion of IA-
ASM that was introduced in [2], and later studied in [3], for the specification of
real-time system.

Our work in progress. We study one more question of this kind. Given a
general multi-agent ASM with delayed actions, under what conditions its desyn-
chronization gives an approximately bisimular set of runs? Practical distributed
real-time controllers should be sufficiently stable, and this is one of motivations
for this study.

We consider ASMs whose programs are composed of several agent ASMs
that interact via shared functions. The program of each agent is constructed
using updates, branching, sequential and parallel composition. Each agent has
only external default loop, and agent programs are executed independently. We
assume that each update is guarded (recall that we are motivated by real-time
reactive controllers). The time constraints are linear inequalities as described
above.

Let A be such ASM. By real-valued function we mean, by default, an internal
real-valued function. There is only one external real-valued function CT . The
other inputs are predicates. Let X be an occurrence of update or of guard of A.
The delays act as follows. Suppose that a run arrives at t at the evaluation of
a guard or at the execution of an update, denote any of them X. This action is
accomplished by an instant T that is chosen non-deterministically in the delay
interval [aA(X), bA(X)] attributed to X: T ∈ [t + aA(X), t + bA(X)].

Given an ASM A0, its ξ-desynchronization A1 is an ASM with the same
program whose delays are ξ-close to the delays of A1 but bigger: 0 ≤ aA0(X) ≤
aA1(X) ≤ aA0(X) + ξ, bA0(X) ≤ bA1(X) ≤ bA0(X) + ξ.

An ASM A0 is (ε, η)-bisimular to its ξ-desynchronization A1 if, for a given
input, for any run ρ0 of A0 there exists a run ρ1 of A1 such that for each update
in ρ0 the same update in ρ1 fires at an ε-close instant and gives an η-close value,
and vice versa, from ρ1 to ρ0.

In order to ensure an (ε, η)-bisimilarity of A0 and A1, first, the parameter ξ
of desynchronization should be smaller that ε, η divided by a constant depend-
ing on the parameters of the ASM program mentioned above, including ν, and
second, the program should be (ε, η)-stable in the following sense. The inter-
nal (not containing CT) inequalities occurring in guards should be O(η)-stable,
i.e., should preserve their truth value after its real-valued functions having been
O(η)-perturbed (we use L∞ norm). Any guard that is true at t should remains
true in some time interval around t even with the values of real-valued function
perturbed. Any guard that is false at an instant t should be also stably false
(the exact formulations need several technical notations). At last, non identical
dependent updates should be well (roughly by 2ε) separated, as well as identical
self-dependent updates (like f := f + g). Two updates are dependent if they a
have a common function in the terms that define them. We suppose that equal
terms are graphically identical.

2

Though the constraints describing the stability are semantical, their verifica-
tion for practical programs is quite feasible, and they are useful in any case as
they indicate hidden traps that can destroy the presumed behavior of distributed
real-time controllers.

Further research. Two main questions are of evident interest. The first ques-
tion is to find sufficient ‘robustness’ constraints on programs that permit a gen-
eral refinement/implementation with desynchronization. The second question
concerns the verification. It is much easier to verify an abstract program speci-
fication that presumes a good synchronization. When we refine/implement the
abstract program we desynchronize it, and the proven properties become false. So
in order to arrive at the desired properties for the implementation/refinement
we have to modify the initial requirements in order to take into account the
desynchronization. In [1] we sketched a transformation that indicates what mod-
ified properties are satisfied by a concrete implementation under the condition
that the initial, non modified one is satisfied by the initial abstract ideally syn-
chronized ASM. But the question is how to modify the properties in the other
direction.

References

1. J. Cohen and A. Slissenko. Implementation of sturdy real-time abstract state ma-
chines by machines with delays. Technical Report TR-LACL-2008–02, University
Paris 12, Laboratory for Algorithmics, Complexity and Logic (LACL), 2008. Sub-
mitted. Available at http://www.univ-paris12.fr/lacl/.

2. Y. Gurevich and J. Huggins. The railroad crossing problem: an experiment with
instantaneous actions and immediate reactions. In H. K. Buening, editor, Lecture
Notes in Computer Science, Computer Science Logics, Selected papers from CSL’95,
volume 1092, pages 266–29. Springer-Verlag, 1996.

3. D. Beauquier and A. Slissenko. A first order logic for specification of timed algo-
rithms: Basic properties and a decidable class. Annals of Pure and Applied Logic,
113(1–3):13–52, 2002.

3

Dynamic Resource Configuration & Management

for Distributed Information Fusion in Maritime

Surveillance!

—Extended Abstract—

Roozbeh Farahbod and Uwe Glässer

Software Technology Lab, Simon Fraser University, Burnaby, B.C., Canada
{roozbehf,glaesser}@cs.sfu.ca

In the work described here, we devise a highly adaptive and auto-configurable,
multi-layer network architecture for distributed information fusion to address
large volume surveillance challenges, assuming a multitude of different sensor
types on multiple mobile platforms for intelligence, surveillance and reconnais-
sance. Our focus is on network enabled operations to efficiently manage and im-
prove employment of a set of mobile resources, their information fusion engines
and networking capabilities under dynamically changing and essentially unpre-
dictable conditions. Building on realistic application scenarios adopted from the
design and development of the CanCoastWatch system [1–4], we contend that
distributed system concepts based on decentralized control mechanisms are cru-
cial for the design of robust and scalable network enabled operations for several
reasons.

Concurrently running tasks of a distributed fusion process are created and
terminated dynamically depending on mission requirements, where the workload
may vary considerably due to the dynamic nature of missions. Likewise, the total
number of missions to be performed concurrently varies over time depending on
events that are difficult, if not impossible, to predict under all circumstances.
Consequently, the overall amount and distribution of workload within the system
may (and often does) change spontaneously. Even more problematic are the
various external conditions that adversely affect the operational environment of
the distributed fusion system. Resources allocated to tasks change dynamically as
their resource capabilities vary due to transient or permanent resource failures
or common events in the environment of resources, such as changing weather
conditions that affect sensor ranges or communication bandwidth and range.
This situation calls for reconfigurable applications that can flexibly adapt to
internal changes in resource requirements as well as to external changes affecting
the availability of resources. Finally, fault tolerant behavior is crucial for avoiding
catastrophic system failures as a result of communication failures and partial or
total resource failures.

! The work presented here has been funded under Precarn’s Intelligent Systems pro-
gram, NSERC Collaborative Research and Development Grant #342503-06, and
MacDonald, Dettwiler and Associates.

Fig. 1. DRCMA high level model

A decentralized organization of the information fusion architecture increases
robustness and scalability by allowing for dynamic reorganization, thus avoiding
the bottleneck of centralized fusion systems. Assuming a discrete event system
model, the functional network architecture constitutes the framework for de-
scribing the events and the actions they trigger. Specifically, this includes: (1)
introduction of missions, (2) decomposition of missions into tasks, (3) mapping
of tasks onto the resources performing these tasks, and (4) mechanisms to ac-
tively maintain the configuration of a network of resources by observing mission
requirements, resource status data, communication links, and measuring related
performance values such as workload distribution and accuracy of fusion results
etc. To facilitate dynamic reorganization, mobile resources are grouped into auto-
configurable resource clusters with ‘plug and play’ features allowing for an easy
migration of resources between clusters.

We present here a high-level model of our network architecture for adaptive
distributed information fusion, called Dynamic Resource Configuration & Man-
agement Architecture (DRCMA)[5] (see also Figure 1). The DRCMA model is
described in abstract functional and operational terms based on a multi-agent
modeling paradigm using the Abstract State Machine (ASM) formalism [6] for
modeling dynamic properties of distributed systems. This description of the un-
derlying design concepts provides a concise yet precise blueprint for reasoning
about key system attributes at an intuitive level of understanding, supporting
requirements specification, design analysis, validation and, where appropriate,
formal verification of system properties prior to actually building the system.
Additionally, we also illustrate how to use the ASM formalism and underlying
abstraction principles for rapid prototyping of a high-level executable DRCMA
model. We do so by building on the CoreASM tool environment [7], a novel
platform for experimental validation through simulation, testing and symbolic
execution (model checking) of ASM models. The high level model is refined into a
CoreASM model readily executable on real machines. In subsequent steps, we will
extend and further refine the model into a comprehensive architecture for adap-
tive distributed information fusion. The result will be a prototype for testing,
experimental validation and machine-assisted verification of the key system at-
tributes prior to actually building the system. In conclusion, the proposed design
approach facilitates a seamless transition across the three dimensions of modeling
discrete dynamic systems: conceptual, mathematical and computational.

References

1. CCW Team: CanCoastWatch System Concept. Technical report, MacDonald, Det-
twiler and Associates Ltd. (2006)

2. Wehn, H., Yates, R., Valin, P., Guitouni, A., Bossé, É., Dlugan, A., Zwick, H.: A
Distributed Information Fusion Testbed for Coastal Surveillance. In: Fusion 2007.
(2007)

3. Li, Z., Leung, H., Valin, P., Wehn, H.: High Level Data Fusion System for Can-
CoastWatch. In: Fusion 2007. (2007)

4. Farahbod, R., Glässer, U., Wehn, H.: CanCoastWatch Dynamic Configuration
Manager. In: Proc. of the 14th International Abstract State Machines Workshop
(ASM’07). (2007)

5. Farahbod, R., Glässer, U., Wehn, H.: Dynamic resource management for adap-
tive distributed information fusion in large volume surveillance. In: Proc. of SPIE
Defense & Security Symposium. (2008)

6. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag (2003)

7. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution
engine. Fundamenta Informaticae (2007) 71–103

A First Attempt to Express KAOS Refinement

Patterns with Event B

Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau

LACL, Université Paris-Est

{abderrahman.matoussi,frederic.gervais,laleau}@univ-paris12.fr

1 Motivation

It is now recognised that goals play an important role in requirements engineering
process, and consequently in systems development process. Whereas specifica-
tions allow us to answer the question ”WHAT the system does”, goals allow
us to address the ”WHY, WHO, WHEN” questions [1]. Up to now, the devel-
opment process associated with formal methods, including Event B, begins at
the specification level. Our objective is to include requirements analysis within
this process, and more precisely the KAOS method. Existing work [5, 4] that
combine KAOS with formal methods generate a formal specification model from
a KAOS requirements model. We aim at expressing KAOS goal models with a
formal language (Event B), hence staying at the same abstraction level. Thus
we take advantage from the Event B method: (i) it is possible to use the method
during the whole development process and (ii) we can benefit from the indus-
trial maturity of tools supporting the method. This paper presents, through an
example, the outlines of a constructive approach in which Event B models are
built incrementally from KAOS goal models, driven by goal refinement patterns.

2 Goals in KAOS

KAOS (Knowledge Acquisition in autOmated Specification) [2, 3] is a method-
ology to implement goal-based reasoning. A goal defines an objective the system
should meet, usually through the cooperation of multiple agents such as devices
or humans. KAOS is composed of several sub-models related through inter-
model consistency rules: (i) the central model is the goal model which describes
the goals of the system and its environment; (ii) the object model defines the
objects (agents ,entity...) of interest in the application domain; (iii) the agent
responsibility model takes care of assigning goals to agents in a realisable way;
(iv) the operation model details the operation an agent has to perform to reach
the goals he is responsible for. KAOS offers a lot of refinement patterns [1]
that decompose goals. These patterns can only be used in the context of dif-
ferent tactics defined in KAOS such as milestone-driven tactics, i.e. identifying
milestone states that must be reached to achieve the target predicate, and case-
driven tactics, i.e. identifying different cases to satisfy the goal. The sub-goals
G1, G2, ..., Gn(n ≥ 2) refine a goal G iff the following conditions hold:

2 A. Matoussi, F. Gervais, and R. Laleau

1. G1 ∧ G2 ∧ . . . ∧ Gn |= G (entailment)
2. For each i, j: j #= i. Gj ! Gi (minimality)
3. G1 ∧ G2 ∧ . . . ∧ Gn ! false (consistency)

In this work in progress, we focus on refinement patterns defined only with
first-order logic. Patterns with LTL temporal logic will be studied in further
work. Thus, the general form of the assertions associated to the patterns is
P → Q where P and Q are predicates. Symbol → denotes the classical logical
implication.

Let us take a simple example managing the subscription to a summer school.
The main goal G states that each person who has subscribed must receive a
participation receipt: Subs → PRcpt. This goal is refined into three sub-goals
according to the milestone-driven tactics:

(G1) each subscription implies a payment: Subs → Payt
(G2) for each payment a bill should be issued: Payt → Bill
(G3) a receipt must be submitted whenever the bill is provided: Bill → PRcpt

The case-driven tactics is applied to refine the goal G1 into two sub-goals de-
pending on the participant status (either student or professor):

(G1.1) Subs ∧ Stud → StudFee
(G1.2) Subs ∧ Prof → ProfFee

3 Expressing Goals in Event B

The objective of our work is to express a KAOS goal model with Event B.
We start to study the most used refinement patterns: the milestone-driven and
case-driven tactics.

Since a KAOS goal means that a property must be established, the main idea
is to represent each goal as a B event and the property as the post-condition of
this B event.

Thus, goal G can be translated into an abstract B event as follows:

EvG
∆

= SELECT True THEN SubsB, PRcptB : (SubsB ⊆ PRcptB) END

The THEN part of EvG is the translation into Event B of the logical formula
associated to G. Even if this translation is obviously always possible, it is not
straightforward and necessarily depends on the B representation of the KAOS
object model.

At this most abstract level, the guard of EvG is always set to True to ex-
press that the event is always feasible. The definitive guard is built during the
refinement process.

First refinement: applying the milestone-driven tactics. All sub-goals
are translated into new events using the same rules as for EvG. For instance,
(G1) is translated by:

EvG1

∆

= SELECT True THEN SubsB, PaytB : (SubsB ⊆ PaytB) END

A First Attempt to Express KAOS Refinement Patterns with Event B 3

The abstract event EvG is refined by strengthening its guard. This latter is
the conjunction of the post-conditions of each sub-goal:

EvG
∆

=
SELECT (SubsB ⊆ PaytB) ∧ (PaytB ⊆ BillB) ∧ (BillB ⊆ PRcptB)
THEN SubsB, PRcptB : (SubsB ⊆ PRcptB) END

Second refinement: applying the case-driven tactics. In the same way as
for the milestone-driven tactics, the sub-goals are translated by new events and
EvG1 is refined as carried out for EvG.

EvG1.1
∆

=
SELECT True
THEN SubsB, StudB, StudFeeB : ((SubsB ∩ StudB) ⊆ StudFeeB) END

However, a faithful representation of this tactics requires the following addi-
tional constraints:

– A new invariant: (StudB ∪ ProfB) = SubsB ∧ (StudB ∩ ProfB) = ∅
– A new proof obligation: (StudFeeB ∪ ProfFeeB) ⊆ PaytB

Verification of the KAOS refinement conditions. Proof obligations of
Event B allow most of the KAOS refinement conditions to be verified. However,
for some KAOS patterns as the case-driven tactics, additional constraints must
be identified.

4 Further work

The paper shows that it is possible to express KAOS goal models with Event
B and furthermore, this B representation is quite close to the KAOS one. The
current work is still partial and we are actively working on its extensions. Future
work will be concerned with (i) generalising our method to other refinement pat-
terns presented in [1]; (ii) considering LTL temporal operators; (iii) considering
the three other sub-models of a KAOS model.

References

1. R. Darimont and A. van Lamsweerde. Formal Refinement Patterns for Goal-
Driven Requirements Elaboration. In SIGSOFT ’96, pages 179–190, San Francisco,
California, USA, October 1996. ACM SIGSOFT.

2. A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In

RE 2001, pp. 249–263, Toronto, Canada, August 2001. IEEE Computer Society.
3. E. Letier. Reasoning About Agents in Goal-Oriented Requirements Engineering.

Ph.D. Thesis, ftp://ftp.info.ucl.ac.be/pub/thesis/letier.pdf, 2001.
4. H. Nakagawa and K. Taguchi and S. Honiden. Formal specification generator for

KAOS. In ASE 2007, pages 531–532, Atlanta, Georgia, USA, November 2007.
ACM.

5. C. Ponsard and E. Dieul. From Requirements Models to Formal Specifications in
B. In REMO2V’2006, Luxembourg, June 2006.

Verification and Validation of Web Service Composition

Using Event B Method

Idir Ait-Sadoune and Yamine Ait-Ameur

LISI/ENSMA - Université de Poitiers
Téléport 2 - 1, avenue Clément Ader - B.P. 40109.

86960 Futuroscope Cedex - France.
{idir.aitsadoune,yamine}@ensma.fr

The Service-Oriented Architecture based on the Web service technology emerged as a con-
sequence of the evolution of distributed computing. A web service is a set of software operations
offered on the web by a provider. It is described in a WSDL[1] language and published in a UDDI[2]
directory so that it can be found and invoked by a user. One of the key ideas of this technology is
the ability to create service compositions by combining and interacting with pre-exisiting services
to offer a more complex functionality. Orchestration is the process that allows to schedule the de-
fined services compositions and BPEL[3] is the most known and used orchestration language. BPEL
allows the designer to represent service compositions by various behavioral properties like services
interactions (message exchanges), control flow constraints (sequence, iteration, conditional) or data
flow constraints (exchange, modification, evaluation of data expressions).

The resulting process from the compositions of independent services must obey to some be-
havioral requirements in order to achieve its functional goal. These requirements include deadlock
freeness in the composition execution, correct manipulation and transformation of data, satisfying
rules and constraints on ordering between interactions and termination. The web services composi-
tions languages, like BPEL, and the operational orchestration tools associated with these languages
like orchestra[4], support the encoding and the interpretation of the composition process. But they
don’t support expression and verification of behavioral requirements.

Various approaches have been proposed to model and to analyze web services and services com-
position. We quote the work realized using Process Algebra[5], Petri Nets[6] and Timed properties[7].
The major contributions of this work is based on the model checking technique.

We propose to address the problem of services composition validation using proof and refinement
based techniques, in particular the event B method. Our approach consists in extracting an event
B model from service compositions described in BPEL. Thereafter, the obtained model is enriched
with the relevant properties in the INVARIANTS and THEOREMS clauses and events guards.
The consistency checking of the resulting model is established using the RODIN platform[8] and
animation is performed with the B2EXPRESS tool[9].

In this paper we present a brief description of the BPEL language and the approach we have
proposed.

1 BPEL

BPEL (Business Process Execution Language[3]) is a standard for specifying and executing busi-
ness processes. The process definition consists of several parts describing partner links, process
variables, main process workflow and other parts which are not defined in this paper. The partner
link declarations are used to define the relation between the process and its partners. The process
variables are used to represent the state of the business process. The process flow is defined by
a set of process activities. It specifies the operations to be performed, their ordering, activation
conditions, reactive rules, etc. Basic activities represent primitive operations performed by the pro-
cess (invoke, receive, reply, assign, terminate, wait and empty activities). The structured activities

include sequence, switch, and while that model traditional control constructs, pick for a nonde-
terministic choice based on external events (i.e., message reception or timeout), flow activity for
parallel execution of nested activities. Figure 1 shows an example of a BPEL description. It defines
a sequence of three activities (RecieveMsg1, Flow1 and ReplayMsg2). Flow1 is decomposed into
two parallel operations (InvoqueOp1 and InvoqueOp2). Figure 1.a shows a graphical representation
like it is designed in the NetBeans[10] tool and figure 1.b shows the corresponding and generated
XML representation.

<variable name=Msg1 messageType=t1 .../>
<variable name=Msg2 messageType=t2 .../>

<sequence>
<receive name="ReceiveMsg1"

operation="Oper1"
variable="Msg1"
.../>

<flow name="Flow1">
<invoke name="InvokeOp1"

operation="Oper1"
InputVariable="Msg1"
OutputVariable="Msg2"
.../>

<invoke name="InvokeOp2"
.../>

</flow>
<reply name="ReplyMsg2"

.../>
</sequence>

Fig. 1. (a) Graphical representation of BPEL. (b) XML representation of BPEL

2 From BPEL to event B

The proposed formal modeling of BPEL by event B starts from the observation that a BPEL
definition is interpreted as a transition system. A state is represented in both languages by a
variables element in BPEL and by the VARIABLES clause in event B. The various activities of
BPEL represent the transitions, they are represented by the events of the EVENTS clause in the
B language.

The modeling process is inductively defined on the structure of the BPEL definition. It is based
on the following rules :

1 - each variable in the BPEL language corresponds to a state variable of the event B model in
the VARIABLES clause (see table 1);

2 - each activity becomes an event of the B model;
3 - each composition operation of BPEL activities (flow, sequence, foreach, if then else...) becomes

a construction of event B. This representation is based on the translation rules defined to encode
process algebra expressions in event B models of [11]. It uses the refinement to represent the temporal
decomposition of the activities.

The obtained model is enriched by the expression of the various properties to be checked defined
in INVARIANTS and THEOREMS clauses of the event B model. For example, INVARIANTS,
THEOREMS and VARIANT clauses allow a developer to express deadlock and live lock freeness.

<variables> VARIABLES
<variable name="Msg1" messageType="t1"/> Msg1, Msg2
<variable name="Msg2" messageType="t2"/> INVARIANTS

... Msg1 ∈ t1 ∧

</variables> Msg2 ∈ t2

Table 1. Example of modeling of BPEL Variables elements by event B VARIABLES clause

1. They shall express that the new events of the concrete model are not fired infinitely (no live
lock). A decreasing variant is introduced for this purpose.

2. They shall express that, at any time, an event can be fired (no deadlock). This property is
ensured by asserting (in the THEOREMS clause) that the disjunction of all the abstract events
guards implies the disjunction of all the concrete events guards.

... EVENTS
<invoke name=invokeQueryOperation ...

Operation=QueryOperation invokeQueryEvent =
InputVariable=Msg1 BEGIN
OutpuVariable=Msg2 Msg2 := QueryOperation(Msg1)
PartenerLink=queryPL/> END

Table 2. Example of modeling of BPEL activity by an event of B model

3 The validation methodology

The validation of services composition expressed in BPEL by event B models can be performed
according to two scenarios.

1 - A BPEL description is fully translated into a single event B model (no intermediate refine-
ment) then it is validated. At this level, we may be faced to complex proof obligations.

2 - Each decomposition of a complex activity in BPEL is translated into event B by refining the
event corresponding to this activity. This refinement introduces the temporal decomposition defined
in the original BPEL specification. A step by step BPEL description and validation is performed
in parallel.

As a conclusion, event B models can be used to check the consistency of BPEL specifications.

References

1. W3C: Web Services Description Language (2007) http://www.w3.org/TR/wsdl.
2. OASIS: Universal Description, Discovery, and Integration Specification (2003) http://uddi.xml.org/.
3. OASIS: Business Process Execution Language (2007) http://bpel.xml.org/.
4. BSOA: Orchestra (2006) http://orchestra.objectweb.org.
5. Foster, H.: A Rigorous Approach To Engineering Web Service Compositions. PhD thesis, Imperial

College London, University Of London (January 2006)
6. Tang, Y., Chen, L., He, K.T., Jing, N.: An Extended Petri-Net-Based Workflow Model for Web Service

Composition. In: ICWS. (2004) 591–599
7. Kazhamiakin, R.: Formal Analysis of Web Service Compositions. PhD thesis, Università degli Studi

di Trento (March 2007)
8. ClearSy: Rodin (2006) http://www.clearsy.com/rodin/industry day.html.
9. Ait-Sadoune, I., Ait-Ameur, Y.: B2EXPRESS, Un animateur de modèles B événementiel. In: AFADL,

Namur, Belgique (13-15 Juin 2007)
10. NetBeans: SOA Application Learning Trail (2006) http://www.netbeans.org/kb/trails/soa.html.
11. Aı̈t-Ameur, Y., Baron, M., Nadjet, K.: Encoding a Process Algebra Using the Event B Method.

Application to the Validation of User Interfaces

XML Database Transformations with Tree

Updates

Qing Wang1, Klaus-Dieter Schewe2 and Bernhard Thalheim3

1 Massey University, New Zealand
q.q.wang@massey.ac.nz

2 Information Science Research Centre, Palmerston North, New Zealand
k-d.schewe@xtra.co.nz

3 Institute of Computer Science, CAU Kiel,Olshausenstr. 40,Kiel, Germany
thalheim@is.informatik.uni-kiel.de

1 Introduction

For many years the eXtensible Markup Language (XML) has attracted much
research attention from database communities, particularly in the area of query
and transformation languages such as XQuery and XSLT. XML documents are
usually represented as trees. In order to accommodate the diversity of user re-
quirements, it is desirable to conduct transformations on XML trees at flexible
abstraction levels. However, most of current approaches have a fixed abstraction
level at which updates must be identified for individual nodes and edges. In this
paper we investigate XML database transformations with structured updates,
for example, manipulations on portions of a tree, including deleting, modifying
or inserting subtrees, copying contexts, etc. To accomplish this task, Abstract
State Machines (ASMs) will be employed as it has turned out in [3] to be a
universal computation model capturing database transformations.

As in the study of algorithms [1], the problem of partial updates will come
up again. In essence, partial updates root in two factors: complex objects and
parallel computing. When several parallel computations are executing updates
on partial parts of the same complex object, inconsistency of an update set
might arise. As trees are typically a kind of complex objects, we believe that
XML database transformations provide an interesting paradigm for the study
towards partial updates.

2 Tree Algebra, Tree Updates and ASMs

XML Tree Model. We consider an XML document as an unranked tree in which
the number of the children of a node may be unbounded. As shown in the tree
(i) of document exa.xml, elements, attributes and character data of an XML
document correspond to nodes of an XML tree. Formally, let N∗ denote the set
of finite strings over positive integers, A be a set of labels, and Σ be an alphabet
called leaf alphabet, then an XML tree t is a pair (Dom(t), λt) for a finite,
prefix-closed set Dom(t) ⊆ N∗ and a mapping λt: Dom(t) → A∪Σ∗, satisfying
the following conditions:

– if λt(n) ∈ A and node n has k children, then {i|ni ∈ Dom(t)} = {1, ..., k};
– if λt(n) ∈ Σ∗, then {i|ni ∈ Dom(t)} = ∅.

A tree t1 is said to be the subtree of a tree t2 at node n iff the following properties
are satisfied: (i) Dom(t1) = {i|ni ∈ Dom(t2)} and (ii) ∀n

′

∈ Dom(t1), λt1(n
′

) =
λt2(nn

′

). For convenience, we use n̂ to denote the subtree of t rooted at n for
n ∈ Dom(t). A sequence [t1, ..., tk] of trees is called a hedge and a set {t1, ..., tk}
of trees is called a forest. Note that, we consider forests as a special kind of
hedges in which the order of trees is not significant, for example, a collection
of trees yielded by parallel computations is a forest. An XML database is an
unordered collection of XML trees.

〈!ELEMENT r(b∗)〉
〈!ELEMENT b(c, a+)〉
〈!ATTLIST b e CDATA #IMPLIED〉
〈!ELEMENT c(#PCDATE)〉
〈!ELEMENT a(#PCDATA)〉

exa.xml

Tree Algebra. We extend the algebras for trees introduced by [4, 2] to the case of
XML trees. The signature of an XML tree consists of three sorts: L (for labels), H
(for hedges), C (for contexts) and a set F={ι, δ, ζ, ρ, κ, η, σ} of function symbols
such that ι : L × H → H, δ : L × C → C, ζ : H × C → C, ρ : H × C → C,
κ : H × H → H, η : C × H → H and σ : C × C → C. The set T of terms over
A ∪ Σ ∪ {ε, ξ} is constituted by terms over three sorts, i.e., T = TL ∪ TH ∪ TC ,
where TL, TH and TC stand for label, hedge and context terms, respectively.

– TL= A ∪ Σ∗.
– TH= T s

H ∪ T m
H such that

• ε ∈ T s
H,

• ,t ∈ T s
H for t ∈ Σ∗,

• t〈t1, ..., tn〉 ∈ T s
H for t ∈ A and t1, ..., tn ∈ T s

H, and
• [t1, ..., tn] ∈ T m

H for ti ∈ T s
H (i = 1, ..., n).

– TC is the smallest set defined by:
• t〈t1, ..., tn〉 ∈ TC for t ∈ A and t1, ..., tn ∈ T s

H ∪{ξ} such that exactly one
t
′

∈ {ti|i = 1, ..., n} is ξ.

The extended tree algebra Λ is a pair (T ,F) satisfying certain axioms. By this
algebraical approach, XML trees with their features, such as ordered elements,
unbounded numbers of children for nodes, etc., can be constructed.

Tree Updates with ASMs. Now we give several examples to illustrate how ASMs
can be used as a computation model for XML database transformations. The
navigation part of transformations is taken from XPath. Besides the usual rules
of ASMs an additional update rule t1+= t2 is used to express that a tree t2 is
added into the forest t1. Other definitions that are irrelevant to the following
examples are skipped.

Example 1. The tree (ii) is constructed from subtrees of the tree (i).

forall x,y,z with x ∈ doc(“exa.xml”)/r/b
∧y ∈ x/c ∧ z ∈ x/a

do

t1 := ι(d, κ(ŷ, ẑ));
t2+= t1

enddo;
output := ι(r, t2)

Example 2. The tree (iii) is constructed by applying subtrees of the tree (i) into
a specified context.

forall x,y with x ∈ doc(“exa.xml”)/r/b
∧y ∈ x/a

do

t1 := ι(b, ŷ);
t2+= t1

enddo;
output := η(ρ(t2, δ(r, ξ)), ι(d, ε))

After further adding tree predicates as locations for subtrees and contexts of
an XML tree, existing XML trees can be updated by replacing identified sub-
trees and contexts with others of the same sorts. Consequently, the consistency
checking on a collection of updates produced within a computation step becomes
important.

3 Discussions and Future Work

To minimize the inconsistency caused by partial updates, one of approaches is to
check the compatibility of updates whose locations are overlapping. This can be
conducted both at the schema level and at the instance level. Moreover, such a
computation model for XML database transformations motivates us to seek for
links between ASMs and tree transducers. We will exploit them in the future.

References

1. Gurevich, Y., and Tillmann, N. Partial updates. Theor. Comput. Sci. 336, 2-3
(2005), 311–342.

2. Walukiewicz, I., and Bojanczyk, M. Forest algebras. In Logic and Automata
(2007), J. Flum, E. Graedel, and T. Wilke, Eds., Amsterdam University Press.

3. Wang, Q., and Schewe, K.-D. Axiomatization of database transformations. In
Proceedings of the ASM’07: The 14th International ASM Workshop (2007).

4. Wilke, T. An algebraic characterization of frontier testable tree languages. Theor.
Comput. Sci. 154, 1 (1996), 85–106.

Weaving Authentication, Authorization and

Auditing Requirements into the Functional

Model of a System using Z Promotion

Ali Nasrat Haidar and Ali E. Abdallah

E-Security Research Centre
London South Bank University

103 Borough Road

London SE1 0AA, UK
{ali.haidar,a.abdallah}@lsbu.ac.uk

Abstract. The use of Z in software development has focused on spec-
ifying the functionality of a system. However, when developing secure

system, it is important to address fundamental security aspects, such as
authentication, authorization, and auditing. In this paper, we show an
approach for building systems from generic and modular security compo-

nents using promotion technique in Z. The approach focuses on weaving
security component into the functionality of a system using promotion

technique in Z. For each component, Z notation is used to construct

its state-based model and the relevant operations. Once a component is
introduced, the defined local operations are promoted to work on the
global state. We illustrate this approach on the development of a ”se-

cure” model for a conference management system. With this approach,
it is possible to specify the core functionalities of a system independently
from the security mechanisms. Authentication, authorization, and au-

diting are viewed as components which are carefully integrated with the
functional system.

Key words: Z specification, Security Requirements, Authentication, Autho-
rization, Auditing, Weaving Security into Functional Models, Z Promotion

Separation of Z operations

Ramsay Taylor

Dept.of Computer Science, Regent Court, University of Sheffield, S1 4DP, UK
ramsay@dcs.shef.ac.uk

1 Introduction

Machine code and assembly language programs are structured using various
branches and decision points, but between these they contain blocks of instruc-
tions that are simply sequentially composed. Most work on formal program
analysis has focused on the behavior of the branch points — primarily because
composing the blocks of sequential code to determine their overal effect on the
system is often intellectually trivial. This processs is also computationaly sim-
ple, but it is not computationally trivial. The sequential blocks can comprise a
large proportion of the instructions. If we want to apply formal reasoning to the
extremely large sets of instructions that result from analysing code in low-level
languages we will want to automate the process. It would then be useful to be
able to make the intellectually trivial parts of the analysis computationally triv-
ial as far as possible. The aim of this work is to produce a system of rules that
can be efficiently implemented1 and allow us to determine the overal behaviour
of sequentially composed operations.

To identify those sequential compositions that are trivial we will use tech-
niques inspired by Separation logic[3, 1]. Separation logic itself is a very general,
abstract collection of higher order logic statements that covers a huge semantic
range. To apply separation logic to our context would require the use of serious
theorem proving and so would not reduce the computational burden. However,
the simple observation at the heart of separation logic can be used: if two oper-
ations refer to completely disjoint parts of the state space they can be reasoned
about independently.

Here we will not present anything with the generality and elegance of sep-
aration logic. Nor will we present a complete solution to analysing sequential
composition in Z. The aim is to present some techniques that are very easy to
implement and that will identify those operation compositions that are trivial.
These can be processed syntactically, before a more serious theorem proover is
applied.

The approach taken is in the spirit of separation logic. If two operations are
sequentially composed but it can be shown that the effects of the first in no way
influence the effects of the second then the effect of the composition is just the
syntactic combination of the two — a new schema for the composition can be

1 This is acheived primarly by operating at a textual level with almost no parsing and
semantic processing.

created by concatenating all the declarations and predicates together after some
very simple pruning.

2 Separation in Z

In order to determine the overall effect of a sequence it must first be determined
how the individual effects of the operations interact. The simplest but most
crucial question is whether they interact at all. Where an operation is unaffected
by the preceding operation we shall say that they are Separate and shall use the
symbol ‘&’ after Reynolds [2].

For any Z operation we can require that every state variable referenced is
brought into scope explicitly. We can then collect these variables together into
two state schemas that we shall call State∆ and StateΞ . The second of these,
StateΞ , will contain all the variables that are unchanged by the operation. The
first schema, State∆, will contain all the others - i.e. all the variables that are
changed or whose resulting state is left unspecified.

We can now write the most general definition of our version of separation. The
notation we shall use is Op1&Op2 if, in the sequential composition Op1

o
9Op2, the

effect of Op2 is unaffected by the actions of Op1. For example: P == [x , x ′, y, y ′ |
x ′ = x +y ∧ y ′ = y] and Q == [y, y ′ | y ′ = y+1]. Here P doesn’t alter y, so does
not alter the effect of Q on the system state2. With some subtlety to protect
against referencing of variables, even if they aren’t changed, our definition for
separation becomes:

Op1.State∆ ∩ (Op2.State∆ ∪ Op2.StateΞ) = ∅ 〈Total Separation〉

This also serves as an example of the difference between separation and
commutativity. In our study of separation here we are not interested in showing
that two operations never interfere with each other, simply that in the presented
usage their effects on the state of the system are independent.

Although the Total Separation definition presented above does satisfy our
requirements for identifying independent operations it is too restrictive in some
cases. For example, an operation R that changes the value of x and an operation
S that brings x into scope but simply leaves it unchanged and does not use its
value to determine anything else3.

This is clearly an over-restriction, since S doesn’t use the value of x in de-
termining any of its effects. Also, since S leaves x unchanged it doesn’t affect
our other requirement: if we want to consider the overall effect of the composi-
tion we need to know that any effects produced by R aren’t undone by S . With
Total Separation this was implicit, since the second operation wasn’t allowed
to even mention anything changed by the first. When relaxing the rule to allow
situations such as R&S we must be careful not to violate this requirement.

2 This is also a good example of the difference between our notion of non-interference

and comutativity — Q&P is not true.
3 This may seem pointless but it occurs often in Z specifications — generally where a

state schema is brought into scope but only some of its variables are needed.

We need to specify that one of the operations should only refer to the variable
in the proposition that leaves it unchanged. So, if both operations refer to x one
of them should only do so to state that it is unchanged; that is it should contain
[x ′ = x] and no other propositions that refer to x . The neatest way to identify
this property is to say that, if we removed the statement [x ′ = x] from one of the
operations it would no longer refer to x in any way. This gives us the following
new definition for separation:

∀ x | x ∈ (Op1.State∆ ∩ (Op2.State∆ ∪ Op2.StateΞ)) •
∃Op2a | Op2 == Op2a ∧ [Ξx] • Op1&Op2a

〈Effective Separation〉

Clearly the separation requirement for Op1&Op2a can be satisfied either by
the Total Separation definition or by recursive application of this definition if
there are multiple variables to be considered.

This can be further extended to cope with operations that modify Z functions,
but that modify disjoint sections of the domain.

3 Automation

A prototype implementation of the ideas presented here has been produced. It
is written in Java and there is no formal demonstration of correctness, but it
does show the ease of implementation that was intended for this work and the
speed of execution.

The following results were produced with randomly generated Z operation
schema4 on a 1.8GHz Pentium 45.

Completed 10100 comparisons in 1299ms (0h 0m 1s)
Completed 250500 comparisons in 26473ms (0h 0m 26s)
Completed 1001000 comparisons in 96919ms (0h 1m 36s)
Completed 10243200 comparisons in 1000160ms (0h 16m 40s)

Bibliography

[1] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data
structures. In proceedings of POPL’01, 2001.

[2] J. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of LICS 2002, pages 55–74, 2002.

[3] J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure.
In Proceedings of the Symposium in Celebration of the Work of C.A.R. Hoare,
1999.

4 The random generator is fairly simplistic. It currently never generates schema with

functional types.
5 These results are purely indicative; the tests were run in the background while various

other applications were in use.

Object modelling in the SystemB industrial
project

Helen Treharne, Edward Turner, Steve Schneider 1, Neil Evans2

1Department of Computing, University of Surrey
2AWE plc Aldermaston

Abstract. The SystemB project is a two year project at the University
of Surrey, funded by AWE plc, and is concerned with bridging the areas
of formal methods and object modelling. The project is focused on the
CSP ‖ B integrated formal method and increasing its level of tool sup-
port so that CSP ‖ B models of Executable UML (xUML) systems can be
constructed automatically. The CSP ‖ B models will subject the xUML
model to formal analysis prior to generating executable code. We are
currently developing a CSP ‖ B model generator within the xUML tool-
suite provided by Kennedy Carter Ltd. xUML is used within AWE and
we will initially focus on reasoning about xUML state machines. Actions
within xUML state machines are defined using the Action Specification
Language (ASL). ASL is more low level than the Object Constraint Lan-
guage; they can execute concurrently, and can also be used in operation
definitions. Hence it is a challenge to model formally. In this extended
abstract we provide an overview of one ASL to AMN translation pattern
being developed and highlight the role of B in the project.

1 Introduction

The University of Surrey and AWE plc are collaborating on a two year project
that aims to support the definition of UML models with formal analysis. The
motivation is to increase engineers’ confidence in the UML models of a system
early in the software development life cycle. The application domain of interest
is safety critical and therefore it is essential to achieve a high level of assurance in
safety of the models, i.e., that they preserve desirable behavioural properties and
are deadlock-free. The UML models are executable and are currently validated
by running numerous simulations. Our aim is to automatically generate CSP ‖ B
[6] models, corresponding to such UML models, which can be formally analysed
using FDR [1] and ProB [3]. The challenge is to develop a translation with
tool support so that the effort is spent on conducting the formal analysis rather
than building formal models. Another tool that produces a formal model from a
UML-like notation is UML-B [7], where the emphasis is on providing a graphical
interface to Event-B rather than analysing the integrity of a UML model.

The project will consider two different routes for developing a CSP ‖ B model
generator. Firstly, we will develop a model generator using the Executable UML
[5] toolsuite provided by Kennedy Carter Ltd. This offers the capability of code

generation into C, C++ or Java from platform independent models, and it is used
as a technology within AWE. AWE have been working alongside Kennedy Carter
to develop Spark Ada translators from xUML. Thus, our SystemB tool will
enable our formal analysis support to fit into the AWE software development life
cycle. Secondly, we will also build a model generator using the Epsilon [2] tool-
set being developed at York University. This will involve generating CSP ‖ B
models from UML models using model-text transformations based on the Epsilon
Generation Language. It will echo the work done in the first model generator
but will enable us to gain experience in developing tool support based on an
Eclipse plug-in. We will then move on to developing CSP ‖ B meta-models so
that a more general and extensible model generator can be developed.

The current focus of the project is on translating xUML state charts and class
diagrams. State charts specify the behaviour of instances of a class, and each class
has at most one state chart. Each state comprises a single entry action, defined
using the Action Specification Language (ASL). The current translation follows
the CSP || B pattern that separates the specifications for control flow and data.
Accordingly, object lifetimes are specified using CSP, which are based on state
charts in UML; system data, including object instance handles and attribute
information, is stored within B machines. Attributes are expressed as functions
over instance handles, and an additional machine is generated to specify the
relationships used in the model, such as associations and generalisations.

2 Overview of ASL

ASL is more low level than the Object Constraint Language (OCL) [4]. OCL
statements have no side effects and execute immediately. Conversely, ASL state-
ments can change the state of a system, and can be grouped into blocks, e.g.,
within operation methods, or the states of a state chart. Since actions of a state
in a state chart actions can execute concurrently, so may ASL statements.

The next section describes the translation of a frequently used ASL statement
to show the type of translation our tool must perform.

ASL Translation Example: Consider a Person class with two attributes, age
and glasses, and an associated state chart. The SystemB tool translates this
system to a CSP specification that specifies the lifetime of a Person object, and
a B machine storing Person object data containing:

– a set called, PERSON, denoting all objects of this class,
– a variable, personIH ⊆ PERSON, recording the PERSON objects that have

been created, but have not yet been deleted (the active instances),
– a variable, age ⊆ personIH → N, recording the age of the active instances,
– a variable, glasses ⊆ personIH → Bool , denoting whether the active in-

stances require glasses to correct their vision.

The ASL find statement identifies a set of object instance handles satisfying
a certain condition. For example, the following statement finds the active Per-

son instances, older than 60, who require glasses to correct their vision (where
PersonSet is a subset of personIH that has been instantiated previously):

{res} = find PersonSET where age > 60 & glasses = TRUE

Initial efforts towards translating such statements included using constant
lambda functions to encode the statement conditions. This is made difficult when
using ProB for analysis since their instantiation can be very time consuming
for large systems. Translating find in general is not straightforward because
it requires evaluating arbitrary predicates in a static environment. The current
approach generates a tailored B operation for each find statement of the same
form. The translated B operation, given below, accepts parameters correspond-
ing to the statement variables (PersonSet, age and glasses), whose action uses
a set comprehension to identify the instances that satisfy the condition:

res ← findExample(setih, a, g) =̂
PRE setih ⊆ PERSON ∧ a ∈ ran(age) ∧ g ∈ ran(glasses)
THEN res := {s | s ∈ setih ∧ age(s) > 60 ∧ glasses(s) = g}
END

3 Discussion

The above statement directly maps to one B operation and this style is also
applicable to other ASL statements concerned with object management, e.g.,
creation/deletion. ASL statements which support transitions between states typ-
ically translate into CSP events. Our tool automatically generates CSP ‖ B mod-
els that handle these ASL statements. The difficult ASL statements to translate
are programming language constructs, e.g., loops. These are not easily expressed
using B or CSP alone, but may require a mixture of both, and in fact we need
to reconsider whether we should be translating at this low level. The challenge
is that we must capture the essence of what the ASL is describing so that the
formal model contains just enough information to conduct a meaningful analysis.

References

1. Formal Systems Oxford: FDR 2.83. http://www.fsel.com, 2007.
2. Kolovos, D.S., Paige, R.F., and Polack, F.A.C.:Epsilon Development Tools for

Eclipse, Proc. Eclipse Summit 2006, Esslingen, Germany, October 2006.
3. Leuschel, M. and Butler, M.:ProB: A Model Checker for B, FME Symposium, 2003.
4. Object Management Group, ptc/03-10-14: UML 2.0 OCL Specification, 2003.
5. Raistrick, C., Francis, P., Wright, J., Carter, C., Wilkie, I.: Model Driven Architec-

ture with Executable UML. Cambridge University Press, 2004.
6. Schneider, S., Treharne, H.:CSP Theorems for Communicating B machines, FACS

17(4) 2004.
7. Snook, C. and Butler, M.: UML-B and Event-B: an integration of languages and

tools. Proc. Software Engineering 2008, Innsbruck, Austria, February, 2008.
8. Wilkie, I., King, A., Clarke, M., Weaver, C., Raistrick, C. and Francis, P.: UML

ASL Reference Guide (ASL language level 2.5), Kennedy Carter Ltd., 2003.

FDIR Architectures for Autonomous Spacecraft:
Specification and Assessment with Event-B

Jean-Charles Chaudemar1, Charles Castel2, and Christel Seguin2

1 ISAE-DMIA, Toulouse, France
2 ONERA-DCSD, Toulouse, France

Abstract. On-board Fault Detection, Isolation and Recovery (FDIR)
systems are considered to ensure the safety and to increase the auton-
omy of spacecrafts. They shall be carefully designed and validated. Their
implementation involves a relevant knowledge of items like functions and
architectures of the system, and a fault model in relation with these
items. Thus, the event-B method is well suited to correctly specify and
validate on-board safety architectures.
This paper focuses on the FDIR concept presentation and the use of
event-B for formalising and for refining the FDIR concept.

1 Introduction

On-board Fault Detection, Isolation and Recovery (FDIR) systems aim at main-
taining the safe spacecraft operation even when faults occur. They also enable to
limit service interruptions with reduced ground operations. So, they contribute
to the spacecraft autonomy.

They are complex systems composed of various mechanisms, ranging from the
monitoring and activation of basic physical devices to the reconfiguration of the
spacecraft mission. They are often structured in layers to master this complexity.
One issue is to characterize and validate each layer and the relationship between
each layer.

These characteristics require a rigorous and progressive validation of the
system from the early phases of design by discharging proof obligations. Accord-
ingly, it is necessary to use a formal method like event-B for the modelling and
proof.

This paper focuses on the FDIR concept presentation and the use of event-B
for formalising and for refining the FDIR concept.

The paper is organised as follows: after a short presentation of on-board
FDIR concept strongly bounded with autonomy architecture concept, the next
section suggest activities enabling to implement FDIR concept. Then, we present
the framework of formal modelling that we will use to describe our architecture
and the properties related to this architecture. The last section deals with the
objectives for the future work.

2

2 FDIR concept

FDIR is the means to detect off-nominal conditions, isolate the problem to a
specific subsystem/component, and recover of vehicle systems and capabilities
[1]. In this paper, FDIR is considered as an operational function that contributes
to the autonomy of the system and whose main purpose is to maintain the avail-
ability and the safety of the system [2].

The main activities related to FDIR design concern:

– identification of fault-classes that could impact the requested availability and
safety objectives;

– proposition of a strategy in order to tolerate above fault-classes. A strategy
suggests a logical solution to achieve these objectives;

– implementation of this strategy by proposing a static and dynamic architec-
ture: combining functional components with safety components for diagnosis
and reconfiguration.

One difficulty is often the lack of traceability between these activities. The strat-
egy that gave the rationales of the architecture is left implicit. The proposed
architecture is often the result of expert judgement. So it is hard to prove the
consistency between the objectives and the architecture. Therefore our proposi-
tion is to model the objectives of the concerned system using event-B method. We
first model some strategies or patterns of safety that allow to meet requirements
described in the objectives of the system. Then, we show how these patterns are
refined rigorously in concrete architectures by discharging proof obligations.

3 Work in progress using event-B method

Event-B is a formal method for the development of complex system. Its formal-
ism supports the validation of some properties thanks to proof methods. Thanks
to these distinctive features, the event-B method is well suited to correctly spec-
ify and progressively validate on-board safety architectures.

Let us illustrate how the three activities are modelled in event-B. For mis-
sion objectives of a spacecraft, two feared events are identified: the spacecraft
loss and the interruption the mission. Safety architecture patterns propose micro
architecture solutions that enable to mitigate such feared events. We propose to
reuse and extend the patterns presented in [3].

For this paper, we model more specifically a safety architecture pattern that
includes a primary functional component and a redundant one, under the hy-
pothesis of no common fault. The safety property to be met is: “one single fault
shall not lead to the total loss of the function”. We modelled this pattern at
three abstraction levels successively refined which verify this property.

3

The most abstract model enables to formalise this property and hypothesis.
Two basic components are considered. A fault counter (fault ci, with i stands
for 1 or 2) is associated to each component, whereas a boolean status (status)
models the global system health. When a fault occurs (event disci, with i stands
for 1 or 2), the component “i” is considered disconnected. When the event fi-
nal occurs, nothing more happens, since the system remains in the faulty state.
Moreover, for all this behaviour, the safety property is expressed by an invariant:
card(fault c1) + card(fault c2) ≤ 1⇔ status = TRUE. But at this step, there
is no detail about the condition of spare component activation.

Accordingly, the second model refines the former with introduction of the
switching process as a strategy. The activation variables are set in this new
model. Two new events are defined: sw1 2 event allows to switch from the pri-
mary active component to the spare component which becomes active when the
primary one is disengaged; sw2 event disconnects the system by disconnecting
the secondary component.

At least, the third model is an implementation of this switching strategy by
taking into account data flow: normal1 (respectively normal2) event represents
the “normal” data flow of the primary (respectively, the spare) component ac-
cording to the specification; fail1 (respectively fail2) event represents the “faulty”
data flow of the primary (respectively, the spare) component.

4 Future work

The current work investigates B-event specifications and refinements of generic
FDIR strategies by using the RODIN platform. The future work will consist
in studying the impact of the concept of a “layered” FDIR and how it can be
modelled and validated in the B-event framework, in the same spirit than the
full constructive approach developed by [4].

References

1. NASA: Glossary - NASA Crew Exploration Vehicle, SOL NNT05AA01J, Attach-
ment J-6. http://www.spaceref.com/news/viewsr.html?
pid=15201 (2005)

2. Chaudemar, J.C., Castel, C., Gabard, J.F., Tessier, C.: Z and ProCoSA based
specification of a distributed FDIR in a satellite formation. In: CAR’07 - Second
National Workshop on Control Architectures of Robots, Paris, FR (2007)

3. Kehren, C.: Motifs formels d’architectures de systèmes pour la sûreté de fonction-
nement. SUPAERO, Toulouse, FR. (2005)

4. Arora, A., Kulkarni, S.: Component based design of multitolerant systems. Software
Engineering, IEEE Transactions on 24(1) (1998) 63–78

Using ASM to achieve executability within a

family of DSL

Ileana Ober, Ali Abou Dib

IRIT – Université Paul Sabatier Toulouse

118, route de Narbonne 31062 Toulouse- France

{Ileana.Ober, aboudib}@irit.fr

Abstract. We propose an approach to achieve interoperability in a family of

domain specific language based on the use of their ASM semantics and of the

category theory. The approach is based on the construction of a unifying

language of the family, by using categorical colimits. Since the unifying

language is obtained by construction, translators to this one are obtained easily.

These are the premises for using ASM tools for symbolically executing systems

made of components specified in domain specific languages of a same family.

Keywords: Family of domain specific languages, category theory, ASM,

interoperability, Specware, CoreASM

1 Introduction

In previous work [1] we introduced an approach to achieve interoperability within a

family of domain specific languages, by means of automatic unification of the

considered languages. For this, we consider the category of the algebraic semantics of

domain specific languages expressed in terms of algebraic specifications. Classical

results in category theory, allow us to obtain by construction the formal semantics of a

unification language as well as translators from the source DSLs to this unification

language. Moreover, properties established in the context of DSLs and expressed as

invariants, pre-conditions or post-conditions in the algebraic structure can be

transferred to the unification language.

Our work starts from a case study that we developed with colleagues from the

French Space Agency (CNES). This case study revealed their need to deal with a set

of related – yet different – domain specific languages in remotely controlled satellites.

Here, one main challenge is to handle the heterogeneity. The work in [1] addresses

this problem, but the resulting framework lacks symbolic execution features. In order

to get to a framework with symbolic execution, we apply a similar approach on the

ASM specifications of programs specified in DSLs of a same family of languages.

This leads to a framework in which a set of components specified in a family of DSLs

could be translated to language unifying the family, using automatic translators.

This paper is composed of a brief overview of our general approach, the

presentation of our current work around ASM specification of DSLs.

2 Unification of a family of DSL languages

Our thesis is that the interoperability within a family of DSLs can be rigorously

tackled, by using a categorical approach. Our approach starts from the formal

semantics of the various DSLs of a family. We consider category of algebraic

specifications of the DSLs in a family. As recalled in [10], the algebraic specifications

form a family. Using results from Category Theory 5, we can obtain – by using the

push-out Categorical operator – in a quasi-automatic manner, the formal definition of

a unifying language that combines the constructs from the various languages. The

good thing about obtaining the unifying language in this manner is that it offers a

“smart” union of the concepts existing in the several languages, i.e. it avoids

duplication of concepts and it identifies correctly similar or related concepts.

In order to meet the hypothesis of applying colimits, we need to provide a boot

language and a set of initialization morphisms. This corresponds to the fact that we

have to express somewhere the correspondence between related constructs from

various languages, in order to avoid the multiplication of similar concepts. The boot

object and the initialization morphism play precisely this role and are the price to pay

for obtaining, by construction, the unification language and the translation

morphisms.

In a verification and validation setting, we can take advantage of the formal

foundation of the unifying language definition. The pushout that leads to the

unification language also preserves properties established in the context of the

original languages 7. Therefore, it is possible to prove for a DSL D a property P given

in an equational form, P is a thesis of D’s axioms. Thanks to our categorical

approach, P is also verified in all other DSLs E connected from D through

morphisms: the image of a thesis of D is a thesis of E by construction.

On the practical side, as illustrated in [1] the framework overviewed above was

experimented by using Specware [4, 10]. This tool gives us a framework to reason on

categories. We used it to obtain the unifying language of a family by pushouts on the

category of algebraic specifications of DSLs in a family. This software supports

proofs obligations written in higher-order logic. We use this to establish properties in

the context of individual language specification. Moreover, in the context of

Specware, proofs can be performed with the aid bridges with of theorem provers, such

as Isabelle [8].

3 Adapting the framework to the use of ASM specifications

One natural extension of the approach summarized above is to get to a framework

where the unified specifications could be used together in a framework supporting

symbolic execution. This naturally led us to the abstract state machines [2].

In order to bring ASMs into the picture of the framework described before, we

need to advance both on the theoretical and on the practical side.

On the theoretical side, the set of ASM specifications of the languages in the

family does not lead to the category of algebraic specifications. Therefore, we have to

identify a good category on which to reason on. Existing results on especs [9] show

that it is possible to use categorical results and existing tools based on categories, with

specifications using state machines.

We started on the practical side, by doing small experiments consisting in

translating by hand ASM toy specifications in CoreASM [5] corresponding to

specifications in source DSLs into the algebraic form accepted by Specware, in order

to calculate pushouts for unifying them. Although most of the work is done by hand,

we managed to identify some patterns, which we intend to automate. We are therefore

confident, that a unification approach between ASM specifications resulting from

various DSLs in a family is possible, and could be automatised with the aid of

existing tools, such as Specware [4, 10], ASF+SDF [2].

4 Conclusions

This ongoing work continues the approach overviewed in [1], in an attempt to achieve

executability in the context of specifications made in DSLs of a same family. Our aim

is on one hand to get to a theoretical framework in which the ASM specifications can

be unified by pushout, in order to take advantage of classical features of the ASM

tools in order to symbolically execute specifications originally made in DSLs of a

same family. The preliminary experiments validate this approach.

References

1. A. Abou Dib, L. Féraud, I. Ober, C. Percebois Towards a rigorous framework for dealing

with domain specific language families, ICTTA, IEEE Computer Society, 2008

2. E. Börger, R. F. Stärk: Abstract State Machines. A Method for High-Level System Design

and Analysis Springer 2003

3. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers,

P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinj, E. Visser, J. Visser The

ASF+SDF Meta-Environment: a Component-Based Language Development Environment

Compiler Construction 2001, pp. 365-370, Springer Verlag, (2001).

4. Kestrel. Specware documentation. http://www.specware.org/doc.html

5. R. Farahbod, V. Gervasi, U. Glässer: CoreASM: An Extensible ASM Execution Engine.

Fundamenta Informaticae 77(1-2): 71-103 (2007)

6. J.L. Fiadero. Categories for Software Engineering, Springer, (2005).

7. J. A. Goguen, R. M. Burstall. Introducing Institutions: Abstract model theory for

specification and programming. Research Report ECS-LFCS-90-106, Univ. of Edinburgh

8. T. Nipkow, L. Paulson, M. Wenzel. Isabelle/HOL. A proof assistant for Higher Order

Logic.Springer LNCS 2283, (2002)

9. D. Pavlovic, D. R. Smith: Composition and Refinement of Behavioral Specifications. ASE

2001, IEEE Computer Society: 157-165

10. D. Smith Composition by Colimit and Formal Software Development Algebra, Meaning,

and Computation: A Festschrift in Honor of Prof. Joseph Goguen, LNCS 4060, 2006

UML-B: A plug-in for the Event-B tool set1

Colin Snook and Michael Butler

University of Southampton,

United Kingdom

{cfs,mjb}@ecs.soton.ac.uk

Abstract. UML-B provides a graphical front end for Event-B. It adds support

for class-oriented and state machine modelling. UML-B is similar to UML but

has its own meta-model. UML-B provides tool support, including drawing tools

and a translator to generate Event-B models. The tools are closely integrated

with the Event-B tools. When a drawing is saved the translator automatically

generates the corresponding Event-B model. The Event-B verification tools

(syntax checker and prover) then run automatically providing an immediate

display of problems which are indicated on the relevant UML-B diagram. We

introduce the UML-B notation, tool support and integration with Event-B.

UML-B is a graphical formal modelling notation based on UML [1]. It relies on

Event-B [2] for its underlying semantics and is closely integrated with the Event-B

verification tools [3]. UML-B and Event-B are implemented within the Eclipse [4]

environment. This paper gives a brief introduction to UML-B. A more detailed

description is provided in [5].

The UML-B modelling environment consists of a UML-B project containing a

UML-B model. A builder is associated with the project and runs whenever the model

is saved. Four interlinked diagram types (package, context, class and state machine)

are provided. The top-level package diagram is opened with an empty canvas by the

model creation wizard. This canvas represents the UML-B project. Package Diagrams

are used to describe the relationships between top level components (machines and

contexts) of a UML-B project. As in UML, package diagrams provide a structuring of

the model, but also cater for the concept of refinement. The diagram shows the refines

relationships between Machines, the extends relationships between Contexts and the

sees relationships from machines to contexts. Other diagram types are linked and

opened via model elements as they are drawn on the various canvases.

UML-B mirrors the Event-B approach where static data (sets and constants) are

modelled in a separate package called a ‘context’. The Context diagram defines the

static (constant) part of a model. The context diagram is similar to a class diagram but

has only constant data represented by ClassTypes, Attributes and Associations.

Axioms (given properties about the constants) and Theorems (assertions requiring

proof) may be attached to the ClassTypes. ClassTypes define ‘carrier’ sets or constant

1 This work was carried out under the EU projects, Rodin [IST-511599] and ICT project

Deploy [IP-214158].

2 Colin Snook and Michael Butler

subsets of other ClassTypes. ClassTypes may own immutable attributes and

associations which represent constant functions with the ClassType as domain.

The behavioural parts (variables and events) are modelled in a Class diagram

which is used to describe the ‘machine’. Classes represent subsets (variable or fixed)

of the ClassTypes that were introduced in the context. The class’ associations and

attributes are similar to those in the context but represent variables instead of

constants.

The correspondence between an association’s multiplicity constraints and the

constraints on the resulting Event-B relationship is clear from the drawing tool. An

example Class diagram with an association selected and shown in the properties view

is given in Fig. 1.

Fig. 1. Class diagram Fig. 2.Statemachine diagram

Classes may own events that modify the variables. Event parameters can be added to

an event providing local variables to be used in the transition’s guards and actions.

These parameters can be used to model inputs and outputs. Class events implicitly

utilise a parameter to non-deterministically select the affected instance of the class.

This instance is referred to via the reserved word self when referencing the attributes

of the class.

State machines may be used to model behaviour. Transitions represent events with

implicit behaviour associated with the change of state. The event can only occur when

the instance is in the source state and, when it fires, the instance changes to the target

state. Hence statemachines model a class variable similar to an attribute. Additional

guards and actions can be attached to the transition in the property view. An example

statemachine is shown in Fig 2. A transition is selected and its properties, including

additional guards and actions, are shown in the properties view.

UML-B: A plug-in for the Event-B tool set 3

Conclusion

UML-B is a fully integrated graphical front end for Event-B. UML-B retains

sufficient commonality with UML for the main goals of approachability to be attained

by industrial users. Since UML-B automates the production of many lines of textual

B, models are quicker to produce and hence exploration of a problem domain is more

attractive. This assists novices in finding useful abstractions for their models. We

have found that the efficiency of UML-B and its ability to divide and contextualise

mathematical expressions, assists novices who would otherwise be deterred from

writing formal specifications. Furthermore, UML-B is gaining acceptance as a useful

visual aid for more experienced formal methods users.

UML-B has been used to model a failure management system (FMS) [6]. The FMS

is a wrapper layer that detects and filters out transient failures in sensors and

transducers. In the FMS case study we used UML-B to specify the generic problem

domain in an entity-relationship style that could be instantiated with specification

objects to ‘configure’ the specification for a particular application. UML-B was found

to be very suitable for this kind of problem.

Several groups have investigated UML based graphical renderings of B [7, 8] as

well as our own previous work [9]. However, our work is unique in providing a link

to Event-B and the first to provide a tool highly integrated with strong formal proof

tools. Our work also differs by defining its own language which has avoided many of

the problems highlighted in previous work.

References

[1] G. Booch, I. Jacobson, and J. Rumbaugh, The unified modeling language - a reference

manual (Addison-Wesley, 1998).

[2] C. Métayer, J.R. Abrial and L. Voisin, Event-B Language, RODIN Deliverable D7 [Rodin],

2005.

[3] J.R. Abrial, S. Hallerstede, F. Mehta, C. Métayer and L. Voisin, Specification of Basic

Tools and Platform, RODIN Deliverable D10 [Rodin 2005].

[4] J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, P. McCarthy, The Java developer’s

guide to Eclipse, 2nd Edition (Addison-Wesley, 2004).

[5] C. Snook and M. Butler, UML-B and Event-B: An integration of Languages and Tools,

Proceedings of the IASTED International Conference Software Engineering. SE2008,

ISBN:978-0-88986-715-4.

[6] C.Snook, M. Poppleton and I. Johnson, Rigorous engineering of product-line requirements:

a case study in failure management, Information and Software Technology, In press

(available on-line 26 Oct 2007).

[7] K. Lano, D. Clark, and K. Androutsopoulos, UML to B: formal verification of object-

oriented models, Proc. Integrated Formal Methods, 4th International Conference, IFM

2004, LNCS Vol. 2999 Springer, 187-206.

[8] H. Ledang and J. Souquières, Integrating UML and B specification techniques, Proc.

Informatik2001 Workshop on Integrating Diagrammatic and Formal

SpecificationTechniques, 2001.

[9] C. Snook and M. Butler, Formal modeling and design aided by UML, ACM Transactions on

Software Engineering and Methodology (TOSEM), Volume 15(1), 2006, 92 – 122

Tool Support for the Circus Refinement Calculus

A. C. Gurgel, C. G. de Castro and M. V. M. Oliveira

Departamento de Informática e Matemática Aplicada, UFRN, Brazil

Circus [1] specifications combine both data and behavioural aspects of con-
current systems using a combination of CSP [3], Z [9], and Dijkstra’s command
language. Its associated refinement theory and calculus [5] distinguishes itself
from other such combinations. Using the Circus refinement calculus, we can
correctly construct programs in a stepwise fashion [4]. Each step is justified
by the application of a refinement law, possibly with the discharge of proof
obligations (hereafter called POs). Hence, using Circus we are able to calculate
concrete (usually distributed) specifications from abstract (usually centralised)
specifications. The manual application of the refinement calculus, however, is an
error-prone and hard task.

We present CRefine1, a tool that supports the use of the Circus refinement
calculus2. Its interface is similar to Refine’s [8], a tool that supports Morgan’s
refinement calculus [4]; it is based on an early prototype that was presented
in [10]. We have, however, considerably changed and extended CRefine’s proto-
type. First, we updated the Circus parser used which fixes a couple of bugs of its
earlier version. We have also added facilities to manage developments: undoing
and redoing refinement steps, saving and opening developments is now avail-
able. Furthermore, some GUI facilities like pretty-printing, filtering applicable
laws according to the selected program, classification of laws, adding comments
to the development, and printing the development were also included. Finally,
the discharge of some proof obligations is now automatically done by CRefine.

CRefine provides support to apply the refinement laws and to manage the
overall development. Its interface is composed by a menu and three main
frames: refinement, proof obligations, and code. The refinement frame shows all
the steps of the refinement process. This includes law applications and retriev-
ing the current status of an action or process (collection). The proof obligations
frame lists the POs that were generated by the law applications, indicates their
current state (i.e. checked valid or invalid, or unchecked), and associates each
one of them to the law application that originated it in the refinement frame.
Currently, some proof obligations are automatically checked valid or invalid. In
our experience, these amount to over 60% of the proof obligations. The remain-
ing proof obligations need to be verified by the user. Finally, the code frame
exhibits the overall Circus specification that has been calculate so far.

CRefine provides two display formats for formulas: LATEX and Unicode (pretty-
printing). We intend to use this tool in teaching the Circus refinement calculus to
under-graduates. Unfortunately, most of them are not familiar with LATEX; in or-
der to make CRefine accessible to them, we have also provided a pretty-printing.

1 Available at http://www.cs.york.ac.uk/circus
2 This work is financially supported by CNPq: grant 551210/2005-2

This pretty-printing is also a success among researchers, since it unconditionally
makes the presentation of the development more user-friendly.

The starting point of a development in CRefine is a LATEX file that contains
the abstract specification of the system to be refined. Starting from this specifi-
cation, the application of refinement laws is as follows: first, we select the part
of the Circus program that we want to refine by clicking on its lines (multiple
lines can be selected by clicking on the first and last line of the term); then, we
select the law we want to apply; finally, after the input of any arguments that
may be required by the law, the application is automatically done. This updates
the refinement frame, the proof obligations frame, and the code frame.

Law applications can be done in two ways. First, a right-click on the selected
term shows a pop-up menu that lists only those laws that can be applied to the
selected term. In this case, their effective application is done by selecting them
in this list. Second, we can select the law from a list in the main menu that
contains all the refinement laws. If the law can be applied to the term, the apply
button is enabled and we can apply the law by clicking on it. When needed, an
argument window is shown to the user before the application of the law. In this
window, users may either type the argument in a LATEX format, or use a symbol
keyboard. The user may see the details of a refinement law by selecting it in the
list of the main menu and then right-clicking on its name.

Using CRefine’s development management users may (when applicable)
undo and redo development steps. That means different development paths dur-
ing a development may be tried, possibly in a search for a more efficient im-
plementation. Developments may also be saved in order to be continued latter;
CRefine’s developments are saved in XML format. Users may document the de-
velopment by adding, editing, and viewing comments to each term or law ap-
plication in the refinement window. Finally, CRefine automatically generates a
LATEX file that documents the main elements of the development: original spec-
ification, refinement, POs, comments and the concrete specification. The user
can choose which elements should be included in the final document.

CRefine’s architecture is strongly based on the architecture proposed for
Circus tools in [2]. It extends an ongoing effort of the Community Z Tools
(CZT), which provides a set of tools for the Z specification language. In re-
cent years, many Circus collaborators have made extension on the CZT project
to provide tools that support Circus like a parser, a type-checker, a refinement
model-checker, a theorem-proving module, and pretty-printers.

The cost of developments may still be reduced. Frequently used strategies
of refinement are reflected in sequences of laws that are applied over and over
again. Identifying these strategies, documenting them as tactics, and using them
in program developments as single transformation rules brings a profit in effort.
In [6], we present a refinement-tactic language called ArcAngelC , which can be
used to formalise tactics of refinement just like in [7]. Allowing users to define
and use tactics as simple refinement laws within CRefine is our next step.

The vast majority of the refinement laws from [5], which have been used
in a reasonable number of case studies, are included in CRefine. This give us

confidence that the current set of laws is appropriate for useful applications. We
are aware, however, that it is not complete [5]. We intend to provide a parser
of refinement laws in the style of CZT. Using this parser, the laws could be
dynamically loaded; no recompilation would be needed.

Another interesting piece of future work is the automatic discharge of the
remaining POs, which can be predicates or action/processes transformations.
For this, we need to integrate CRefine with a theorem-prover to check predicate
POs and to allow multiple developments within CRefine to check POs that are
action/processes transformations. For instance, users will be able to prove that
A1 is refined by A2 by deriving A2 from A1 in a new development.

Finally, the infra-structure provided by tactics of refinement and multiple
developments can be used to allow users to make sub-developments within larger
developments. This would considerably modularise future developments.

CRefine can be a useful tool in the development of state-rich reactive systems.
Our initial intention was to develop an educational tool and use it in teaching
formal methods. However, during the implementation and tests, we noticed that
it may as well be useful in the development of industrial-scale systems. Empirical
verifications in a near future will verify this statement. For instance, we are
currently developing case studies that are related to the oil industry.

References

1. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement
strategy for Circus. Formal Aspects of Computing, 15(2–3):146–181, 2003.

2. L. J. S. Freitas, J. C. P. Woodcock, and A. L. C. Cavalcanti. An Architecture for
Circus Tools. In A. C. V. Melo and A. Moreira, editors, Proceedings of the Brazilian

Symposium on Formal Methods, pages 6 – 21, 2007.
3. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
4. C. Morgan. Programming from Specifications. Prentice-Hall, 1994.
5. M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using

Circus. PhD thesis, Department of Computer Science, University of York, 2005.
YCST-2006/02.

6. M. V. M. Oliveira. ArcAngelC. Technical report, Departamento de Informática
e Matemática Aplicada - Universidade Federal do Rio Grande do Norte, Natal,
Brazil, February 2007.

7. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. ArcAngel: a Tactic
Language for Refinement. Formal Aspects of Computing, 15(1):28–47, 2003.

8. M. V. M. Oliveira, M. Xavier, and A. L. C. Cavalcanti. Refine and Gabriel: Support
for Refinement and Tactics. In Jorge R. Cuellar and Zhiming Liu, editors, 2nd IEEE

International Conference on Software Engineering and Formal Methods, pages 310–
319. IEEE Computer Society Press, Sep 2004.

9. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

10. M. A. Xavier, A. L. C. Cavalcanti, and A. C. A. Sampaio. Type Checking Circus

Specifications. In A. M. Moreira and L. Ribeiro, editors, SBMF 2006: Brazilian

Symposium on Formal Methods, pages 105 – 120, 2006.

Formal Verification of ASM Models using TLA+

Hocine El-Habib Daho∗ and Djilali Benhamamouch

Department of Informatics
University of Oran, Algeria

∗dahoh@yahoo.com

Abstract. The notion of Abstract State Machines(ASMs) handles a
practical new approach for modeling and analysing various kinds of dis-
crete dynamic systems. In the context of the verification problem of ASM
models, formal verification techniques based on variants of restricted
first-order temporal logic have been used to verify correctness of re-
stricted forms of ASM specifications. In this spirit, the current work
shows how the state-based logic of TLA+can be employed to formally
reason about dynamic systems formalised in terms of ASMs.

1 Introduction

Abstract State Machines(ASMs), previously called Evolving Algebras and in-
troduced by Y.Gurevich in[9], constitue the formal foundation of a practical
methodology in modeling and analysing various kinds of complex dynamic sys-
tems.

The ASMs formal method has been applied in different areas, such as soft-
ware and hardware systems, programming languages, communication protocols
and distributed algorithms[3]. It provides a flexible formalism to specify the
operational semantics of a system at natural abstraction level in a direct and
intuitive way[3].

The ASM approach belong to the family of state-based methods, which model
a system as a transition system. An ASM model describes the state space of a sys-
tem by means of universes(i.e. basic sets) with functions and relations interpreted
on them, and the state transitions by means of transition rules. In applications,
Abstract State Machines are considered a suitable specification formalism for
giving semantics of a system in terms of its set of possible executions(i.e state
sequences).

Besides the standard mathematical techniques underlying the ASM approach
that naturally support verification of ASM model properties, there has been work
on formal proof systems for ASMs, using various formal verification tools[7, 14,
16]. Other work about verification of ASM models include[13, 15] who investi-
gated the problem of verifying classes of restricted ASM programs(called Nullary
ASMs and guarded ASMs) automatically. [6] show how to translate ASM speci-
fications into the first-order temporal logic(FOTL), especially into the monodic
fragment of FOTL. They have defined restrictions on ASM specifications which
ensure that the temporal translation is in a decidable fragment of FOTL. Work

2

in[8] introduces the formal language for ASMs (called FLEA), a system for for-
mal reasoning about ASM specifications. They have adopted a modal logic view.
[1] presents work on the specification and verification of real-time systems within
a logical framework where ASM formalism(e.g. a Block ASM) is used to specify
timed algorithms. They have used a type of first-order timed logic(FOTL) to
formally specify and reason about behavior of real-time ASM specifications by
means of FOTL-formulas.

2 Reasoning about ASMs within the TLA+-Logical
Framework

In our ongoing research work[4, 5], we propose to adopt Lamport’s Temporal
Logic of Actions(TLA)[10] as an appropriate alternative to the logic-based ap-
proaches [1, 6, 8, 13, 15], to formally reason about ASM specifications of dynamic
systems without imposing restrictions on the specification formalisms. TLA is a
state-based logic which provides the means for describing transition systems(i.e
states, state transitions and thereby the resulting state sequences) and formu-
lating their properties in a single logical formalism, equipped with a relatively
complete set of proof rules for reasoning about safety and liveness properties
that can be required for systems.

The operational behavior(semantics) of an ASM specification is directly de-
fined by TLA-logical formulas and the TLA-proof techniques can be applied to
formally prove the correctness of ASM specifications. Using this framework, both
ASM specifications and required properties are represented by formulas in the
same logic.

In particular, we provide some basic rules to translate ASM models into
TLA+specifications. TLA+is a formal specification language based on Zermelo-
Fränkel set theory, first-order logic and the linear-time temporal logic TLA[11].
In addition to the operators of TLA, it contains operators for defining and ma-
nipulating data structures and syntactic structures for handling large specifi-
cations. The TLA+ framework offers a potential mathematical framework into
which ASM model elements are directly translated to their most natural equiv-
alents in TLA+.

The applicability of the proposed TLA+approach is illustrated by the for-
mal correctness proofs of both Lamport’s bakery algorithm and a token ring
algorithm both formalised in terms of ASMs[2, 12].

3 Conclusion and Further Work

The aim of our current work is to provide formal reasoning techniques for ASMs
by using the TLA+-logical framework. In this work we show how the proposed
TLA+approach can be used to formally reasoning about the correctness of ASM
specifications. We started the work by hand-translating examples of ASM spec-
ifications describing distributed algorithms into TLA+specifications. Invariance

3

and liveness properties were verified for these specifications using formal hand
proofs written in the TLA+logic. Based on our hands-on experience, we came
up with a scheme for translating ASM specifications to TLA+specifications. Fu-
tur work will concentrate on the development of a model translator, namely
ASM2TLA+ translator, to perform the translation of an ASM model into a
TLA+model which can be verified automatically using the TLA+model checker
called TLC[11].

References

1. Beauquier,D.,Slissenko,A.: A first-order logic for specification of timed algorithms
: Basics properties and a decidable class. Annals of Pure and Applied Logic, 113(1-
3):13-52,2002.

2. Börger,E.,Gurevich,Y.,Rosenzwerg,D.: The bakery algorithm : Yet another speci-
fication and verification. In E.Bröger(ed.), Specification and Validation Methods,
pages 231-243. Oxford University Press. 1995.

3. Börger,E., Stärk,R.: Abstract State Machines : A Method for High-Level System
Design and Analysis. Springer 2003.

4. El-Habib Daho,H.,Benhamamouch,D.: Verifying the correctness of ASM Programs
using TLA+. Technical Report, Department of Informatics, Oran’s University, Jan-
uary 2008.(In French)

5. El-Habib Daho,H.,Benhamamouch,D.: Specification and verification of ASM mod-
els with TLA+ and TLC. Technical Report, Department of Informatics, University
of Oran, March 2008.(In French)

6. Fisher,M.,Lisitsa,A.: Monodic ASMs and temporal verification. In Proceedings of
Abstract State Machines Workshop ASM’2004, May 2004.

7. Gargantini,A.,Riccoben,E.: Encoding Abstract State Machines in PVS. In Abstract
State Machines : Theory and Applications, Vol.1912 of LNCS.Springer-Verlag,
2000.

8. Groenboom,R.,Lavalette,G.R.: A Formalisation of Evolving Algebras. In Proceed-
ings Accolade 95, pages 17-28, 1995.

9. Gurevich,Y.: Evolving Algebras : An attempt to discover semantics. Bulletin of
the EATCS, (43):264-284, February 1991.

10. Lamport,L.: The Temporal Logic of Actions. ACM Transactions on Programming
Languages and systems, 16(3):872-923, May 1994.

11. Lamport,L.: Specifying Systems : The TLA+Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston 2003.

12. Matousek,P.: Evolving Algebras and Formalisation of Dynamic Systems. Technical
Report-VSB-TU, Department of Informatics, VSB Technical University of Ostrav,
Czech Republic, 1999.

13. Nowack,A.: Deciding the Verification Problem for Abstract State Machines. In
Proceedings of ASM 2003, LNCS, 2589:341-371, 2003.

14. Schellhorn,G.,Ahrendt,W.: Reasoning about Abstract State Machines : The WAM
case study. Journal of Universal Computer science,3(4):377-413, 1997.

15. Spielmann,M.: Automatic verification of Abstract State Machines. In Proceedings
of 11th international conference on computer-Aided Verification(CAV’99), Vol.1633
of LNCS, pages 431-442. Springer-Verlag, 1999.

16. Winter,K.: Model Checking for Abstract State Machines. Journal of Universal
Computer Science, 3(5):689-701, 1997.

BART: A tool for automatic refinement!

Antoine Requet

antoine.requet@clearsy.com

ClearSy
Parc de la Duranne

320, avenue Archimde
Les Pliades III - Bt A

13857 AIX EN PROVENCE CEDEX 3 - FRANCE

Abstract. This paper provides an introduction to BART (B Automatic
Refinement Tool), a tool for automatizing the refinement of B machines.
The BART tool is currently in development, and will be integrated within
the next major version of the Atelier B tool.

1 Introduction

Refining a B specification into an implementation can be a complex and time
consuming process. This process can usually be separated in two distinct parts:

– the specification part, where the refinement is used to introduce new prop-
erties and specification details, and

– the implementation, where refinement is used to convert a detailed B speci-
fication into a B0 implementation.

The first part requires human interaction, since it corresponds to writing the
specification. However, the implementation part is more mechanical, and usually
corresponds to apply known refinement schemes.

The BART tool aims to provide helps for this second part of the B develop-
ment, by automatically refining machines or refinements to B0 implementations.
It uses the same approach as the tool described in [LB99] that has been devel-
oped by Siemens.

2 Automatic Refinement

The purpose of the automatic refinement is to generate B implementations from
a B specification or refinement. To provide a meaningful output, the tool requires
the refined specification to be detailed enough: complex refinements designed to
prove properties, or to add specification details still have to be done manually.

To refine a specification, the tool performs the two following refinements:

! This work has been funded by french ”Agence Nationale de la Recherche” ANR-06-
SETI-015.

– Refinement of data: abstract variables are refined to concrete variables.
– Refinement of algorithms: the substitutions used within the abstract ma-

chines are refined into equivalent B0 substitutions.

In its simplest form, the refinement of a B component produces a corresponding
B implementation. However, in most case, the result will be a set of machines
and implementations, as the refinement rules will split complex refinements into
several machines.

The proof of the refined machines remains to be done using the Atelier B
tool. This simplifies the customisation of the refinement rules, as an incorrect
refinement will be detected when proving the generated implementations.

2.1 Principles

The tool uses a set of refinement rules, that are checked against the refined
machine. Additionally, annotations can also be added to the B model in order
to modify the behavior of the tool. For instance it is possible to specify that a
variable should be refined by a specific refinement rule.

The syntax of BART’s refinement rules is a superset of the syntax used by
the tool described in [LB99].

Three categories of rules are used by BART:

– variable rules: those rules specify how an abstract variable should be imple-
mented.

– operation rules: those rules are used to refine and implement substitutions.
– initialisation rules: those rules are similar to the operation rules, but are

specialised for the initialisation clause.

All those rules work by pattern-matching, and by looking for required hy-
pothesis. They mainly contain three elements:

– a pattern indicating which kind of element can be refined by the rule. For
operation and initialisation rules, this pattern corresponds to a substitution.
For variables, the pattern is matched to the variable name.

– a set of constraints that must be met for the rule to be applied. Those
constraints are checked against the invariants and properties visible by the
refined machine.

– a pattern describing the refined element. For operation and initialisation
rules, this pattern describes the refined substitution. For variable rules, this
pattern contains the introduced variable as well as the gluing invariant.

Those rules are then applied to the refined machine until no rule can be
applied, or the machine is refined into a valid implementation.

3 Conclusion

The benefits of using an automatic refinement tool can be listed as follows:

– The most obvious advantage is that it automatises repetitive tasks.
– Additionally, the proof of the generated machines is usually simpler, since

all the generated machines share the same model.
– finally, it is a way of reusing refinement patterns, and capitalizing on refine-

ment experience.

The BART tool is currently in development and will be integrated in the next
major version of Atelier B.

References

[LB99] L. Burdy, J-M. Meynadier, Automatic Refinement, FM’99 workshop – Applying
B in an industrial context : Tools, Lessons and Techniques, Toulouse, 1999

A roadmap for the Rodin toolset!

Version 1.0: 12 June 2008

Jean-Raymond Abrial1, Michael Butler2, Stefan Hallerstede2, and Laurent Voisin3

1 ETH Zurich, Switzerland, jabrial@inf.ethz.ch
2 University of Southampton, United Kingdom, {mjb,sth}@ecs.soton.ac.uk

3 Systerel, France, laurent.voisin@systerel.fr

1 Event-B and the Rodin Platform

Event-B is a formal method for system-level modelling and analysis [1]. Key features
of Event-B are the use of set theory as a modelling notation, the use of refinement to
represent systems at different abstraction levels and the use of mathematical proof
to verify consistency between refinement levels.

The Rodin Platform4 [2] is an Eclipse-based [3] toolset for Event-B that provides
effective support for refinement and mathematical proof. Keep aspects of the are

– support for abstract modelling in Event-B
– support for refinement proof
– extensibility
– open source

To support modelliing and refinement proofs Rodin contains a modelling database
surrounded by various plug-ins: a static checker, a proof obligation generator, au-
tomated and interactive provers. The extensibility of the platform has allowed for
the integration of various plug-ins such as a model-checker (ProB), animators, a
UML-B transformer and a LATEX generator. The database approach provides great
flexibility, allowing the tool to be extended and adapted easily. It also facilitates
incremental development and analysis of models. The platform is open source, con-
tributes to the Eclipse framework and uses the Eclipse extension mechanisms to
enable the integration of plug-ins.

2 Roadmap

In its present form, Rodin provides a powerful and effective toolset for Event-B
development and it has been validated by means of numerous medium-sized case
studies. Naturally further improvements and extensions are required in order to
improve the productivity of users further and in order to scale the application of
the toolset to large industrial-scale developments. We outline the main extensions
to Rodin that we have planned for a four year time frame. The outline descriptions
of these planned extensions are grouped into sections 2.1 to 2.5 as follows.

! The continued development of the Rodin toolset is funded by the EU research project
ICT 214158 DEPLOY (Industrial deployment of system engineering methods providing
high dependability and productivity) www.deploy-project.eu. The toolset was originally
developed as part of the project IST 511599 RODIN (Rigorous Open Development
Environment for Complex Systems).

4 Available from www.event-b.org

2.1 Model construction

Rodin provides a structured editor for constructing and modifying models stored in
the database. As mentioned above, this facilitates easy extension as well as incre-
mental development and analysis of models. Rodin needs further improvement to
make it easier to perform standard editing tasks such as text search, copy/paste and
undo/redo. Rodin will be extended to provide refactoring facilities, such as identifier
renaming, that can be applied not just to models but to proof obligations, proofs
and other forms of elements. Better support for browsing refinement links between
models will be provided, for example, allowing the refinements and abstractions of
events to be followed down or up a refinement chain.

2.2 Scaling

Event extension: In many Event-B developments it is common to perform super-
position refinement where existing model features are maintained and additional fea-
tures are added (e.g., additional variables, invariants, events and additional guards
and actions for existing events). Currently events can be inherited as a whole but
not extended. Rodin will support event extension (or superposition) where only
the additional features are defined in a refined event and the existing features are
inherited.

Composition and decomposition: Composition and decomposition of mod-
els is essential for scalability. There are plans to support two styles of composition
for Event-B in Rodin:

Style A Sub-models interact via shared variables
Style B Sub-models interact via synchronisation over events

Rodin will be extended to provide support for composing models as well as de-
composing models according to these styles. The proof obligation generator will be
extended to enable independent refinement of sub-models.

Team-based development: Support for composition and decomposition will
go some way towards enabling team-based development. But there will still be
situations where a team needs to access a common set of models. Rodin will be
extended to support concurrent modification of developments by providing viewing
of change conflicts and automated merge of changes. It will provide support for
version control. Support to analyse the impact of multiple user modifications on
proof will be investigated.

2.3 Extending the proof obligations and theory

Proof obligations: Event-B models will be extended to include external vari-
ables. The proof obligation for such variables is that they must be preserved via a
functional gluing invariant between abstract and concrete external variables. Other
forms of proof obligations will also be added to support different paradigms (con-
current, distributed, sequential systems). These include proof obligations for preser-
vation of event enabledness and richer variant structures(such as pointwise ordering
and lexicographic ordering) for convergence proof obligations.

Mathematical extensions: Rodin will be extended to support richer types
such as record structures and user-defined data types including inductive data types.
Appropriate automated and interactive proof support for richer types will be inves-
tigated and provded. Higher order provers should enable proof support for inductive
datatypes. Users will be able to define operators of polymorphic type (but not use
operator overloading) as well as parameterised predicate definitions. Support for
disjointness constraints will be added.

2.4 Proof and model checking

Rodin provides an open architecture for proof in the form of a proof manager
that can use a range of provers to discharge proofs and sub-proofs. The existing
automated provers will be extended with more powerful decision procedures. The
use of existing first order and higher order automated provers will be investigated. As
mentioned already, higher order provers should enable proof support for inductive
datatypes. The possibility of exploiting automated techniques such as SMT and
SAT will be investigated. The facilities of the ProB model checker will be fully
integrated into Rodin.

2.5 Animation

Prototype animation plug-ins already exist. The animation facilities will be ex-
tended to allow for greater automation of large animations to support regression
testing of models. A clear API to the animation will be provided to allow for easy
integration with graphical animation tools.

2.6 Process and productivity

Requirements Handling and Traceability: The interplay between informal
requirements and formal modelling is crucial in system development and needs
better tool support. Facilities for constructing structured requirements documents
and for building links between informal and formal elements will be added to Rodin.
These will support traceability between requirements and formal models. Support
for recording validation of these links and for managing consistency under change
to requirements and to formal models will be provided.

Document management: Currently, the B2Latex plug-in for Rodin gener-
ates a LATEX version of an Event-B model. The structure of the document follows
the structure of the model. For proper document generation tool support will be
provided whereby users dictate the order in which parts of the model are presented.
They should be able to write a document, structured according to their needs that
includes parts of an Event-B project and that is automatically kept in synchrony
with the models.

Automated model generation: Automatic generation of refinements will be
investigated and appropriate tool support provided. More general modelling and
refinement patterns, enabling greater reuse of modelling and refinement idioms,
will be investigated and tool support provided. Code generation from models will
be investigated. An indirect route for achieving code generation will be to generated
classical B and use the existing code generators for classical B.

3 Tool development procedures

We are promoting a rigorous approach to the development of Rodin. Key features
of Rodin, e.g., the static checker and the proof obligation generator, were specified
formally before being implemented. Test procedures are developed in tandem with
implementing. We are setting up rigorous specification and code review procedures.
The development of new features should also follow this approach.

Many of the extensions listed above will first be implement as separate Eclipse
plug-ins. When their general value and quality is assured, they will be incorporated
into the platform release.

The management of platform release versions will be coordinated amongst the
platform and plug-in developers. Facilities for importing existing developments into
newer versions of Rodin will be provided. Support documentation and tutorial mate-
rial for tool users and plug-in developers will continue to be improved and updated.

4 Concluding

Many of the Rodin extensions outlined above will be implemented as part of the
DEPLOY project. However, we welcome support from other researchers and tool de-
velopers in elaborating and realising the roadmap. Furthermore, we anticipate that
researchers will investigate and implement Rodin extensions that are not identified
in our roadmap.

References

1. Jean-Raymond Abrial. Modelling in Event-B: System and software engineering. To be
published by Cambridge University Press, 2008.

2. Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An
open extensible tool environment for Event-B. In Z. Liu and J. He, editors, ICFEM
2006, volume 4260, pages 588–605. Springer, 2006.

3. Erich Gamma and Kent Beck. Contributing to Eclipse. Addison Wesley, 2003.

Acknowledgements

We would like to thank all members of the RODIN and DEPLOY projects and oth-
ers who are contributing to the toolset especially Jens Bendisposto, Dominique
Cansell, Kriangsak Damchoom, Thai Son Hoang, Cliff Jones, Thierry Lecomte,
Michael Leuschel, Farhad Mehta, Christophe Métayer, Colin Snook and Francois
Terrier.

Model Checking Event-B by Encoding into Alloy1

Paulo J. Matos and João Marques-Silva

Electronics and Computer Science, University of Southampton
{pocm, jpms}@ecs.soton.ac.uk

Abstract. As systems become ever more complex, verification becomes
more main stream. Event-B and Alloy are two formal specification
languages based on fairly different methodologies. While Event-B uses
theorem provers to prove that invariants hold for a given specification,
Alloy uses a SAT-based model finder. In some settings, Event-B in-
variants may not be proved automatically, and so the often difficult step
of interactive proof is required. One solution for this problem is to vali-
date invariants with model checking. This work studies the encoding of
Event-B machines and contexts to Alloy in order to perform temporal
model checking with Alloy’s SAT-based engine.

1 Introduction

Current day systems are ever more detailed and complex leading to the necessity
of developing models that abstract unimportant implementation details while
emphasizing their structure. These models are developed in order to be easily
verified either by theorem provers or model checkers.

Event-B is a language based on B-method [1], and supported by the open
tool RODIN 2. Part of the language is developed visually and there is a syntax
for predicates and expressions[2]. The RODIN tool is shipped with theorem
provers which allow the user to prove the model invariants either automatically
or interactively.

Alloy [3] is a structural modeling language based in first order logic. It is
a textual language that consists of signatures, which introduce flat relations,
functions, predicates and assertions that deal with the relations. By specifying
predicates and assertions it is possible to perform model finding or model check-
ing. The tool uses KodKod [4], a model finder, to convert the model within given
bounds to SAT and return an instance of the model or a counter-example.

In previous work [5] B-method was combined with Alloy. since then Al-
loy was considerably improved and extended by, not only, adding new con-
structs but also by making the verification much more efficient. The restrictions
described in the work either do not exist anymore or they can be overcome.

Until recently it was only possible to perform temporal model checking in an
Event-B model by using a two step process: converting the model to B-method

1 This work is partially supported by EPSRC grant EP/E012973/1, and by EU grants
IST/033709 and ICT/217069.

2 The RODIN toolkit was developed under research project IST 511599.

and then using ProB[6]. However, the solution was not straightforward as the
conversion to B-method was not always fully automated. More recently, a pro-
totype ProB plugin[7] for the RODIN tool has been developed that provides an
alternative solution for model checking Event-B models using the ProB model
checker. Nevertheless, encoding Event-B to Alloy allows building on top of
the Alloy model finding engine therefore benefiting from all of its optimiza-
tions. As mentioned elsewhere [7], encoding Event-B is not straightforward but
this work shows it is possible.

2 Encoding

This section summarizes the process of encoding an Event-B model into Alloy.
Due to space constraints the presentation will be informal and far from complete,
which means that there are Event-B operators for which an encoding has been
developed but which are not described. A full report with an example based on
processes and mutexes, including the actual encoding and additional comments
is available elsewhere [8]. For a detailed description of the structure and rules of
Event-B models the reader is referred to [2].

There are three aspects to the encoding: encoding of the model structures,
expressions, and predicates (which are straightforward due given the existence
of the logical operators in both languages).

The execution model needs to be emulated by the final Alloy model. To
this end all of the encoded models define a “State” signature which is ordered by
using the ordering module and with as many fields are there are variables. The
variable types are extracted from the set of Event-B invariants and encoded
into signatures which become the type of the respective fields. A fact defines
the initial state which is encoded from the “Initialisation” event. Each event is
encoded in a predicate with two arguments: the current state and the next state
and it evaluates to true whenever the next state reflects the triggering of an
event from the current state. A final fact asserts that at every state one of the
events needs to be triggered.

A carrier set is encoded as a signature with no fields and an enumerated set
is encoded as signature, one per enumeration, with no fields that extend a base
signature that represents the type of the enumerated set. One special enumerated
set “Events” has one enumeration per event, plus an “Undef” enumeration for
the initial state which is defined to be triggered by an “Undef” event. “Ev” is
the type of a special field in the “State” signature. If “Ev” is x in state s′, this
means that it was the triggering of x that caused the transition from s to s′.
Although this information is not necessary for the model checking itself, it makes
the state trace of a failed invariant much more readable.

Expressions are the hardest part to encode. There is not only a myriad of
complex expressions in Event-B but given that Alloy uses only flat relations,
some Event-B expressions that introduce relations with nested sets generate
many (and potentially large) Alloy expressions. Some expressions are straight-
forward like the domain, range, domain and range restriction and their subtrac-

tion counterparts, since they are either already defined in modules shipped as
part of the current Alloy distribution or they are very easily defined as small
functions. Operators like prj1, prj2 and id need to be defined as Alloy functions
in order to be used. All arithmetic operators except power are defined but still,
power can be defined explicitly during encoding-time depending on the defined
bit width passed on to the Alloy engine for checking. For example, ab could
be defined as a = 0⇒ 1 else b = 0⇒ 0 else b = 1⇒ a else b = 2⇒ a.mult[a] · · ·.
Function expressions can be encoded as relations and then facts can be added to
the model as to assure the semantics is preserved. So, to encode (A→B)↔C, a
signature with a relation from A to B would be defined followed by a fact assert-
ing the relation to be a total function and then yet another signature is defined
with a relation from the previously defined signature to C. Although function
nesting requires a new signature, it seems this is the best general solution given
that Alloy only works with flat relations.

3 Conclusion and Future Work

The focus of our work is to allow the users of the Event-B language to use
the years of work and expertise in the development of the Alloy tools. This
paper summarizes an encoding of Event-B into Alloy. The resulting Alloy
model can serve to find counterexamples to false invariants and translate them
back to Event-B. Future work entails the automatic generation of the encoding
and its integration with the RODIN tool. The tool to be developed can then
be extended to use other backends besides Alloy. Although this work focuses
on model checking, there are cases where it is desirable, and often the preferred
alternative, to do constraint based checking. We will investigate line of work as
another possible extension to the tool.

References

1. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, New York, NY, USA (1996)

2. Consortium, R.: Rodin deliverable D7 - Event B language. Technical report, RODIN
Consortium (2005) Available at http://rodin.cs.ncl.ac.uk/deliverables/rodinD7.pdf.

3. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering Methodology 11(2) (2002) 256–290

4. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In Grumberg, O., Huth,
M., eds.: TACAS. Volume 4424 of LNCS., Springer (2007) 632–647

5. Mikhailov, L., Butler, M.: An approach to combining b and alloy. In: ZB’2002 –
Formal Specification and Development in Z and B. Volume LNCS. (January 2002)
140–161

6. Leuschel, M., Butler, M.J.: ProB: A model checker for B. In Araki, K., Gnesi, S.,
Mandrioli, D., eds.: FME. Volume 2805 of LNCS., Springer (2003) 855–874

7. Ligot, O., Bendisposto, J., Leuschel, M.: Debugging Event-B Models using the ProB
Disprover Plug-in. Proceedings of AFADL’07 (June 2007)

8. Matos, P.J., Marques-Silva, J.: Model checking event-b by encoding into alloy.
Computing Research Repository abs/0805.3256 (May 2008)

From ABZ to Cryptography (extended abstract)

Eerke A. Boiten

Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK.
Email: E.A.Boiten@kent.ac.uk

Abstract. This paper reports on work in applying ideas from the ABZ world to modern
cryptographic protocols. It describes the important differences between this and more
“traditional” application areas, and a number of promising approaches in formal methods.

Disclaimer

The nature of this paper is such that a bibliography giving decent coverage of the problems raised and

attempted solutions from both sides of the fence would take up more than the total space available

here – the reader is invited to look elsewhere, e.g. papers and research proposals at [5].

1 Natural Bedfellows?

At a first glance, cryptographic protocols provide exactly the kind of problems that formal
methods are most suitable for and perform best at: short programs (most fit on a single page),
based on rich algebraic mathematics, whose correctness is highly critical. However, the mathe-
matics and the notions of security (correctness) are very different from the usual formal methods
assortment.

2 Three Steps from the Ideal

Formal methods is about achieving correct systems. Ideally [12, 1], this correctness is achieved
by construction: we use a “wide spectrum” language that encompasses both abstract specifi-
cations and executable programs, and transform one gradually into the other through small
“correctness-preserving” steps. Refinement as a process, if you like, with the domain algebra,
the properties of the problem, and a little creativity guiding us in creating a solution.

Slightly less desirable is post-hoc verification: proving that a proposed implementation is
correct with respect to a specification (refinement as a relation), or that it satisfies certain
properties. In the latter case, implementations and their properties may even be written in
different languages.

If, given a specification and its intended solution, our mathematical framework does not
help us in proving that it is correct, the next level is proof-checking. I.e., if someone comes
along with a proof of correctness, we can formalise this, and then check mechanically that it
discharges our overall proof obligation.

For modern cryptographic protocols (see below for what I mean by that), the state of the
art is that proofs and proof methods are often insufficiently formalised for even proof checking
to be a realistic prospective. So we are a full three steps away from the ideal way of achieving
correctness.

3 Formal Methods and Cryptography

In the 1990s, formal methods techniques achieved major success in the modelling and analysis
of cryptographic protocols, particularly work by the group using CSP around Oxford [9, 15] and

by Paulson [13]. First, by considering non-deterministic choices of actions by the attacker, they
allowed abstraction from attack strategies (and took anthropomorphism out of the equation:
non-determinism encompasses “evil”). The second important aspect of this work was automa-
tion: using the theorem prover Isabelle in Paulson’s work, and using CASPER and the FDR1

model checker in case of the Oxford group. However, this work was based on an abstraction of
encryption which is an approximation. (Basically, the initial algebra assumption for encryption
as the main constructor – implying an infinite algebra when all practical schemes work with
fixed length bitstrings.) Thus, it may lead to false assurances of security. Also its emphasis on
absolute notions of security does not sit well with modern cryptology.

4 Modern Cryptographic Protocols and Security

A modern cryptographic protocol may have the following properties:

– although its functionality is clear, its full set of desirable security properties may not be
known yet;

– it contains explicit probabilistic elements, to mask input distributions and in “nonces”;
– its notion of security (correctness) is not an absolute one but approximate;
– moreover, this approximate correctness is relative to the computational resources available

for an attack against it (which tends to imply an implicit probabilistic aspect);
– its security is not proved in an absolute sense but relative to the hardness of some compu-

tational problem;
– it uses primitives in a way which does not guarantee compositionality of the primitives’

properties.

All this means that the standard techniques and good intentions of formal methods do not work
straight out of the box.

Many approaches to bridging the gap between formal methods and modern cryptography
exist – see for example [4, 14, 7, 11, 8, 3]. These all have their advantages and disadvantages –
but none are too close in spirit to the ABZ world.

5 What Do We Need, and What Has Been Done

Finally, I take a “bottom-up” view of how the ABZ world might approach the problem of
“refinement for cryptographic protocols”: in which dimensions we would need to extend (say)
standard Z states-and-operations refinement. This includes the following:

approximation Notions of correctness which are not exact but “close enough” – approximate
refinement [6] would need to be strengthened to include fast convergence (“negligibility”).
The cryptographic primitive of commitment, for example, requires two security properties
– achieving both simultaneously is impossible, but schemes exist which approximate both
with only negligible error.

probability Possibly protocols, and certainly attack models have a probabilistic element (“guess-
ing”) to them. The work by McIver and Morgan [10] is a massive step forward in this area,
and work on probabilistic refinement is continuing in several groups. Mingsheng Ying [16]
has considered approximate probabilistic refinement.

action refinement Typical cryptographic protocols achieve a single objective through multi-
ple communications between the parties involved. Thus, the granularity of actions decreases
going from specification to implementation, requiring some kind of action refinement. Re-
cent work by Banach and Schellhorn [2] is beginning to clarify issues of stutttering and
upward vs. downward simulation in this area.

1 The FDR tool is c©Formal Systems (Europe) Ltd.

attacks Protocols do not operate in isolation: multiple instances may run concurrently between
different parties, and “dishonest” participants may not stick to the protocol. In the CSP
work described above, this was modelled using non-deterministic choice over messages on a
broadcast channel – is there an abstract data type analogue for this, and how do we model
the limited (“polynomial”) computing resources of such dishonest parties?

partwise and compositionality Refinement is monotonic with respect to most of the spec-
ification operators we use, allowing us to apply decomposition and partwise refinement.
Approximation puts this under threat, and intuitively sensible notions of compositionality
(e.g. [7]) have been shown to be unachievable for important cryptographic primitives.

All of this makes up a large research agenda to chip away at. Watch this space for a planned
new EPSRC Network and new research in several of these areas.

References

1. R. Backhouse. Program Construction: Calculating Implementations from Specifications. Wiley,
2003.

2. R. Banach and G. Schellhorn. On the refinement of atomic actions. ENTCS, 201:3–30, 2008.
Proceedings BCS-FACS Refinement Workshop 2007.

3. M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in
Computer Science, pages 409–426. Springer, 2006.

4. B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. In C. Dwork,
editor, CRYPTO’06, volume 4117 of Lecture Notes on Computer Science, pages 537–554, Santa
Barbara, CA, August 2006. Springer Verlag.

5. E.A. Boiten. Cryptography and formal methods project website.
www.cs.kent.ac.uk/~eab2/crypto/

6. E.A. Boiten and J. Derrick. Formal program development with approximations. In H. Treharne,
S. King, M. Henson, and S. Schneider, editors, ZB 2005, volume 3455 of Lecture Notes in Computer
Science, pages 375–393. Springer, 2005.

7. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryp-
tology ePrint Archive, Report 2000/067, 2000.

8. A. Datta, A. Derek, J.C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-time
semantics for a protocol security logic. In ICALP, pages 16–29, 2005.

9. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In T. Mar-
garia and B. Steffen, editors, TACAS, volume 1055 of Lecture Notes in Computer Science, pages
147–166. Springer, 1996.

10. A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems. Springer,
2004.

11. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adver-
saries. In M. Naor, editor, Theory of cryptography conference - Proceedings of TCC 2004, volume
2951 of Lecture Notes in Computer Science, pages 133–151, Cambridge, MA, USA, February 2004.
Springer.

12. C. C. Morgan. Programming from Specifications. International Series in Computer Science. Prentice
Hall, 2nd edition, 1994.

13. L.C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6(1-2):85–128, 1998.

14. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems.
In ACM Conference on Computer and Communications Security, pages 245–254, 2000.

15. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and A.W. Roscoe. Modelling and Analysis of
Security Protocols. Addison-Wesley, 2001.

16. M. Ying. Reasoning about probabilistic sequential programs in a probabilistic logic. Acta Infor-
matica, 39(5):315–389, 2003.

!

1 2 2

1

2

!

BSmart: A Tool for the Development of Java Card
Applications with the B Method

D. Déharbe1, B. E. G. Gomes1, and A. M. Moreira1

Federal University of Rio Grande do Norte; Natal, RN; Brazil
{david, bruno, anamaria}@consiste.dimap.ufrn.br

Abstract. BSmart is a tool to support a customized version of the B method for
engineering Java Card software components for Smart Card applications, which
require high-degrees of reliability and security.

1 Introduction

A smart card [1] is a portable computer device able to store data and execute com-
mands in a highly secure way. Java Card [2] is a specialization of Java, providing vendor
inter-operability for smart cards, and has now reached a de facto standard status in
this industry. The strategic importance of this market and the requirement for a high
reliability motivate the use of rigorous software development processes for smart card
aware applications based on the Java Card technology. The B method [3] is a good can-
didate for such process, since it is a formal method with a successful record to address
industrial-level software development.

In [4, 5], we proposed two versions of a Java Card software development method
(called BSmart) based on the B method. Section 2 summarizes the main steps of the
BSmart method.

In this paper, we present the current version of a tool (also called BSmart) to support
the BSmart method. The BSmart tool must provide the automatable steps required by
the method and some guidelines and library machines that can be useful during the
development process. Further details are provided in Section 3. Related work and final
considerations are drawn in Section 4.

2 The BSmart Method

Smart card applications [1] have a client-server architecture, with the services being
provided by the card, and the client (also called host application), executing in a terminal
to which the card is temporarily connected. Communication is carried out through the
APDU (Application Protocol Data Unit) protocol, defined in smart card standards [1].
The main feature of the BSmart method is to abstract, as much as possible, such platform
particularities from the developers of smart card aware applications.

The card services specifier only needs to apply some refinement steps to his ab-
stract (implementation platform independent) B specification (this specification is called
API.mch in the following). These refinements have the goal of adapting the specification
to Java Card standards and introducing platform specific aspects gradually. Also, as
usual in the B method, other refinement steps may be needed to make the substitutions

2

that define the operations directly translatable into Java Card code. Finally, the corre-
sponding services provided by the card (Java Card code) will automatically be generated
by the tool.

On the other side of the application, the developer of the host-side of the application
will see a Java API, also generated by the tool, which corresponds to the interface of
the original abstract specification from where the development started (API.mch). The
client application code can then be developed in a completely platform independent way.

3 The BSmart Tool

The BSmart tool is an

Fig. 1. A snapshot of the BSmart interface.

environment connecting several
software components, each re-
sponsible for implementing a
different step of the BSmart
method. BSmart is being devel-
oped as an Eclipse IDE plugin.
The choice for the use of Eclipse
was made mainly because it al-
lows a faster development of the
user interface and the easier and
faster distribution of the tool.
Also, with this choice, we align
BSmart with the RODIN plat-
form, also developed in Eclipse.

The different components
making up the BSmart environ-
ment are:

B parser and type checker jBTools [6] is the front-end of the environment. Respon-
sible for parsing and type-checking, it generates an XML intermediary format that
is later retrieved for further processing.

Proof obligations (PO) generator POs are generated with Batcave [7], that gener-
ates proof obligations in textual and Harvey 1 formats.

BSmart modules Generator This component generates a full function refinement,
i.e., a refinement where all non-typing pre-conditions of each operation are checked
for explicitly, and exceptions are raised whenever they are not satisfied. It provides
a wizard for user-defined exception names or can generate them automatically. The
tool includes the creation of a specific B machine to specify exceptions and a module,
called Conversions, which defines useful abstraction for both client and server sides.

B-Java Card conformity checker This component verifies that some Java Card re-
lated restrictions (e.g., number of defined methods) are satisfied by the B specifica-
tion.

B to Java Card code translator This component translates all the B implementa-
tion modules into Java Card programming code. It is derived from the existing Java

1 http://harvey.loria.fr/

3

synthesis component available in jBTools [6] by the introduction of Java Card spe-
cific rules. The tool generates the Java Card server application as well as an API for
the host side client. This API is responsible for abstracting the details of the Java
Card framework classes being used to communicate with the card side server. It also
handles coding the method arguments into communication protocol data units and
decoding the corresponding results.

4 Related Work and Conclusions

Related work [8] and tools, such as AtelierB and the BToolkit, concerning the generation
of imperative code from B specifications, have been around for a while. The generation of
object oriented code or models is however still a matter of current research as in, e.g., [9,
10], and a Java code generation tool has been developed [6]. This tool is also a product of
a smart card development project (Project BOM2), and takes care of some memory op-
timization issues. The development of BSmart builds upon this previous work. However,
in this previous work, the generated code needs to be manually modified to incorpo-
rate the communication and codification aspects particular to the Java Card platform,
whereas BSmart provides automated support to handle communication aspects.

At the moment of writing this paper, the definition of the method is in a mature
stage, and our attention is now focused on the implementation of more robust versions
of the BSmart tools and packaging them in a user-friendly environment. The integration
of the AtelierB provers in Batcave and of a B animation tool is also planned for a next
release of the tool.

References

1. Rankl, W., Effing, W.: Smart Card Handbook. John Wiley (2003)
2. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s Guide.

Addison Wesley (2000)
3. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge U. Press (1996)
4. Gomes, B., Moreira, A.M., Déharbe, D.: Developing Java Card applications with B. In:

SBMF. (2005) 63–77
5. Deharbe, D., Gomes, B.G., Moreira, A.M.: Automation of Java Card component develop-

ment using the B method. In: ICECCS, IEEE Comp. Soc. (2006) 259–268
6. Tatibouet, B., Requet, A., Voisinet, J., Hammad, A.: Java Card code generation from B

specifications. In: ICFEM. Volume 2885 of LNCS. (2003) 306–318
7. Marinho, E., Jr, V.M., Tavares, C., Déharbe, D.: Batcave - um ambiente de Verificação

Automática para o Método B. In: SBMF. (2007) 184–184
8. Bert, D., et al.: Adaptable translator of B specifications to embedded C programs. In:

FME. Volume 2805 of LNCS. (2003) 94–113
9. Idani, A., Ledru, Y.: Object oriented concepts identifications from formal B specifications.

In: FMICS. (2004)
10. Tatibouet, B., Hammad, A., Voisinet, J.C.: From abstract B specification to UML class

diagrams. In: ISSPIT. (2002)

2 lifc.univ-fcomte.fr/RECHERCHE/TFC/rntl bom.html

Using Satisfiability Modulo Theories to Analyze

Abstract State Machines

Margus Veanes1 and Ando Saabas2!

1 Microsoft Research, Redmond, WA, USA
margus@microsoft.com

2 Institute of Cybernetics
Tallinn University of Technology, Tallinn, Estonia

ando@cs.ioc.ee

Abstract. We look at a fragment of ASMs used to model protocol-like
aspects of software systems. Such models are used industrially as part
of documentation and oracles in model-based testing of application-level
network protocols. Correctness assumptions about the model are often
expressed through state invariants. An important problem is to validate
the model prior to its use as an oracle. We discuss a technique of using
Satisfiability Modulo Theories or SMT to perform bounded reachability
analysis of such models. We use the Z3 solver for our implementation
and we use AsmL as the modeling language.

Protocols are abundant; we rely on the reliable sending and receiving of email,
multimedia, and business data. But protocols, such as the Windows network file
protocol SMB (Server Message Block), can be very complex and hard to get
right. Model programs have proven to be a useful way to model the behavior
of such protocols and it is an emerging practice in the software industry [6, 9,
11] to use model programs for documentation and behavioral specification of
such protocols, so that different vendors understand the same protocol in the
same way. The step semantics of model programs is based on the theory of
ASMs [7] with a rich background universe [3]. This enables a range of ASM
technologies [4] to be used for analysis of model programs. In the case of model
programs, correctness assumptions about the model are often expressed through
state invariants. It is important that the model is validated before it is used as a
specification or an oracle. We describe a technique of using satisfiability modulo
theories or SMT to perform bounded reachability analysis of a fragment of model
programs. We use the SMT solver Z3 [5] and we use AsmL [8] as the modeling
language. We extend the work in [10] through improved handling of quantifier
elimination and extended support for background axioms, in particular bag or
multi-set axioms.

The use of SMT solvers for automatic software analysis has recently been
introduced [1] as an extension of SAT-based bounded model checking [2]. One
advantage of the SMT approach is that it scales better for problems that de-
pend on complex background theories, and the formula for which satisfiability is

! This work was done during an internship at Microsoft Research, Redmond.

checked is quantifier free, rather than propositional. The decision procedure for
checking the satisfiability of the formula may use combinations of background
theories. The formula is generated after preprocessing of the program. The pre-
processing yields a normalized program where all loops have been eliminated by
unwinding the loops up to a fixed bound. Unlike traditional sequential programs,
model programs operate on a more abstract level and often make use of compre-
hensions. Moreover, model programs use parallel updates and rich background
data structures like sets, maps and bags.

A model program is a finite collection of basic ASMs indexed by actions.
The following model program, called Credits, is an example of a model program
written in AsmL. It specifies how a client and a server need to use message ids,
based on a sliding window protocol. Here the client sends requests to the server
and the server sends responses back to the client.

var window as Set of Integer = {0}
var maxId as Integer = 0
var requests as Map of Integer to Integer = {->}

[Action]
Req(m as Integer, c as Integer)

require m in window and c > 0
requests := Add(requests,m,c)
window := window difference {m}

[Action]
Res(m as Integer, c as Integer)

require m in requests
require requests(m) >= c
require c >= 0
//require requests.Size > 1 or window <> {} or c > 0 <-- bug
window := window union {maxId + i | i in {1..c}}
requests := RemoveAt(requests,m)
maxId := maxId + c

[Invariant]
ClientHasEnoughCredits()

require requests = {->} implies window <> {}

The Credits model program illustrates a typical use of model programs as
protocol-specifications. Actions use parameters, maps and sets are used as state
variables and a comprehension expression is used to compute a set. Each action
has a guard and an update rule given by a basic ASM. For example, the guard
of the Req action requires that the id of the message is in the current window
of available ids and that the number of credits that the client requests from the
server is positive. The state invariant associated with the model program is that
the client must not starve, i.e. there should always be a message id available at
some point, so that the client can issue new requests.

There is a mistake in the model indicated by the missing require-statement.
There is a two-action trace leading to a state where the invariant is violated due
to this, e.g. the trace Req(0,1),Res(0,0).

There are several different ways of how model programs can be checked for
invariant violations. One way is to do explicit state exploration and to use model
checking techniques, e.g. this is supported in Spec Explorer [11]. Another ap-
proach, that does not require action parameter domains to be provided up-front,

is to represent the bounded reachability problem of the negated invariant as a
formula and to check for its satisfiability using a theorem prover.

The bounded reachability formula for a given model program P , step bound
k and reachability condition ϕ is:

Reach(P, ϕ, k)
def

= IP ∧ (
∧

0≤i<k

P [i]) ∧ (
∨

0≤i≤k

ϕ[i]) (1)

where IP is the initial state condition, P [i] is a formula describing step i of the
model program, which is an application of some enabled action from the i’th
state, and ϕ[i] is ϕ in the i’th state. The reachability condition ϕ is typically
the negated state invariant. If Reach(P, ϕ, k) is satisfiable, its model can be used
to extract an action trace that leads from the initial state to a state violating
the invariant. The formula Reach(P, ϕ, k) is typically quantifier free, but involves
the use of background theories such as arithmetic, set and multi-set axioms, and
map axioms, which makes the use of an SMT solver such as Z3 possible for this
kind of analysis.

References

1. A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software
using SMT solvers instead of SAT solvers. In A. Valmari, editor, SPIN, volume
3925 of LNCS, pages 146–162. Springer, 2006.

2. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
(TACAS’99), volume 1579 of LNCS, pages 193–207. Springer, 1999.

3. A. Blass and Y. Gurevich. Background, reserve, and Gandy machines. In Pro-
ceedings of the 14th Annual Conference of the EACSL on Computer Science Logic,
pages 1–17. Springer, 2000.

4. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, 2003.

5. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, (TACAS’08), LNCS. Springer, 2008.

6. W. Grieskamp, D. MacDonald, N. Kicillof, A. Nandan, K. Stobie, and F. Wur-
den. Model-based quality assurance of windows protocol documentation. In First
International Conference on Software Testing, Verification and Validation, ICST,
Lillehammer, Norway, April 2008.

7. Y. Gurevich. Specification and Validation Methods, chapter Evolving Algebras
1993: Lipari Guide, pages 9–36. Oxford University Press, 1995.

8. Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence of AsmL. Theor.
Comput. Sci., 343(3):370–412, 2005.

9. J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-based Software Testing
and Analysis with C#. Cambridge University Press, 2008.

10. M. Veanes, N. Bjørner, and A. Raschke. An SMT approach to bounded reachability
analysis of model programs. In FORTE’08, LNCS. Springer, 2008.

11. M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and L. Nach-
manson. Model-based testing of object-oriented reactive systems with Spec Ex-
plorer. In R. Hierons, J. Bowen, and M. Harman, editors, Formal Methods and
Testing, volume 4949 of LNCS, pages 39–76. Springer, 2008.

DIR 41 Case Study
How Event-B Can Improve an Industrial System

Specification

Christophe Metayer1 and Mathieu Clabaut2

1 Systerel christophe.metayer@systerel.fr
2 Systerel mathieu.clabaut@systerel.fr

Abstract. A case study has been carried to verify the specification of
an automated interlocking system by means of system modeling with
event-B. This paper gives an overview of the work done and of some of
the results.
This study was supported by the RATP3.

1 Context and Goals

Some RATP units are responsible for evolution and maintenance of an auto-
mated interlocking specification document.

In order to improve their paper and pencil process, RATP asked Systerel if
Event-B could be useful to them. An eight month study was launched whose
main goal was to help RATP improving their confidence in their interlocking
specification, by applying an Event-B approach on rewriting their requirement
document.

2 Description of Work

The main difficulty that arose at the very beginning of the study was to answer
the initial question: what does a “working interlocking system” mean?

In an attempt to both answer this question and stay within the expectations
of the railway’s people, we chose to allocate a great chunk of time to the elabora-
tion of our own requirements specification, by rewriting the RATP specification
with the organization and the wording of our choice. This task was carried be-
fore doing any modeling work and was aimed at introducing safety principles
and safety concepts step by step.

The obtained requirement specification was to be approved by the domain
experts and to serve as a reference for the modeling task.

Our modeling process was thus broken down as follow:

1. Writing an autonomous requirements specification approved by the domain
experts,

3 French organization in charge of Paris transportation.

2. Designing a refinement plan,
3. Modeling the system and proving it correct.

The whole process was highly iterative. Indeed, it often appears while modeling
that some concepts still need refinements or adjustments which in turn lead to
a rework of the refinement plan or the model.

Table 1. Structure of the B model.

Collision avoidance
(2 levels)
Environment structures
(5 levels)
Control principles
(4 levels)
Instantiation (4 levels)
- signal
- switch command
- transit locking
- opposing locking

The achieved model, which overall structure is shown in Table 1, contains
fifteen levels of refinement.

3 Results
The study led to several interesting results either by giving some clues about a
better way for building an event-B model for a real world system, or about the
quality of the automated interlocking specification, object of this study.

3.1 Organization
Our first intention was to teach some basics of event-B to the domain experts in
order to allow them to at least follow, and at best approve, the modeling steps.
It proves as a bit utopian. It would certainly have needed a lot more of teaching
effort to be efficient.

It is of interest to note that at the end of the study, the results were perceived
by the domain experts as magical ones: the failure scenarios exhibited seem to
come from nowhere (in fact, proof obligations of the B model that couldn’t be
discharged), in contrast to the scenario they are used to, which come from several
decades of field feedbacks. Those magical scenario nonetheless were pertinents.

3.2 Modeling Process
The modeling process we have planned had some place for improvements (some
of which were applied during the study). They are summed up hereafter:

Process for Industrial Strength Models There is a need for a more robust
modeling process, perhaps somewhat similar to those being used at the software
level. An industrial modeling process probably needs the following phases:

– Requirements specification,
– Validation tests definition,
– Refinement planning,
– Modeling and proving,
– Validating.

The requirements specification rewriting phase done at the beginning of the
study involved a lot of refactoring and lead to a final document that was too
far from the domain experts expectations to be fully approved. Animation looks
like a must have to ease model validation by domain experts.

It is also worth to note that seeking for a posteriori justification, as was done
in this study, is very difficult. Indeed, the system was obviously not designed to
be proved. In fact, it appears to us that most of existing industrial systems were
not designed with validation in mind.

Modeling Techniques Our model didn’t explicitly take into account degraded
cases for the system. It proved to be a bad design choice and it was a burden
for the proof of the model, as event guards become more and more complex
throughout the refinement levels. As a consequence, it appears that models need
to be totally closed, and thus should not only take into account the controller
and its environment, but also degraded cases.

As a conclusion, we can also say that refinement appears more and more as
an essential concept for successful modeling.

3.3 DIR 41 Analysis
Some essential concepts for the railway domain were refined during the study.
For example the safety statement was refined to a safety preservation one: the
interlocking system actions should not decrease the current safety level.

And probably the most prominent result is that four potential safety flaws
were exhibited (with an expected low probability of occurrence), which are now
being tackled by the RATP teams. It also revealed the existence of several im-
plicit hypotheses on the environment behaviour or on the design of the railway
network.

4 Conclusion
Modeling a system with event B proved to be very interesting for pointing out
potential safety flaws and for proving global safety.

This way of modeling allows a B expert with little knowledge in an industrial
domain to quickly grasp the domain core concepts. It is still very difficult to
involve the domain experts in the whole process and we have high expectations
that model animation would improve this.

Formalizing Delegation in Role-Based Access
Control Models

Hassan Takabi, and Ali E. Abdallah

E-Security Research Centre
London South Bank University

103 Borough Road
London SE1 0AA, UK

{takabih, abdallae}@lsbu.ac.uk

Abstract. Role-Based Access Control (RBAC) is a high level authoriza-
tion model in which access decisions are based on the roles that users
hold within an organization. RBAC has proved to be very useful, par-
ticularly for large organizations, because it offers scalability, consistency
and ease of maintenance. Delegation is an important concept in autho-
rization which is often deployed in most real access control systems. In
RBAC, delegation essentially means the ability of a user who occupies
a certain role to authorize another user to perform the tasks permitted
by that role. However, there are several informal variations to this idea
which, when formalized, result in various semantically different RBAC
delegation models. In this paper, we clarify the key role-based delegation
concepts and define a number of RBAC delegation models with different
characteristics. We start by introducing delegation to the simplest core
RBAC model. We refine the core RBAC model to support temporal role-
base access control and show how to integrate delegation and revocation
in the temporal model. These models are formulated in the specification
notation Z. The semantics of each model is given by defining the relevant
access control monitor which takes a subject and a task and determines
whether the request should be granted or denied.

Keywords: Delegation, Role-Based Access Control, Authorization, Formal
Models, Z specification.

 Formal Requirements Specification for Railway

Signaling Systems

Miyoung Kang1, Dae-Yon Hwang1, Junkil Park1, Jin-Young Choi1,

Jong-Gju Hwang2

1Dept. of Computer Science and Engineering, Korea University, Seoul, Korea

{mykang, dyhwang, jkpark, choi} @formal.korea.ac.kr
2Korea Railroad Research Institute

 jghwang@krri.re.kr

Abstract. A project to develop a railway technology for the future is currently

underway in Korea. This paper introduces the research which describes the

formal requirement specifications for obtaining safety within the railway

signaling systems. The railway signaling systems are being changed to a

computer based system from the previous hardwired based system, because

current railway systems are required to be more complicated structure.

Especially, several issues about reliability and safety of the railway system are

being identified. To solve the problems of the reliability and the safety, we are

using the formal specification language Z in the early development stage. It can

be increasing the safety and reliability of the railway system.

Keywords: Railway signaling systems, Formal requirements specification, Z

1 Introduction

A project to develop a railway technology for the future is currently underway in

Korea. In particular, Korea Railroad Research Institute(KRRI) is performing national

project assessing safety of the railway signaling systems in Korea, and is developing

an accident prevention technology. There are six projects led by KRRI. One of the

project is study on the formal requirement specification. This project introduces the

research which describes the formal requirement specifications for obtaining safety

within the railway signaling systems.

Railway signaling systems is the safety critical system that controls the route and

speed of the train. If this system malfunctions during operation, it could result in

catastrophic materialistic and human damages. In Korea, the railway signaling

systems recently switched to a computer based system from the preexisting hardwired

based system, which caused the system to adopt a more complicated structure. As a

result, the issues regarding the reliability and safety of the system are constantly

appearing on the social agenda. In order to resolve these issues, the international

standard such as IEC and IEEE are recommending the standardization of the system

during its development process as well as the standard proposal which will enable the

documents to be created in a correct method, beginning from the step in which

requirements are specified in detail [1]. The purpose of the project is to establish

requirements specification suitable for Korean conditions based on international

standard, and to add formal methods[2] to given requirement specification. This can

be an example of practical specification. We use Statechart and Z[3] as formal

specification methods and here we are going to explain how we specify the system

using Z. Our Z specification consists of 15 schemas which are simple examples.

2 Mock-up for the future railway technology

Instead of the actual system, KRRI has provide us with a mock-up system, for us to

conduct research on the applicability of the technology for safety assessment. This

part of the project is to describe Distance Control Module(DCM) and Automatic

Train Protection(ATP) of the mock-up system using Z notation. The requirements

specification in the natural language is as follows.

In the train moves according to the Permissive Movement Authority(PMA) of each

block, and the PMA message is created by DCM, and is sent to the ATP. The main

functions of DCM are as follows. First, controlling the distance between trains: DCM

must maintain a minimum distance between trains even within the worst

malfunctioning scenario for safety reasons. Second, confirming the location of the

train: DCM confirms the location of the train by constantly communicating with the

ATP. Third, observing the movement and direction of the train: DCM transmits the

operation information (movement direction) of the train to the ATP. Then, DCM

compares the newly received current location of the train with the preexisting date

stored in DCM, and then check whether or not the train is progressing according to

the plan. Fourth, processing the temporary speed limit commands: DCM sets a

temporary speed limit when the train passes construction areas, maintenance areas,

windy areas, and areas that necessitate a decrease in speed. Finally, DCM can open

and close a block under the following two circumstances. Relevant blocks are closed

in a circumstance in which ATS simulator has transmitted a closing command of a

particular block to DCM, and also in an emergency situation in which trains have

been lost.

3 Z Specification of the DCM

Z Specification descriptions are divided into 3 parts: Data model, state model, and

safety model. DCM schema and sendPMA schema are shown as examples of state

model.

Fig. 1. DCM Fig. 2. sendPMA

Fig.1. specifies the state of the basic information that DCM needs to have. DCM

contains such information as blocks occupied by train now, driving direction of train,

PMA setting of all blocks(every block has to have one PMA setting among RED,

YELLOW, or GREEN), blocks set as obstacle, and communication connection status

between DCM and ATP. Fig.2. sendPMA transfers information including from

current location of the train to the fourth block which has occupied block of train

driving direction to ATP.

4 Conclusion

The development of a railway technology for the future is currently underway in

Korea. As part of the development our project goal is to promote the use of formal

methods on requirements engineering of the future Korean railway technology to

increase the safety and reliability of the railway signaling systems. In this research, a

way of creating the requirement specification method that is in accordance with the

international standard is studied, and application of the definite methods suitable for

the railway signaling systems is investigated. Also, based on this research, we are

developing examples of requirements specifications for particular functions of the

mock-up system, which can be applied to the actual industrial sites. This paper

describes our research to increase the safety and reliability by using the requirement

specifications in Z notation.

References

1. R. Bell, “Introduction to IEC 61508”, Conference in Research and Practice in Information

Technology, Vol. No.55, 2005

2. E. Clarke and J. Wing, “Formal Methods: State of the Art and Future Directions”, ACM

Computing Surveys, vol. 28, No.4, pp.626-643, 1996

3. J.M.Spivey, The Z Reference Manual, 2nd ed, Prentice Hall, Englewood Cliffs, NJ, 1987

	abz2008.pdf
	Summary

