
Timing diagrams add Requirements Engineering capability to Event-B

Formal Development

Tossaporn Joochim and Michael R. Poppleton

Dependable System and Software Engineering Group

School of Electronics and computer Science

University of Southampton, United Kingdom

{tj04r,mrp}@ecs.soton.ac.uk

Abstract

Event-B is a language for the formal development

of reactive systems. At present the RODIN toolkit [15]

for Event-B is used for modeling requirements,

specifying refinements and doing verification. In order

to extend graphical requirements modeling capability

into the real-time domain, where timing constraints are

essential, we propose a Timing diagram (TD) [13]

notation for Event-B. The UML 2.0 based notation

provides an intuitive graphical specification capability

for timing constraints and causal dependencies

between system events. A translation scheme to Event-

B is proposed and presented. Support for model

refinement is provided. A partial case study is used to

demonstrate the translation in practice.

1. Introduction

There are many ways to describe the system

requirements such as using goal orientation e.g.

Knowledge Acquisition in Automated Specification

(KAOS), Formal methods (FM) such as Event-B, and

graphical notations such as UML diagrams.

KAOS [3] is a Goal-modeling requirement

specifications technique. KAOS uses Goal and

Operational models to declare system requirements in

a form of Linear Temporal Logic (LTL), and has a

concept of goal refinement to refine a goal into

subgoals. Event-B [8, 17] is a formal method (FM) that

describes system requirements in a form of a set-

theoretic notation. Event-B is used to improve formal

requirements analysis, verifying each next level of

detail (refinement) and helping eliminate error early in

the design process. The timing diagram (TD) is an

UML2.0 notation, used to show the behaviors of

objects over time.

As [12, 14, 16], FM can be difficult to construct and

demands trained professionals. Demonstration of

requirements in graphical forms helps software

developers to define specification more easily than by

using the FM mathematical notations. Thus, there are

many researchers trying to bridge the gap between

Event-B and UML diagrams. For example [1, 7, 9] and

UML-B [5, 6]. UML-B is a front end to the Event-B

and is a toolkit developed in RODIN [15]. The tool

provides graphical modeling capability in term of

UML-like Class diagrams and Statecharts. Even though

those researchers combining Event-B with UML

diagrams, do not focus on the combination of timing

constraints and casual dependencies among different

objects’ states, other essential part of requirements

analysis, to the Event-B model as our research does.

The aim of our research is to develop techniques to

specify requirements by using graphical notations, i.e.

TD, and then generating KAOS, Event-B and UML-B

models. Our work comprised two main steps. First, we

amend UML2.0 TD notation and define its Backus

Naur Form (BNF) [4]. Second, we generate three kinds

of pattern to create KAOS, Event-B and UML-B

models from TD. A lift system based on Jackson’s

work [10] is used as a primitive case study. The case

study has been modified by adding timing constraints

to dependency requirements on events to demonstrate

the issues. In this paper, we present a subset of our

complete set of translation rules for generating Event-B

from TD. The translation rules from TD to KAOS can

be found in [18].

In section 2, we describe the TD; section 3

illustrates case study specifications; section 4 describes

the Event-B modeling; section 5 explains how patterns

are used for generating Event-B; section 6, we make

conclusions.

2. Timing Diagrams

Examples of TD notations are used in the research is

shown below

An arrowed line indicates cause and

effect between objects. The

beginning of line represents the

cause while the end of the line (with arrow) represents

the effect. One can identify additional conditions which

make state changes by plain text above the arrowed

line. A duration constraint is used to describe how long

a state or value must be in effect and identified by a

symbol [t1,t2] where t1 and t2 indicate the timing

constraint starts from t1 to t2.

 “AND” and “OR” notations

are used for specifying

relationships within between

CauseEffect arrows (note,

they are not used to contribute a cause to many effect

segments). A node can has many “AND” or “OR”

causes which are represented by dash-line here.

 �

3. Case study

Figure 1 shows part of the lift specification used in

this paper. The requirements maybe described “...A

part of the lift system contains two objects: the floor

sensor and the lift. The lift movement states are

separated into three steps: moving up, stop at floor and

moving down. The floor sensor has two states: on and

off. The relation between the lift movement and the

floor sensors means whenever a user presses a button to

request the lift, the lift starts moving up/down (1 and 2)

from the current floor; within between 2 – 5 seconds

after the lift starts moving, the floor sensor of the

current floor will turn off.…”

In Figure 1, in term of TD notations, we can

describe that there are two Timelines which represent

the state change in time for that particular object:

floorsensor and lift. The lines 1 and 2 show the

combination of the CauseEffect arrow�by using “OR”

notation; it means the floorsensor� is set to Off

according to whether the lift is in the state of MvgUp or

MvgDwn. Predicates such as f = currentFl � dir = Up

are additional conditions on the CauseEffect arrow

where f represents a floor and is a dynamic state

parameter that can change in time. Object states and

their indices such as On1 and Off2 represent segments

of the floorsensor Timeline. They are not TD notations

but used in translation rules as described in section 5.

Figure 1. Timing diagram

4. The Event-B Modeling

The dynamic part of an Event-B model is called the

MACHINE. The MACHINE includes state

VARIABLES definitions, an INVARIANT predicate

on the state, INITALISATION and EVENTS. In

Event-B, the units of behavior are called EVENTS.

Each event E is composed of an enabling guard G(l,v)

and an action S(l,v) where v are state variables

constrained by invariants I(v); l are local variables that

the event may contain. The general form of an event is,

E = ANY l WHERE G(l,v) THEN S(l,v) END. The

structure of a Event-B model is shown below

 MACHINE name =

 VARIABLES v, ….. INVARIANT I(v), …..

 INITIALISATION …..

 EVENTS

 eventname = ANY …WHERE … THEN … END

 eventname =

 END

5. Pattern Transforming Timing

Diagrams into Event-B

5.1 BNF Timing Diagrams definitions

We identify TD BNF definitions and use them to

create the translation rules to transform TD to Event-B.

Examples of BNF definitions for Timeline are shown in

the following.

A Timeline comprises a chain of segments which

individual segment represents the object state (Objst)

and its position (Index) in the Timeline.
Timeline ::= Segment

+

Segment ::= Objst Index; Index ::= INT

text

AND OR

From

MvgUp2

From

MvgDwn3

5.2 Translation rules

Normally, one rule comprises many basic sub-rules.

Examples of those basic sub-rules are illustrated below

 Rule 1: ����(Segment) → Obj;

 This rule gives the object for an input segment.

 Rule 2 : ������ (Segment) → Objst;

 This rule gives the object state for an input segment.

In this paper we demonstrate ��	
����
� rule as an

example for generating a duration constraint as guards

for foorsensorOff event (figure 2). This rule is defined

as recursion from the main rule (not shown in this

paper) and uses a segment (segm) as an input

parameter. The detail of the rule is shown in the

following.

����	
����
�(segm) →

 (gclock – ����(segm)������(segm)Time) ≥

 LOWER_LIMIT_����(segm) ∧

 (gclock – ����(segm)������(segm)Time) ≤

 UPPER_LIMIT_����(segm)

When MvgUp2 and MvgDwn3 are used as parameters,

parts of event’s guards are generated as shown in figure

2 (in rectangle); where LOWER_LIMIT_floorsensor =

2 and UPPER_LIMIT_floorsensor = 5 are created as

constants by another rule (not show in this paper).

foorsensorOff =

 ANY .…

 WHERE

 (((gclock – liftMvgUpTime) ≥

 LOWER_LIMIT_lift ∧

 (gclock – liftMvgUpTime) ≤

 UPPER_LIMIT_ lift)) ∨

 ((gclock – liftMvgDwnTime) ≥

 LOWER_LIMIT_ lift ∧

 (gclock – liftMvgDwnTime) ≤

 UPPER_LIMIT_ lift)))

 THEN

 END

Figure 2. floorsensorOff event

6. Conclusions

We use TD to represent system requirements and

then transform the TD into KAOS, Event-B and UML-

B. The contributions of our research are described in

the following.

 1. Modeling : Even though the information on TD

can be expressed in other diagrams such as using

Statecharts [5,6,7,9], it is not in a helpful way for the

users. For example, one can put timing constraints and

state conditions into Statecharts but one Statecharts

refers to other Statecharts for the dependency. If the

Statecharts have guards related to other Statecharts,

then we have guards on the state transitions here which

refer for something going on somewhere else. The

causal interaction between the objects cannot be seen

on one diagram of view. Thus, we have many diagrams

in the same time which it is hard to read. It is not

helpful for the users in term of modeling. In TD, we

can describe the causality explicitly in the arrows

between events and have them all in the same

diagrams. The TD notations include graphically

described timing constraints. It is very natural to form

timing constraints expression in TD. Thus, our

contribution is adding this single-view modeling

capability to Event-B.

2. Formal requirements : Event-B is a well known

method using in critical systems because it has

techniques of formal proof and model checking of

correctness properties. However, as in section 1, Event-

B is claimed to be difficult to construct. Thus, we

propose TD to capture the formal requirements and

provide methodology to transform TD into Event-B

and UML-B. This is helpful for users in term of

identifying formal requirements by using graphical

notations rather than mathematics notations.

3. KAOS lacks concepts of proof obligations (POs)

as in Event-B. However, it is a semi-formal method due

to using LTL to identify Goal and Operational models;

TD can describe some LTL operators such as X (next)

over some period of time. Then, our contribution is to

combine graphical notations, TD, with semi-formal

method, KAOS (have done), and then aim to generate

to FM, Event-B (have not done). Finally, the output can

be proof by Event-B toolkit for the correctness.

There is a limitation with TD, that is, it is not

designed to add state-based information. Currently, we

are creating a pattern to generate UML-B from TD

using Atlas Transformation Language [2]. The

integration with UML-B is beneficial for TD because

one can add extra information that is missing from TD

by using UML-B. To verify the correctness of Event-B

model, we use RODIN Event-B toolkit [15] and the

ProB [11] tool for syntax checking, proof obligations,

animation and model-checking.

7. References

[1] A. B. Younes, and L. J. Ayed, “B.: Using UML Activity

Diagrams and Event B for Distributed and Parallel

Applications” In: 31st Annual International Computer

Software and Applications Conference, Vol.1,

COMPSAC, 2007, pp. 163-170.

[2]ATL, “ATLAS Transformation Language”,

http://www.eclipse.org/m2m/atl/

[3] E. Letier, and A. van Lamsweerde, “Agent-Based Tactics

for Goal-Oritented Requirement Elaboration”, In: ICSE

2002 - 24th International Conference on Software

Engineering”, ACM Press, 2002, pp. 83-93.

[4]C. Métayer, J.-R. Abrial, and L. Voisin, “Event B

Language”, 2005,

 http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

[5] C. Snook, and M. Butler, “UML-B : Formal modeling

and design aided by UML”, In: ACM Transactions on

Software Engineering and Methodology, 2006, pp. 92-

122.

[6] C. Snook, and M. Waldén, “Refinement of Statemachines

using Event B Semantics”, In: B 2007: Formal

Specification and Development in B, 7th International

Conference of B, 2007.

[7] H. Ledang, and J. Souquieres, “Contributions for

Modelling UML State-Charts in B”, In: Third

International Conference on Integrated Formal Methods,

2002.

[8] J.-R. Abrial, and S. Hallerstede, “Refinement,

Decomposition and Instantiation of Discrete Models:

Application to Event-B”, Findamentae Informatica, 2006.

[9] L. Jiufu, “Integration of statechart and B method based

analysis and verification for flight control software of

unmanned aerial vehicle” ACM SIGSOFT Software

Engineering Notes, Vol. 32, Issue 2, 2007, pp. 1-4.

[10] M. Jackson, Problem Frames Analysis and Structuring

Software development problems, Addison-Wesley, 2001,

pp. 48-75, 177-91.

[11] M. Leuschel, and M. Butler, “The ProB Animator and

Model Checker for B: A Tool Description”, In: 12th

International FME Symposium 2003 (FM2003), Italy,

2003, pp. 855-74.

[12] N. Bashar, and S. EasterBrook, “Requirement

Engineering: A Roadmap”, In: Conference on the The

Future of Software Engineering, Ireland, 2000.

[13] OMG, “UML Superstructure Specification v2.0”,

http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[14] P. J. Bowen, and G. M. Hinchey, “Ten Commandments

of Formal Methods…Then Years Later”, IEEE Computer

Society, Vol. 39, No. 1, Jan, 2006, pp. 40 – 48.

[15] Rigorous Open Development Environment for Complex

Systems (RODIN) – IST 511599, http://rodin.cs.ncl.ac.uk/

[16] R. Razili, C. Snook, M. Poppleton, P. Garratt, and R.

Walters, “Experimental Comparison of the

Comprehensibility of a UML-based Formal Specification

versus a Textual One”, In: 11th International Conference

on Evaluation and Assessment in Software Engineering

(EASE’07), UK, April, 2007.

[17] S. Hallerstede, “Justifications for the Event-B Modelling

Notation”, Lecture Notes in Computer Science, Springer,

2006, pp. 49-63.

 [18] T. Joochim, and M. Poppleton, “Transforming Timing

Diagrams into Knowledge Acquisition in Automated

Specification”, In: IAIT2007: The 2nd International

Conference on Advance in Information Technology,

Thailand, 2007.

Expectation and benefits statements

 1. How can Timing diagram be used to advance the

requirement engineering and Formal method?

 2. How is the beneficial of using Timing diagrams

to model critical systems’ requirements?

 It would be helpful for us to justify whether

the Timing diagram is useful for use in the critical

systems. Moreover, we would like to have

opinions/suggestions for what kind of state-based

system that cannot be explained by Timing

diagrams? So, we can identify the limitations of our

Timing diagram.

 3. How far the Timing diagram can be used to

demonstrate human actions? How can we model

environments of the system if that is human?

 Since there are many requirements concern

with human activities, for example in the lift system

that needs human to request the lift by pressing

buttons. In this case, we can demonstrate the

pressing activity by represent it as an event in Event-

B.

However, there is a case study such as

Ambulance Service system. The timing constraints

are concerning with responding to emergency calls

requiring the rapid intervention of an ambulance.

How can we identify these requirements in the

Timing diagrams and how we control the timing

constraints?

4. Is there any issues/problems with our currently

translation rules?

 We really appreciate if anyone can point out

any problems in our model. So, we can correct the

translation rule in order to obtain complete models.

5. What are the model integration issues we should

be aware of?

