Timing diagrams add Requirements Engineering capability to Event-B
Formal Development

Tossaporn Joochim and Michael R. Poppleton
Dependable System and Software Engineering Group
School of Electronics and computer Science
University of Southampton, United Kingdom
{tj04r,mrp}@ecs.soton.ac.uk

Abstract

Event-B is a language for the formal development
of reactive systems. At present the RODIN toolkit [15]
for Event-B is used for modeling requirements,
specifying refinements and doing verification. In order
to extend graphical requirements modeling capability
into the real-time domain, where timing constraints are
essential, we propose a Timing diagram (TD) [I13]
notation for Event-B. The UML 2.0 based notation
provides an intuitive graphical specification capability
for timing constraints and causal dependencies
between system events. A translation scheme to Event-
B is proposed and presented. Support for model
refinement is provided. A partial case study is used to
demonstrate the translation in practice.

1. Introduction

There are many ways to describe the system
requirements such as using goal orientation e.g.
Knowledge Acquisition in Automated Specification
(KAOS), Formal methods (FM) such as Event-B, and
graphical notations such as UML diagrams.

KAOS [3] is a Goal-modeling requirement
specifications technique. KAOS wuses Goal and
Operational models to declare system requirements in
a form of Linear Temporal Logic (LTL), and has a
concept of goal refinement to refine a goal into
subgoals. Event-B [8, 17] is a formal method (FM) that
describes system requirements in a form of a set-
theoretic notation. Event-B is used to improve formal
requirements analysis, verifying each next level of
detail (refinement) and helping eliminate error early in
the design process. The timing diagram (TD) is an

UML2.0 notation, used to show the behaviors of
objects over time.

As [12, 14, 16], FM can be difficult to construct and
demands trained professionals. Demonstration of
requirements in graphical forms helps software
developers to define specification more easily than by
using the FM mathematical notations. Thus, there are
many researchers trying to bridge the gap between
Event-B and UML diagrams. For example [1, 7, 9] and
UML-B [5, 6]. UML-B is a front end to the Event-B
and is a toolkit developed in RODIN [15]. The tool
provides graphical modeling capability in term of
UML-like Class diagrams and Statecharts. Even though
those researchers combining Event-B with UML
diagrams, do not focus on the combination of timing
constraints and casual dependencies among different
objects’ states, other essential part of requirements
analysis, to the Event-B model as our research does.

The aim of our research is to develop techniques to
specify requirements by using graphical notations, i.e.
TD, and then generating KAOS, Event-B and UML-B
models. Our work comprised two main steps. First, we
amend UML2.0 TD notation and define its Backus
Naur Form (BNF) [4]. Second, we generate three kinds
of pattern to create KAOS, Event-B and UML-B
models from TD. A lift system based on Jackson’s
work [10] is used as a primitive case study. The case
study has been modified by adding timing constraints
to dependency requirements on events to demonstrate
the issues. In this paper, we present a subset of our
complete set of translation rules for generating Event-B
from TD. The translation rules from TD to KAOS can
be found in [18].

In section 2, we describe the TD; section 3
illustrates case study specifications; section 4 describes
the Event-B modeling; section 5 explains how patterns

are used for generating Event-B; section 6, we make
conclusions.

2. Timing Diagrams

Examples of TD notations are used in the research is
shown below
An arrowed line indicates cause and
effect between objects. The
beginning of line represents the
cause while the end of the line (with arrow) represents
the effect. One can identify additional conditions which
make state changes by plain text above the arrowed
line. A duration constraint is used to describe how long
a state or value must be in effect and identified by a
symbol [t1,t2] where tl and t2 indicate the timing
constraint starts from t1 to t2.

text

—

“AND” and “OR” notations

AND OR
) are used for specifying
jg _/% relationships within between
CauseEffect arrows (note,
they are not used to contribute a cause to many effect

segments). A node can has many “AND” or “OR”
causes which are represented by dash-line here.

3. Case study

Figure 1 shows part of the lift specification used in
this paper. The requirements maybe described “...A
part of the lift system contains two objects: the floor
sensor and the lift. The lift movement states are
separated into three steps: moving up, stop at floor and
moving down. The floor sensor has two states: on and
off. The relation between the lift movement and the
floor sensors means whenever a user presses a button to
request the lift, the lift starts moving up/down (1 and 2)
from the current floor; within between 2 — 5 seconds
after the lift starts moving, the floor sensor of the
current floor will turn off....”

In Figure 1, in term of TD notations, we can
describe that there are two Timelines which represent
the state change in time for that particular object:
floorsensor and lift. The lines 1 and 2 show the
combination of the CauseEffect arrow by using “OR”
notation; it means the floorsensor is set to Off
according to whether the /ift is in the state of MvgUp or

MvgDwn. Predicates such as f = currentFl A dir = Up
are additional conditions on the CauseEffect arrow
where f represents a floor and is a dynamic state
parameter that can change in time. Object states and
their indices such as Onl and Off2 represent segments

of the floorsensor Timeline. They are not TD notations
but used in translation rules as described in section 5.

Timeline
(Object}

‘ On 1 Duration

floorsensor © On |[2 5] constraints
Floorsensor 1L o2
|
/ (RFLOOR) Off !
Class |
State f= ZyrreEtFl Ay Segment
ir=Up
2
! 171 MngpZ/
MvgUp

f=currentFl A

dir = Down
\

MvgDwn3 Conditions

lift - Lift StopAtFi1

(:FLOOR) ~StopAtFl

MvgDwn

Figure 1. Timing diagram
4. The Event-B Modeling

The dynamic part of an Event-B model is called the
MACHINE. The MACHINE includes state
VARIABLES definitions, an INVARIANT predicate
on the state, INITALISATION and EVENTS. In
Event-B, the units of behavior are called EVENTS.
Each event E is composed of an enabling guard G(/,v)
and an action S(Lv) where v are state variables
constrained by invariants /(v); [are local variables that
the event may contain. The general form of an event is,
E = ANY | WHERE G(l,v) THEN S(l,v) END. The
structure of a Event-B model is shown below

MACHINE name =

VARIABLES v, INVARIANT I(v),.....

INITIALISATION

EVENTS
eventname = ANY .. WHERE ... THEN ... END
eventname =

END

S. Pattern Transforming Timing

Diagrams into Event-B

5.1 BNF Timing Diagrams definitions

We identify TD BNF definitions and use them to
create the translation rules to transform TD to Event-B.
Examples of BNF definitions for Timeline are shown in
the following.

A Timeline comprises a chain of segments which
individual segment represents the object state (Objst)

and its position (Index) in the Timeline.
Timeline ::= Segment’
Segment ::= Objst Index; Index ::= INT

5.2 Translation rules

Normally, one rule comprises many basic sub-rules.
Examples of those basic sub-rules are illustrated below

Rule I: TObj(segment) — Ob7;
This rule gives the object for an input segment.
Rule 2 : TState (Segment) — Objst;
This rule gives the object state for an input segment.

In this paper we demonstrate TTimeCtrnt rule as an
example for generating a duration constraint as guards
for foorsensorOff event (figure 2). This rule is defined
as recursion from the main rule (not shown in this
paper) and uses a segment (segm) as an input
parameter. The detail of the rule is shown in the
following.
TTimeCtrnt(segm) —
(gclock —TObj(segm)TState(segm)Time)>
LOWER_LIMIT_TObj(segm) A
(gclock — TObj(segm)TState(segm)Time) <
UPPER_LIMIT TObj(segm)

When MvgUp2 and MvgDwn3 are used as parameters,
parts of event’s guards are generated as shown in figure
2 (in rectangle); where LOWER_LIMIT floorsensor =
2 and UPPER_LIMIT floorsensor = 5 are created as
constants by another rule (not show in this paper).

foorsensorOff =
ANY
WHERE ...

(((gclock — lifiMvgUpTime) =
LOWER_LIMIT _lift N
(gclock — lifiMvgUpTime) <
UPPER_LIMIT_lift) V

From
MvgUp2

((gclock — liftMvgDwnTime) =
LOWER_LIMIT _lift A

(gclock — liftiMvgDwnTime) <
UPPER_LIMIT_lift)))

MvgDwn3

THEN
END

Figure 2. floorsensorOff event
6. Conclusions
We use TD to represent system requirements and
then transform the TD into KAOS, Event-B and UML-

B. The contributions of our research are described in
the following.

1. Modeling : Even though the information on TD
can be expressed in other diagrams such as using
Statecharts [5,6,7,9], it is not in a helpful way for the
users. For example, one can put timing constraints and
state conditions into Statecharts but one Statecharts
refers to other Statecharts for the dependency. If the
Statecharts have guards related to other Statecharts,
then we have guards on the state transitions here which
refer for something going on somewhere else. The
causal interaction between the objects cannot be seen
on one diagram of view. Thus, we have many diagrams
in the same time which it is hard to read. It is not
helpful for the users in term of modeling. In TD, we
can describe the causality explicitly in the arrows
between events and have them all in the same
diagrams. The TD notations include graphically
described timing constraints. It is very natural to form
timing constraints expression in TD. Thus, our
contribution is adding this single-view modeling
capability to Event-B.

2. Formal requirements : Event-B is a well known
method using in critical systems because it has
techniques of formal proof and model checking of
correctness properties. However, as in section 1, Event-
B is claimed to be difficult to construct. Thus, we
propose TD to capture the formal requirements and
provide methodology to transform TD into Event-B
and UML-B. This is helpful for users in term of
identifying formal requirements by using graphical
notations rather than mathematics notations.

3. KAOS lacks concepts of proof obligations (POs)
as in Event-B. However, it is a semi-formal method due
to using LTL to identify Goal and Operational models;
TD can describe some LTL operators such as X (next)
over some period of time. Then, our contribution is to
combine graphical notations, TD, with semi-formal
method, KAOS (have done), and then aim to generate
to FM, Event-B (have not done). Finally, the output can
be proof by Event-B toolkit for the correctness.

There is a limitation with TD, that is, it is not
designed to add state-based information. Currently, we
are creating a pattern to generate UML-B from TD
using Atlas Transformation Language [2]. The
integration with UML-B is beneficial for TD because
one can add extra information that is missing from TD
by using UML-B. To verify the correctness of Event-B
model, we use RODIN Event-B toolkit [15] and the
ProB [11] tool for syntax checking, proof obligations,
animation and model-checking.

7. References

[1] A. B. Younes, and L. J. Ayed, “B.: Using UML Activity
Diagrams and Event B for Distributed and Parallel
Applications” In: 31" Annual International Computer
Software and Applications Conference, Vol.l,
COMPSAC, 2007, pp. 163-170.

[2]ATL, “ATLAS Transformation
http://www.eclipse.org/m2m/atl/

[3] E. Letier, and A. van Lamsweerde, “Agent-Based Tactics
for Goal-Oritented Requirement Elaboration”, In: ICSE
2002 - 24™ International Conference on Software
Engineering”, ACM Press, 2002, pp. 83-93.

[4]C. Métayer, J.-R. Abrial, and L. Voisin, “Event B
Language”, 2005,
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

[5] C. Snook, and M. Butler, “UML-B : Formal modeling
and design aided by UML”, In: ACM Transactions on
Software Engineering and Methodology, 2006, pp. 92-
122.

[6] C. Snook, and M. Waldén, “Refinement of Statemachines
using Event B Semantics”, In: B 2007: Formal
Specification and Development in B, 7th International
Conference of B, 2007.

[71 H. Ledang, and J. Souquieres, “Contributions for
Modelling UML State-Charts in B”, In: Third
International Conference on Integrated Formal Methods,
2002.

[8] J.-R. Abrial, and S. Hallerstede, ‘Refinement,
Decomposition and Instantiation of Discrete Models:
Application to Event-B”, Findamentae Informatica, 2006.

[9] L. Jiufu, “Integration of statechart and B method based
analysis and verification for flight control software of
unmanned aerial vehicle” ACM SIGSOFT Software
Engineering Notes, Vol. 32, Issue 2, 2007, pp. 1-4.

[10] M. Jackson, Problem Frames Analysis and Structuring
Software development problems, Addison-Wesley, 2001,
pp. 48-75, 177-91.

[11] M. Leuschel, and M. Butler, “The ProB Animator and
Model Checker for B: A Tool Description”, In: 12th
International FME Symposium 2003 (FM2003), Italy,
2003, pp. 855-74.

[12] N. Bashar, and S. EasterBrook, “Requirement
Engineering: A Roadmap”, In: Conference on the The
Future of Software Engineering, Ireland, 2000.

[13] OMG, “UML Superstructure Specification v2.0”,
http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[14] P. J. Bowen, and G. M. Hinchey, “Ten Commandments
of Formal Methods...Then Years Later”, IEEE Computer
Society, Vol. 39, No. 1, Jan, 2006, pp. 40 — 48.

[15] Rigorous Open Development Environment for Complex
Systems (RODIN) — IST 511599, http://rodin.cs.ncl.ac.uk/

[16] R. Razili, C. Snook, M. Poppleton, P. Garratt, and R.
Walters, “Experimental Comparison of the
Comprehensibility of a UML-based Formal Specification
versus a Textual One”, In: 11™ International Conference
on Evaluation and Assessment in Software Engineering
(EASE’07), UK, April, 2007.

Language”,

[17] S. Hallerstede, “Justifications for the Event-B Modelling
Notation”, Lecture Notes in Computer Science, Springer,
2006, pp. 49-63.

[18] T. Joochim, and M. Poppleton, “Transforming Timing
Diagrams into Knowledge Acquisition in Automated
Specification”, In: IAIT2007: The 2" International
Conference on Advance in Information Technology,
Thailand, 2007.

Expectation and benefits statements

1. How can Timing diagram be used to advance the
requirement engineering and Formal method?

2. How is the beneficial of using Timing diagrams
to model critical systems’ requirements?

It would be helpful for us to justify whether
the Timing diagram is useful for use in the critical
systems. Moreover, we would like to have
opinions/suggestions for what kind of state-based
system that cannot be explained by Timing
diagrams? So, we can identify the limitations of our
Timing diagram.

3. How far the Timing diagram can be used to
demonstrate human actions? How can we model
environments of the system if that is human?

Since there are many requirements concern
with human activities, for example in the lift system
that needs human to request the lift by pressing
buttons. In this case, we can demonstrate the
pressing activity by represent it as an event in Event-
B.

However, there is a case study such as
Ambulance Service system. The timing constraints
are concerning with responding to emergency calls
requiring the rapid intervention of an ambulance.
How can we identify these requirements in the
Timing diagrams and how we control the timing
constraints?

4. Is there any issues/problems with our currently
translation rules?

We really appreciate if anyone can point out
any problems in our model. So, we can correct the
translation rule in order to obtain complete models.

5. What are the model integration issues we should
be aware of?

