
Data Authentication for Sensor Networks 
 

Philip Basford 
School of Electronics and Computer Science, University of Southampton, SO17 1BJ 

pjb304@zepler.net 
 
 

Abstract.   Recent technological developments have enabled an increasing number of sensor 
networks to be deployed.  Despite this rapid increase in the number of deployed sensor networks 
there has been relatively little research into how to prevent third parties injecting false data into the 
system.  This paper summarises the existing solutions available however none can  provide 
protection all the way from the node gathering the data to the party analysing it.  All the solutions 
focus on the protection of the inter node communication.  This paper suggests a solution which 
solves the problem by providing an end to end solution using TinySec and Elliptic Curve 
Cryptography. 

 
 

1. Introduction 

Over the last few years advances in both wireless technologies and hardware miniaturisation [1] have 
allowed smaller and cheaper sensors, processors and communication interfaces to be developed [2].  
These components have enabled the deployment of an increasing number of sensor networks.  Sensor 
networks consist of a group of low-cost low-power devices spread over a geographical area [1], these 
sensors are then able to monitor the environment in which they are placed.  This data is then collated 
by the Base Station (BS) a node which has external connectivity.  The BS then forwards the collated 
data to the organisation that deployed the sensor network for further analysis.  Sensor networks have a 
wide variety of uses including monitoring environmental issues [3-7], or military surveillance [7, 8], 
other deployments of sensor networks are described in [9].  Communication in sensor networks can 
use either wired or wireless protocols [10].  Wireless communication is usually more flexible and 
generally easier to deploy, however with this added convenience come additional security risks [11, 
12]. 

Sensors networks can be deployed into a wide variety of situations, with each situation having 
different security requirements. The lowest level of security  does not apply any security measures to 
the data transmitted, meaning that anyone can eavesdrop on the data exchange.  When the attacker has 
observed enough data they will be in a position in which they can inject false data into the network as 
shown in Figure 1.   

The next level of security up from this involves making sure that the data comes from a valid 
source - an official node in the sensor network - and has not been changed whilst in transit to the 
destination.  An example where this might be needed is when the data will be used for scientific 
analysis, as the researchers need to be able to ensure that their data is reliable.  In this situation it does 
not matter if a third party gains access to the data, so a signed hash of the data would suffice.  If the 



privacy of the data is important then a higher level of security will be needed.  In this highest level all 
data transmitted within the network will need to be encrypted.  As the level of security increases the 
computational processing requirements also increase. 

When developing software for sensor networks additional challenges are faced because the sensors 
have a strictly limited power supply [13, 14]. This scarce resource has to be used carefully in order to 
maximise the useful life of the sensor, as typically it is difficult to recharge the sensors batteries [1].  
Transmitting data over radio links is very power intensive [15], with one study [16] determining that 
transmitting a single bit of data consumes approximately the same amount of power as executing 800 
– 1000 processor instructions.  The exact ratios will obviously vary depending on the hardware used 
but these figures demonstrate that data transmission is expensive, therefore the amount of data 
transmitted should be minimised.  Other methods of minimising the power requirements include 
limiting the speed of the processor and the size of the memory.  These restrictions mean that 
performing complex calculations will be time consuming or not even possible.  Despite these 
limitations in the amount of bandwidth [17], processing power and memory available “power is the 
scarcest resource” [16, 18].  This means that the “level of security versus the consumption of energy 
[…] constitute a major design trade-off” [19]. 

 

Figure 1 An example of data injection 

The BS will typically be much more powerful than the individual sensor nodes [16, 20], which 
means that more computationally intensive processing can be performed on the BS if needed.  As all 
communication between the sensor network and the data analysts passes through the BS, if the BS is 
compromised the entire sensor network becomes at best untrustworthy and at worst useless [12].  This 
means that the BS is a primary target [21, 22] for attack, because of this measures should be taken to 
make it tamper proof.  It is therefore assumed that the BS will not be compromised [23, 24]. However 
due to cost constraints making the individual sensor nodes tamper-proof is not feasible [16, 20, 25]. 

Given the above discussion of power consumption and the security of individual nodes it is 
important to consider where the authentication of the data will be carried out.  If all the sensor nodes 
in the network are just a single hop away from the BS then it makes sense for the authentication to be 



performed at the BS.  If the sensor nodes are more than one hop away from the BS then data will have 
to pass though other nodes, expending their resources.  This leads to the conclusion that it would 
make sense for the authentication to be carried out en-route to the BS so the unauthorised data can be 
dropped, because whilst this adds computational complexity to the intermediate nodes this is cheaper 
than retransmitting unauthorised data.   

If the authentication is carried out en-route to the BS then the infrastructure for carrying out such 
authentication will need to be in place  Setting up this infrastructure will require the transmission and 
storage of data, it therefore need to be ascertained whether the cost of setting up the authentication 
framework is greater than the cost of transmitting unauthenticated packets, and whether this cost is 
acceptable.  Another consideration is that in order for the nodes on the path to the BS to be able to 
authenticate the data the individual nodes will need to have keys in common with the node that 
transmitted the data.  This can lead to increased security risks if the sharing of keys is managed 
incorrectly.  As it is prudent to assume that at least one node will be compromised [26] therefore steps 
should be taken to make sure that the compromise of a single node will not affect the security of the 
entire sensor network. 

For the purposes of this paper it will be assumed that the individual nodes are behaving as they 
should, rather than behaving selfishly and refusing to pass on data because they the energy cost is too 
high.  For a further discussion of node behaviour see [27]. 

2. Existing Solutions 

There have already been several studies in to securing sensor networks.  Typically the studies focus 
on the confidentiality of the data rather than the integrity and authentication of the data.  Although 
encrypted data is likely to have come from a valid source there is no guarantee that it has not been 
altered whilst in transit [28, 29].   
Some of the existing schemes make use of Timed Efficient Stream Loss-tolerant Authentication 
(TELSA) [30], which enables the properties provided by asymmetric algorithms to be achieved using 
symmetric algorithms.  The TELSA scheme has low computational overheads, low per packet 
communication overheads, and can tolerate some packet loss.  It is however limited to unidirectional 
communications, so is suited to broadcast messages only.  In order for TELSA to work properly all 
nodes must maintain loose time synchronisation, because if the clocks have too wide a variation then 
the receiver will not be able to verify the data.  The asymmetric properties are achieved by 
transmitting the data in timeslots with each slot using a different encryption key.  When the packets 
are sent only the sender knows the key, which is then transmitted a couple of timeslots after the 
messages using that key.  When the messages are received they are buffered and stored until the key is 
received.  As the key is transmitted after the encrypted message is received the receiver can verify that 
the message was not altered in transit and it was from the correct sender. 

The following discussion focuses on the existing solutions to security in sensor networks beginning 
with the oldest.  It is worth noting that sensor networks are a form of ad-hoc networking, and whilst 
the complexity of some of the security schemes for ad-hoc networks (examples of which include [31-
33]) prevents their direct application to sensor networks, some of the ideas discussed may be 
applicable. 

The simplest algorithm to use for securing communication between nodes in a sensor network 
would be for every node in the network to share a pre-determined secret key, which is then used to 



encrypt the message using any suitable algorithm.  As all nodes share the same key the message could 
be authenticated by every node on the route to the BS.  Whilst this solution is simple it is not 
particularly effective because if a single node is compromised then the entire network is 
compromised.  As well as the security concerns raised by having a globally shared key there are also 
problems of scalability [34].   

One possible solution to the problem of all nodes in the network sharing the same key is to provide 
a mechanism by which the key may be periodically changed.  One method by which this can be 
achieved is described in [35].   The approach taken is to split the network into clusters in order to 
reduce the complexity of key management.  Once the network has been split, a node in each cluster is 
elected as the cluster head (CH).  These CH then form a back-bone network for the system. From this 
back-bone of CH a key manager is elected.  Once the process of electing a key manager is complete 
the manager can generate a key and distribute it to all the other nodes in the network via the CH, this 
key is then used for all communication.  Whilst this system has exactly the same weaknesses as the 
globally shared key system the fact the key can be changed regularly and reduces the risk of it being 
compromised by packet sniffing, as the volume of traffic transmitted with each key will be lower.  
This method also allows different levels of security to be supported, as if a particular network has 
higher security requirements then the key could be updated more regularly than for a network with 
less rigorous security requirements. 

The Security Protocols for Sensor Networks (SPINS) [12] protocol consists of two sub parts: 
Sensor Network Encryption Protocol (SNEP) and µTELSA (a minimal implementation of the TELSA 
protocol).  The system makes the assumption that the BS is trusted and only communication between 
the BS and the nodes (in either direction) needs to be encrypted.  In order to make sure that keys are 
not reused for the encryption of data the nodes share a master key and use it for the generation of 
encryption keys.  SNEP relies on each communicating node having a shared counter, which enables 
weak freshness to be ensured and protects against replay attacks.  It is however possible for these 
counters to become inconsistent, so there is a protocol to resynchronise the counters, and if necessary 
the counter can also be sent with each message. The encryption algorithm chosen for use in the SPINS 
project is RC5 which was chosen because of its “small code size and high efficiency” [12].  The RC5 
algorithm is used in counter mode, meaning the cipher text is exactly the same length as the plain text 
which means there is no transmission overhead in sending the encrypted data when compared to 
sending the plain text.  Using the counter mode also has the advantage that if the same message is sent 
multiple times the encrypted texts will be different. 

The Localized Encryption and Authentication Protocol (LEAP) [23] is another encryption scheme 
which can offer different levels of security for different types of message, which can be achieved 
because each node has to store 4 different types of key.  Every node has an individual key which is 
shared only with the BS.  Each node will also have a copy of the group key, which is shared by all the 
nodes on the system.  This key is usually used for the BS to send out broadcasts to the nodes.  The 
third key that a node has is the cluster key: a key shared by the node and its neighbours which means 
that local broadcast messages can be secured.  The final type of key that a node will have are the pair-
wise shared keys.  Each node will have a pair-wise shared key for each of its neighbours.   By using 
these different keys the messages sent can be protected to different extents.  LEAP also implements 
µTELSA to enable broadcast messages from the BS to be secured.  In order to authenticate a message 
the sending node signs it with its cluster key and transmits it.  When this message is received by 
another node it is verified using the relevant cluster key, the data is then authenticated with its own 
cluster key and then forwarded on to the next node. 



TinySec [36] is an encryption scheme which has 2 modes of operation.  It can either be used in 
authenticated encryption (TinySec-AE) mode, in which the payload is encrypted and then a Message 
Authentication Code (MAC) calculated over the encrypted data and the packet header.  The second 
mode provides only authentication (TinySec-Auth), which is achieved by calculating a MAC over the 
plain text of the message.  This means that the system is more flexible than some of the other 
alternatives because when confidentiality is not required the encryption of the packet can be disabled.  
TinySec uses an 8 byte Initialisation Vector (IV), which is calculated using the source and destination 
address, the message type and length and a counter (which starts at 0).  Given the method by which 
the IV is generated and the fact it is so short there are likely to be messages which generate the same 
IV, TinySec cannot use stream ciphers [36].  TinySec uses CBC-MAC to authenticate that the 
message has not been altered, but rather than using a 8 or 16 byte MAC TinySec uses just 4 bytes.  
Given the context into which TinySec will be deployed even this length MAC is enough, because the 
only way of knowing if a MAC is valid is to try it.  Given the low speed of communications links in a 
sensor network the time taken to try 231 combinations (half the key space) is impractical. TinySec, 
whilst providing a means for the encryption and authentication of data, does not solve the key 
distribution problem.  The easiest solution is to have a global key, although a better solution is 
provided by TinyPK [34]. 

All the previous systems use symmetric key encryption, however TinyPK [34] is based on RSA and 
makes use of asymmetric keys.  As is common with other implementations of asymmetric algorithms 
the encryption of the messages is performed using a symmetric algorithm, in this case TinySec [36].  
TinyPK uses a CA whose public key has to be preloaded onto the nodes in the networks, meaning that 
the nodes will require some pre-configuration before they can be deployed in the field this can pose 
saleability problems.  However TinyPK does not use certificates as there is no real-time access to the 
CA, this poses problems when it comes to revoking keys.   

 

Figure 2 Data Exchange for Diffie-Hellman as used in TinyPK 

When TinyPK was implemented it was discovered that the RSA calculations were far too slow [34] 
so instead TinyPK has been implemented using Diffie-Hellman, as it is sufficiently fast.  The 
messages sent between the nodes to establish the keys are shown in Figure 2, once this is complete the 
key can be calculated according Formula 1.   With nodes 1 and 2 having enough information to 
perform the calculation, but node 3 despite having seen all the communication does not. 

 



 ( ) ( ) .modmodmodmod 211221 PgPgPPgkey RRRRRR ∗===   (1) 
Another scheme for ensuring that compromised nodes cannot insert incorrect data is to compare the 

data from one node to the data from the surrounding nodes.  If the data gathered is within a certain 
threshold, or a certain number of nodes agree on the value then it can be assumed that the data from 
all the nodes is correct.  If it is not within the threshold then it is discarded [37].  This approach is 
suitable for data such as temperature or water level in a river where the difference between data 
gathered by adjacent nodes is likely to be small.  However when the data being gathered is more 
localised, such as the orientation of a sensor in a glacier [3], this validation scheme is likely to reject 
correct data because the data set from one sensor can legitimately be different to those from 
neighbouring sensors. 

The Peer Intermediaries for Key Establishment (PIKE) [21] protocol relies on each node having a 

set of keys of  ( )nO  where n is the number of nodes in the network.  Each key is shared with only 

one other node. This means that if A needs to communicate with B then there will exist a node C 
which shares a secret key pair with A and a secret key pair with B.  This means that the message can 
be sent from A to C, at which point it will be decrypted and encrypted with the key for B and sent on.  
PIKE relies on each node being addressable so that the intermediaries know which key-pair to use to 
decrypt the message they have received.  There will typically be multiple nodes which share a key 
with both A and B and are therefore candidates for being the intermediary, and  the potential 
intermediaries will be compared on the cost of sending a message using them, and the node with the 
lowest cost used.  

3. Encryption Algorithms 

The methods described above make use of a wide variety of different encryption algorithms.  When 
comparing the algorithms in use the main factors to consider are the computational costs, memory 
requirements and the way to distribute the key.  Another factor which can affect the choice of an 
algorithm is how well it is known, since the better known the algorithm is the more scrutiny it will 
have been subjected to therefore the higher confidence that the algorithm is not flawed.   

The majority of these solutions use some form of symmetric encryption because asymmetric 
cryptography is several orders of magnitude more computationally expensive than symmetric key 
encryption [38], which makes it slower [39]  and unsuitable for most sensor network applications [20, 
40-43].  Most implementations of asymmetric algorithms switch to using symmetric algorithms once a 
key has been established [29].  Each method has advantages and disadvantages.  The computation 
required for asymmetric algorithms is high, but the key redistribution algorithms for symmetric keys 
are vulnerable to attack [44].  Whereas asymmetric algorithms are a relatively recent invention, 
symmetric algorithms were originally used centuries ago [38] and there are therefore many more 
symmetric algorithms available then there are asymmetric algorithms.  Some of the algorithms which 
could be used will  now be examined in more depth. 

The most popular asymmetric algorithm is Rivest-Shamir Adleman (RSA) [45] which is based on 
the fact that factoring large numbers is computationally difficult.  In order for the algorithm to be 
secure the numbers used in the algorithm must be fairly large – in the order of 100s of digits.  This 
means that many sensor nodes will not have the memory required to store the numbers required for 
the algorithm to work in its original form. 



Another asymmetric algorithm which could be considered is Elliptic Curve Cryptography  (ECC) 
[46], which is based on elliptic integration, in which the data to be encrypted is a point on the curve 
which is then mapped to a different point in a manner defined by the algorithm.  The  main advantage 
of ECC over RSA is that the same level of security can be achieved using significantly shorter keys 
[38, 47] this means that the memory requirements of the algorithm are significantly less, which in turn 
means the algorithm is more suited to being implemented on devices with limited power. The other 
encryption algorithms that could be used are all symmetric. 

The Rijndael encryption algorithm [48] (also known as AES) has been designed for both 32 bit 
architectures and smart cards, which means that implementations for 8 bit architectures are available 
[38] which could be important for implementations on sensor networks.  It also supports the use of 
different key lengths meaning that different levels of security and processing requirements can be 
supported.  Rijndael works by repeatedly manipulating the data, the number of rounds of 
manipulation is determined by the key length, from 10 rounds with a 128 bit key, up to 14 rounds with 
a 256bit key. 

The Rijndael algorithm is the current NIST standard and was preceded by the Data Encryption 
Standard (DES) [49]. DES is a block cipher which uses a Feistel System [50], containing various 
functions which expand and contract that data (in a lossless manner) this data is then combined with 
the key and further manipulated   This mixing and manipulation of the data continues for 16 rounds. 

The Tiny Encryption Algorithm (TEA) [51] is a symmetric algorithm which has designed to have a 
very small footprint.  Rather than using a very complicated algorithm the designers of TEA decided to 
use a large number of iterations instead.  It uses a 128 bit key to protect against brute force methods.  
It can be simply implemented in both hardware and software, with the hardware implementation being 
the same order of complexity as DES [51], and one software implementation being 3 times faster than 
a good software implementation of DES [51].   However TEA has not been submitted to the NIST or 
been used as widely as DES or AES which means that it has not been submitted to the same level of 
scrutiny. 

4. Attacks against Sensor networks 

There are two classes of attacks that can be carried out against wireless networks, passive attacks 
which just involve the attacker listening and analysing the data gathered, and active attacks in which 
the attacker listens and broadcasts on the wireless link.  Physically altering the nodes can also be 
considered an active attack.  Whilst passive attacks just involve listening to and analysing the data, 
active attacks can be more diverse in the mechanisms used.  Although typically active attacks will be 
preceded by passive attacks in which the attacker will build up information about the network to be 
attacked. 

Possibly the simplest active attack is to jam the wireless link so that no traffic can be sent over the 
link, however this attack has to be dealt with at the physical layer using methods such as DSSS [52] 
and FHSS [53].  Another simple attack against wireless sensor networks is to spoof a node and insert 
false data into the network.  If the data is drastically different from what is expected and what is being 
reported by other nodes in the network then the false data could be detected using simple statistical 
analysis.  However if the data being injected is similar to the genuine data or multiple nodes have 
been compromised then detection will be much trickier. 



It is important to remember that whilst in the majority of situations the above attacks will be 
deliberately executed, some of the attacks such as radio jamming or physically damaging the nodes 
can be performed accidently.  This is a very brief description of the attacks and countermeasures that 
can be employed against and by sensor networks, as the area is large enough to support an entire 
paper. 

5. A Data Authentication Scheme for Sensor Networks 

The various schemes discussed in Section 2 provide ways to encrypt the data sent within the sensor 
network, however none of the solutions extend the system to allow the validity of the BS to be 
checked by the users analysing the data collected.  This means that in theory an attacker could replace 
the BS with their own version and have complete control over the data sent to the users without the 
user having any idea of the compromise.  If the communication between the analysts and BS is via an 
IP network the same attack could be achieved by manipulating routing tables. 

 

Figure 3 Diagram showing flow of data from sensor nodes to storage server 



To overcome this there needs to be an authentication method between the BS and the user remotely 
accessing the data.  This system does not have to adhere to the tight power restrictions placed on the 
individual sensor nodes.  This authentication between BS and the client could be ensured by using 
ECC to sign the messages from the BS.  The advantages of using a public key algorithm have been 
discussed in Section 3.  The choice of ECC over RSA has been made because ECC is less 
computationally expensive and requires less data to be transmitted and stored [54], which is important 
because although the BS will typically be less constrained than the individual nodes it is likely to have 
some restrictions on the energy and computational power available.  For details on how to use ECC 
for digital signatures  (ECC-DSA) see [47]. 

Having chosen to use ECC between the BS and the server on which the data is collated, a decision 
needs to be made about which method to use to encrypt the data between the sensor nodes and the BS.  
The most suitable of the solutions previously discussed is TinySec as it allows for both encryption 
and authentication, however TinySec does not address the problem of key distribution.  To overcome 
this TinySec can be combined with TinyPK, and it is in this configuration that it is recommended.  

These choices of algorithms enable the sequence of events shown in Figure 3 to be performed 
whenever the BS wants to request data from the nodes (only 3 nodes are shown for simplicity, it could 
be a greater number).  First the BS will initiate the key generation with the node using Diffie-Hellman 
as shown in Figure 2.  When the key exchange is complete the actual data can be sent using TinySec 
to provide authentication.  Once the data is on the BS it can be stored until a scheduled upload, or 
uploaded immediately.  Either way before the data is transmitted it is signed using ECC.  The 
personnel analysing the data can then use it knowing it is from a trusted source.  This can be verified 
by comparing the signature with the public key for the BS which sent the data. 

6. Conclusions 

This paper has examined the area of data authentication for sensor networks by comparing the 
existing solutions and algorithms which could be used.  These comparisons lead to the 
recommendation that in order to deploy a sensor network in which the origins of the data received can 
be verified a combination of TinySec, TinyPK and ECC should be used.  This combination is 
recommended because TinySec offers two modes of operation: TinySec-Auth and TinySec-AE, and is 
therefore more flexible than the other solutions examined.  TinySec however does not address the 
problem of distributing keys to the individual nodes.  This problem is solved by using TinyPK to 
enable the communicating nodes to create a secret shared key.  The combination of TinySec and 
TinyPK allows the data to be authenticated when it is sent to the BS.  In order to sign the data 
between the BS and the server on which the data is stored it is recommended that ECC is used as it 
allows the data to be signed and can achieve the same levels of security as RSA with shorter key 
lengths meaning it is less processor intensive.  

As the need for security in sensor networks varies depending on the application into which it is 
deployed the solution proposed is flexible in that it can be disabled, provide authentication services 
for the data or with only minor modifications (pre-loading the storage servers public key onto the BS) 
can provide end-to-end encryption of the data as well.  The system has been explained with direct 
communication between the nodes and the BS however there is no reason why the scheme could not 
be extended to support multiple hop routing, although the power consumption of this system would 
need to be carefully considered. 



The area of securing data in sensor networks is a vast research area which so far has had relatively 
little attention.  Further research into this area should continue to devise different and more efficient 
implementation of encryption algorithms, as well as focusing on other possible solutions to the key 
distribution problem.  Further work should also include the implementation and evaluation of the 
authentication scheme proposed in Section 5. 

References 

1. Tubaishat, M., Madria, S.: Sensor networks: an overview. Potentials, IEEE 22 20-23 (2003)  
2. Chong, C.-Y., Kumar, S.P.: Sensor networks: evolution, opportunities, and challenges. In: Kumar, S.P. 

(ed.): Proceedings of the IEEE, Vol. 91 1247-1256 (2003)  
3. Martinez, K., Ong, R., Hart, J.: Glacsweb: a sensor network for hostile environments. The First IEEE 

Communications Society Conference on Sensor and Ad Hoc Communications and Networks, Santa 
Clara, USA(2004)  

4. Padhy, P., Martinez, K., Riddoch, A., Ong, H.L.R., Hart, J.K.: Glacial Environment Monitoring using 
Sensor Networks. Real-World Wireless Sensor Networks, Stockholm, Sweden(2005)  

5. Pottie, G.J.: Wireless sensor networks. Information Theory Workshop, 1998 139-140 (1998)  
6. Djenouri, D., Khelladi, L., Badache, A.N.: A survey of security issues in mobile ad hoc and sensor 

networks. Communications Surveys & Tutorials, IEEE 7 2-28 (2005)  
7. Hao, Y., Fan, Y., Yuan, Y., Songwu, L., William, A.: Toward resilient security in wireless sensor 

networks. Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and 
computing. ACM, Urbana-Champaign, IL, USA(2005)  

8. Jing, D., Richard, H., Shivakant, M.: Defending against path-based DoS attacks in wireless sensor 
networks. Proceedings of the 3rd ACM workshop on Security of ad hoc and sensor networks. ACM, 
Alexandria, VA, USA(2005)  

9. Xu, N.: A survey of sensor network applications. University of Southern California(2002)  
10. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for 

networked sensors. SIGPLAN Not. 35 93-104 (2000)  
11. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the insecurity of 802.11. 

Proceedings of the 7th annual international conference on Mobile computing and networking. ACM, 
Rome, Italy(2001)  

12. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: security protocols for sensor 
networks. Wireless Networks 8 521-534 (2002)  

13. Akyildiz, I.F., Weilian, S., Sankarasubramaniam, Y., Cayirci, E.A.C.E.: A survey on sensor networks. 
Communications Magazine, IEEE 40 102-114 (2002)  

14. Przydatek, B., Song, D., Perrig, A.: SIA: secure information aggregation in sensor networks. 
Proceedings of the 1st international conference on Embedded networked sensor systems. ACM, Los 
Angeles, California, USA(2003)  

15. Slijepcevic, S., Potkonjak, M., Tsiatsis, V., Zimbeck, S.A.Z.S., Srivastava, M.B.A.S.M.B.: On 
communication security in wireless ad-hoc sensor networks. In: Potkonjak, M. (ed.): Enabling 
Technologies: Infrastructure for Collaborative Enterprises, 2002. WET ICE 2002. Proceedings. 
Eleventh IEEE International Workshops on 139-144 (2002)  

16. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermeasures. In: 
Wagner, D. (ed.): Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE. 
2003 IEEE International Workshop on 113-127 (2003)  

17. Chen, M., Cui, W., Wen, V., Woo, A.: Security and deployment issues in a sensor network. 
Berkeley(2000)  



18. Hu, F., Sharma, N.K.: Security considerations in ad hoc sensor networks. Ad Hoc Networks 3 69-89 
(2005)  

19. Jolly, G., Kuscu, M.C., Kokate, P., Younis, M.: A low-energy key management protocol for wireless 
sensor networks. In: Kuscu, M.C. (ed.): Computers and Communication, 2003. (ISCC 2003). 
Proceedings. Eighth IEEE International Symposium on 335-340 vol.331 (2003)  

20. Shi, E., Perrig, A.: Designing secure sensor networks. Wireless Communications, IEEE [see also IEEE 
Personal Communications] 11 38-43 (2004)  

21. Haowen, C., Perrig, A.: PIKE: peer intermediaries for key establishment in sensor networks. In: Perrig, 
A. (ed.): INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications 
Societies. Proceedings IEEE, Vol. 1 524-535 vol. 521 (2005)  

22. Haowen, C., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: Perrig, 
A. (ed.): Security and Privacy, 2003. Proceedings. 2003 Symposium on 197-213 (2003)  

23. Zhu, S., Setia, S., Jajodia, S.: LEAP: efficient security mechanisms for large-scale distributed sensor 
networks. Proceedings of the 10th ACM conference on Computer and communications security. ACM, 
Washington D.C., USA(2003)  

24. Ye, F., Luo, H., Lu, S., Zhang, L.: Statistical en-route filtering of injected false data in sensor networks. 
Selected Areas in Communications, IEEE Journal on 23 839-850 (2005)  

25. Haowen, C., Perrig, A.: Security and privacy in sensor networks. Computer 36 103-105 (2003)  
26. Carman, D., Kruss, P., Matt, B.: Constraints and approaches for distributed sensor network security. 

NAI Labs(2000)  
27. Shneidman, J., Parkers, D.C.: Rationality and self-interest in peer to peer networks. Lecture notes in 

computer science 2735 139-148 (2003)  
28. Bellovin, S.M.: Problem areas for the IP security protocols. Proceedings of the 6th conference on 

USENIX Security Symposium, Focusing on Applications of Cryptography - Volume 6. USENIX 
Association, San Jose, California(1996)  

29. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Communications (or: How 
Secure Is SSL?). Proceedings of the 21st Annual International Cryptology Conference on Advances in 
Cryptology. Springer-Verlag(2001)  

30. Perrig, A., Tygar, J.D., Song, D., Canetti, R.: Efficient Authentication and Signing of Multicast Streams 
over Lossy Channels. IEEE Symposium on Security and Privacy (2000)  

31. Luo, H., Kong, J., Zerfos, P., Lu, S., Zhang, L.: URSA: ubiquitous and robust access control for mobile 
ad hoc networks. IEEE/ACM Trans. Netw. 12 1049-1063 (2004)  

32. Sencun, Z., Shouhuai, X., Setia, S., Jajodia, S.A.J.S.: LHAP: a lightweight hop-by-hop authentication 
protocol for ad-hoc networks. In: Shouhuai, X. (ed.): Distributed Computing Systems Workshops, 2003. 
Proceedings. 23rd International Conference on 749-755 (2003)  

33. Zhou, L., Haas, Z.J.: Securing ad hoc networks. Network, IEEE 13 24-30 (1999)  
34. Watro, R., Kong, D., Cuti, S.-f., Gardiner, C., Lynn, C., Kruus, P.: TinyPK: securing sensor networks 

with public key technology. Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor 
networks. ACM, Washington DC, USA(2004)  

35. Basagni, S., Herrin, K., Bruschi, D., Rosti, E.: Secure pebblenets. Proceedings of the 2nd ACM 
international symposium on Mobile ad hoc networking \&amp; computing. ACM, Long Beach, CA, 
USA(2001)  

36. Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture for wireless sensor 
networks. Proceedings of the 2nd international conference on Embedded networked sensor systems. 
ACM, Baltimore, MD, USA(2004)  

37. Zhu, S., Setia, S., Jajodia, S., Ning, P.: An interleaved hop-by-hop authentication scheme for filtering of 
injected false data in sensor networks. In: Setia, S. (ed.): Security and Privacy, 2004. Proceedings. 2004 
IEEE Symposium on 259-271 (2004)  



38. Trappe, W., Washington, L.C.: Introduction to Cryptography with Coding Theory (2nd Edition). 
Prentice-Hall (2005) 

39. Schneier, B.: Applied cryptography : protocols, algorithms and source code in C. Wiley, New York 
(1996) 

40. Cam, H., Ozdemir, S., Muthuavinashiappan, D., Nair, P.A.: Energy efficient security protocol for 
wireless sensor networks. In: Ozdemir, S. (ed.): Vehicular Technology Conference, 2003. VTC 2003-
Fall. 2003 IEEE 58th, Vol. 5 2981-2984 Vol.2985 (2003)  

41. Ganesan, P., Venugopalan, R., Peddabachagari, P., Dean, A., Mueller, F., Sichitiu, M.: Analyzing and 
modeling encryption overhead for sensor network nodes. Proceedings of the 2nd ACM international 
conference on Wireless sensor networks and applications. ACM, San Diego, CA, USA(2003)  

42. Bohge, M., Trappe, W.: An authentication framework for hierarchical ad hoc sensor networks. 
Proceedings of the 2nd ACM workshop on Wireless security. ACM, San Diego, CA, USA(2003)  

43. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. Proceedings 
of the 9th ACM conference on Computer and communications security. ACM, Washington, DC, 
USA(2002)  

44. Huang, Q., Cukier, J., Kobayashi, H., Liu, B., Zhang, J.: Fast authenticated key establishment protocols 
for self-organizing sensor networks. Proceedings of the 2nd ACM international conference on Wireless 
sensor networks and applications. ACM, San Diego, CA, USA(2003)  

45. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key 
cryptosystems. Commun. ACM 21 120-126 (1978)  

46. Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48 203-209 (1987)  
47. Caelli, W.J., Dawson, E.P., Rea, S.A.: PKI, Elliptic Curve Cryptography, and Digital Signatures. 

Computers and Security 18 47-66 (1999)  
48. Daemon, J., Rijmen, V.: AES Proposal: The Rijndael Block Cipher. Proton World Int. Katholieke 

University(1999)  
49. Howard, R.: Data encryption standard. Inf. Age 9 204-210 (1987)  
50. Feistel, H.: Cipher System using a variant key matrix. IBM (US)(1981)  
51. Wheeler, D.J., Needham, R.M.: (TEA), A Tiny Encryption Algorithm. Lecture notes in computer 

science 1108 (1995)  
52. Heidari-Bateni, G., McGillem, C.D.: A chaotic direct-sequence spread-spectrum communication system. 

Communications, IEEE Transactions on 42 1524-1527 (1994)  
53. Burchall-Cooper, W., Nelson, K.P., Jones, D.A., Avery, J.W.: Frequency hopping spread spectrum data 

communications system. In: USPTO (ed.), U.S.(1993)  
54. Wander, A.S., Gura, N., Eberle, H., Gupta, V.A.G.V., Shantz, S.C.A.S.S.C.: Energy analysis of public-

key cryptography for wireless sensor networks. In: Gura, N. (ed.): Pervasive Computing and 
Communications, 2005. PerCom 2005. Third IEEE International Conference on 324-328 (2005)  


