Inky: A Sloppy Command Line for the Web
with Rich Visual Feedback

Robert C. Millerl, Victoria H. Chouj, Michael Bernsteinl,
Greg Little' , Max Van Kleek], David Karger], mc schraefelz

'MIT CSAIL
32 Vassar St
Cambridge, MA 02139 USA

{rcm,vikki,msbernst,glittle,emax, karger} @csail.mit.edu

ABSTRACT

We present Inky, a command line for shortcut access to
common web tasks. Inky aims to capture the efficiency
benefits of typed commands while mitigating their usability
problems. Inky commands have little or no new syntax to
learn, and the system displays rich visual feedback while
the user is typing, including missing parameters and con-
textual information automatically clipped from the target
web site. Inky is an example of a new kind of hybrid be-
tween a command line and a GUI interface. We describe
the design and implementation of two prototypes of this
idea, and report the results of a field study.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Algorithms, Human Factors, Lan-
guages.

Keywords: command languages, natural language
processing, web automation

INTRODUCTION

In the traditional taxonomy of user interface styles [11],
most web sites offer a menu-and-form interface, which
delivers important benefits to learnability, memorability,
and error prevention. For frequent users, however, a
menu-and-form interface can be inefficient, particularly if
the interface is poorly designed and presents a long, com-
plex form or a multi-step process. For these cases, a com-
mand line interface may be far more efficient, but at the
cost of requiring the user to learn command names and
syntax, putting more demands on the user’s memory and
making more chances for errors.

This paper presents Inky, a command line for the Web that
aims to capture the efficiency benefits of typed commands

?Electronics and Computer Science
University of Southampton
SO17 1BJ, United Kingdom

mc(@ecs.soton.ac.uk

while using novel techniques to mitigate the costs. Inky
(short for Internet Keywords) is a popup window, invoked
from the user’s web browser, into which the user can type
keywords expressing a command. Keywords may include
command names, such as reserve or email or search
flights, and command parameters, such as 9 am or vik-
ki@mit.edu or New York. The keywords are matched
heuristically against a set of known commands using tech-
niques presented in previous work [8,9] to produce a list of
possible interpretations for the user to choose from. When
the user chooses an interpretation and runs it, Inky fills in
the menu-and-form interface for the corresponding web
site.

Inky mitigates the classic pitfalls of command line interfac-
es in two ways: sloppy syntax and rich feedback. First,
Inky commands have little or no syntax to learn. Key-
words may be provided in any order, command names may
be omitted or replaced with synonyms, and parameters may
be entered in a variety of ways. The Inky interpreter makes
its best effort to match the user’s input against the available
commands.

Second, Inky provides more rapid, richer feedback than a
traditional command line. While the user is typing, Inky
incrementally and continuously displays how it is interpret-
ing the command. The interpretation also shows missing
parameters to remind the user what other information can
be included in the command, reducing the learning and
memory burden.

In addition to textual feedback, Inky also judiciously in-
corporates graphical user interface widgets in its feedback.
Some widgets are useful for parameter entry, such as a date
picker for picking the day of a meeting, or a list of confe-
rence rooms for the meeting location. Other widgets pro-
vide context for the command that helps the user choose
parameters and avoid errors. For example, Inky retrieves
the user’s own calendar and displays a snapshot of the re-
levant day and time. Inky thus represents a hybrid between
a command line and a GUI interface.

Since Inky acts as a frontend shortcut for an existing menu-
and-form system, the user does not need to write a com-
plete command. If a command is invoked with important
parameters missing, then Inky fills out as much of the form
as it can from the parameters that were provided, and



leaves the user to complete the form and submit it. Inky
also distinguishes between functions with persistent side
effects (such as sending email or making a reservation) and
functions without side effects (such as viewing a calendar
or looking up a person). For commands with side effects,
Inky normally leaves it to the user to submit the final form,
unless the user presses Control-Enter to perform the side-
effect immediately. Thus Inky covers a spectrum from
simple bookmarks (email, then Enter, to go to the mail
composition page) to partial commands (email vik-
ki@mit.edu, Enter, to start composing an email to Vikki)
to complete automation (email vikki@mit.edu I’m run-
ning late, Control-Enter, to send a quick email right away).

One important application of a sloppy command line is
lightweight personal information management (PIM), such
as entering to-do items, calendar meetings, and contact
information. Previous work [1,12] suggests that the cost of
starting, navigating, and entering data in PIM applications
is one reason why users turn to Post-It notes or paper note-
books, despite the difficulty of search and retrieval that
paper poses later. A command line with sloppy syntax
allows PIM data to be captured quickly and efficiently,
while filing it immediately in the appropriate application.

This paper describes our experience building and evaluat-
ing two prototypes. The first prototype, called simply
Inky, uses sloppy syntax with textual feedback, and pro-
vides commands for several dozen websites. It was dep-
loyed in a small field study and a sample of commands
invoked by those users is analyzed in this paper. The
second prototype, called Pinky, focuses primarily on data
entry for PIM web applications, such as Google Calendar
and Remember the Milk. Pinky incorporates GUI widgets
to help enter some arguments, and automatically shows
relevant web clippings from the target web site to help the
user complete the command. Both prototypes are imple-
mented as Firefox extensions using Chickenfoot [2] to au-
tomate web sites.

The rest of this paper is organized as follows. First we
survey related work in web automation and command lines.
Then we describe the user interface and implementation of
the Inky prototype, and report the results of a small field
study. Finally, we describe recent work on the Pinky pro-
totype, which includes GUI widgets and web clippings.

RELATED WORK

Most browsers support command-line-style shortcuts for
web queries. For example, properly-configured Firefox
bookmarks can be invoked by a keyword and one or more
parameters. YubNub' extends this idea into a “social”
command line for the Web, which allows users to contri-
bute new commands to a shared repository. Unlike Inky,
these are traditional command lines with rigid syntax and
no feedback.

" http://yubnub.org

Many search engines effectively implement a sloppy key-
word-driven command line, at least for information retriev-
al. For example, Google can display times (Samoa time),
weather reports (weather 02139), arithmetic (67/83), and
maps (Monterey CA). Google Calendar’s Quick Add fea-
ture uses a similar approach to quickly add events to the
calendar (dinner with Michael Tues 7 pm). Unlike these
systems, Inky provides rich visual feedback while the
command is being entered, and can be used to automate
web sites that are not accessible to public search engines,
such as an intranet conference room booking site.

Sloppy syntax has been used in other web automation sys-
tems, notably Koala/CoScripter [7] and Smart Bookmarks
[6]. The command languages in these systems operate at a
lower level than Inky: clicking buttons and links, filling in
text boxes, and selecting from lists, checkboxes, and radio
buttons. Inky commands aim at higher-level user goals,
such as reserving conference rooms and sending email,
which have a greater variety of commands and parameter
types than other web automation systems must handle.

Others have considered how to solve usability problems in
command line interfaces. Seminal work by Furnas et al. [4]
showed that the names used for commands and objects
vary widely across users, so unlimited aliasing offers the
best hope for success. Inky follows this prescription by
supporting synonyms. Usability improvements have been
aimed at the Unix shell, notably Fishy”, which adds syntax
highlighting, multiple line editing, more autocompletion for
command arguments, and better error messages. Systems
like XMLterm® and LAPIS [10] move the Unix shell into
the web browser, so that command line programs can dis-
play HTML or XML user interfaces for the user to interact
with.

Command lines have also been built on top of desktop GUI
applications, notably Quicksilver* and Enso’. These sys-
tems incrementally search for desktop applications, files,
even dialog boxes and menu items. Quicksilver can be
extended with plugins and user-written scripts. The conti-
nuous feedback provided by these desktop command lines
inspired Inky’s feedback.

For PIM data, our earlier Jourknow system [14] aimed to
bridge the gap between lightweight text entry and struc-
tured information retrieval by managing the user’s data as
information scraps, but we found in subsequent studies that
users are loath to abandon their current PIM tools. In con-
trast, Pinky provides lightweight text entry that puts the
data directly into existing web applications.

2 http://www.fishshell.org
? http://www.xmlterm.org
* http://www.blacktree.com

> http://www.humanized.com



USER INTERFACE
Pressing Control-Space in the web browser pops up the
Inky window (Figure 1). This keyboard shortcut was cho-
sen because it is generally under the user’s fingers, and
because it is similar to the Quicksilver shortcut (Command-
Space on the Mac).

The Inky window has two areas: a text field for the user to
type a command, and a feedback area that displays the in-
terpretations of that command. The Inky window can be
dismissed without invoking the command by pressing Es-
cape or clicking elsewhere in the browser.

Input Area
s
[email vikki@mit.edu
|M emall vikki@mit.edu about * (attach ) E
M view ema | Co

¥ Feedback Area

Figure 1: The Inky window.

Commands

A command consists of keywords matching a web site
function, along with keywords describing its parameters.
For example, in the command reserve D463 3pm, the re-
serve keyword indicates that the user wants to make a con-
ference room reservation, and D463 and 3pm are argu-
ments to that function.

To reduce the burden of learning and remembering syntax,
the order of keywords and parameters is unimportant. For
example, reserve D463 3pm and 3pm D463 reserve will
produce the same interpretation. Keywords that represent
arguments to a function can be reordered and interspersed
with keywords matching the function to be called. The or-
der of the entered command matters only when two or
more arguments could consume the same keywords. For
example, in the command reserve D463 3pm 1 2 2007 it is
unclear if 1 is the month and 2 is the date or vice versa. In
find flights SFO LAX, it is unclear which airport is the
origin and which is the destination. In these cases, the sys-
tem will give higher rank to the interpretation that assigns
keywords to arguments in left-to-right order, but other or-
derings are still offered as alternatives to the user.

Commands can use synonyms for both function keywords
and arguments. For example, to reserve D463 at 3pm, the
user could have typed make reservation instead of re-
serve, used a full room number like 32-D463 or a nick-
name like star room, and used various ways to specify the
time, such as 15:00 and 3:00.

Function keywords may also be omitted entirely. Even
without function keywords, the arguments alone may be
sufficient to identify the correct function. For example,
D463 15:00 is a strong match for the room-reservation
function because no other function takes both a conference
room and a time as arguments.

The Inky prototype includes 30 functions for 25 web sites,
including scheduling (room reservation, calendar manage-
ment, flight searches), email (reading and sending), loo-
kups (people, word definitions, Java classes), and general
search (in search engines and ecommerce sites). Most of
the functions included in the prototype are for popular web
sites; others are specific to our university and our lab. Ar-
gument types specifically detected by Inky include dates,
times, email addresses, cities, states, zip codes, URLs, file-
names, and room names. Examples of valid commands
include email vikki@mit.edu Meeting Right Now! (to
send email), java MouseAdapter (to look up Java API
documentation), define fastidious (to search a dictionary),
calendar Spm meeting with rob (to make a calendar
event), and weather cambridge ma (to look up a weather
forecast).

Feedback

As the user types a command, Inky continuously displays a
ranked list of up to five possible interpretations of the
command (Figure 2). Each interpretation is displayed as a
concise, textual sentence, showing the function’s name, the
arguments the user has already provided, and arguments
that are left to be filled in. The interpretations are updated
as the user types in order to give continuous feedback.

> email
M view email Go

M email * about * (attach ) Go

> email wikki@mit.edu

M email vikki@mit.edu about

> email vikki@mit.edu movie at 3pm today

M email vikki@mit.edu about "movie at 3pm today" (attach ) | Send Email

Figure 2. Feedback is shown continuously as a
command is entered.

The visual cues of the interpretation were designed to make
it easier to scan. A small icon indicates the website that the
function automates, using the favicon image displayed in
the browser address bar when that site is visited. Argu-
ments already provided in the command are rendered in
black text. These arguments are usually exact copies of
what the user typed, but may also be a standardized version
of the user’s entry in order to clarify how the system inter-
preted it. For example, when the user enters reserve star
room, the interpretation displays “reserve D463” instead to
show that the system translated star room into a room
number.

Arguments that remain to be specified appear as
. Missing arguments are named by a word or
short phrase that describes both the type and role of the
missing argument. If a missing argument has a default
value, a description of the default value is displayed, and
the box is less saturated. In Figure 3, “name, email, office,
etc.” is a missing argument with no default, while “this
month” is an argument which defaults to the current month.

* (attach ) Go

Go



Figure 3: Feedback showing different kinds of ar-
gument feedback, including required (room), default
values (this month), and rarely-used arguments (re-
peats never).

For functions with persistent side effects, as opposed to
merely retrieving information, Inky makes a distinction
between arguments that are required to invoke the side
effect and those that are not. Missing required arguments
are marked with a red asterisk, following the convention
used in many web site forms. In Figure 3, the room and
description are required arguments. Note that the user can
run partial commands, even if required arguments are omit-
ted. The required arguments are only needed for running a
command in the mode that invokes the side effect imme-
diately.

The feedback also distinguishes optional or rarely-used
arguments by surrounding them by parentheses, like (re-
peats never) argument in Figure 3. It should be noted that
this feedback does not dictate syntax. The user does not
need to fype parentheses around these arguments. If the
user did type them, however, the command could still be
interpreted, and the parentheses would simply be ignored.

Running a Command

Pressing Enter on a command runs the top-ranked interpre-
tation by default. The arrow keys or the mouse can be used
to select a different interpretation from the list, or the user
can click the Go button next to the desired interpretation.
When a command is run, the Inky window disappears, and
Inky directs the browser to visit the target web site and fill
in the form automatically.

Commands without side effects can be run with as few
arguments as the user chooses to give. If the function is
missing arguments, Inky relies on the fact that the website
will either fill in appropriate defaults or prompt the user for
required arguments when Inky tries to submit the form. By
delegating these tasks to the website, Inky is able to use
defaults that are stored by the web site. For example, Ac-
cuWeather.com uses an HTTP cookie to remember the last
city used for looking up a weather forecast. By letting Ac-
cuWeather handle the default, Inky users can look up the
weather in their usual area just by running the command
weather.

A website’s prompt may also include useful UI feedback
and constraints that are not available in our textual proto-
type. For example, the command travelocity SFO LAX
would start searching Travelocity for flights from San
Francisco to LA, but Travelocity would prompt for depar-
ture and return dates with a custom calendar widget.

Functions with side effects can be run in two modes: view
and submit. When a command is run in view mode, Inky
fills in the form that will cause the side effect, but does not
submit the form automatically. View mode is the default
when the user presses Enter or clicks the Go button. For

example, when the command email vikki@mit.edu re-
member to buy milk today is run in view mode, Inky
creates an email composition window with the To and Sub-
ject fields filled in, and then turns control over to the user
to review the composed email, edit it if desired, and press
the Send button to send it. Arguments can be omitted from
commands invoked in view mode, just as for commands
without side effects, since either the web site can provide
defaults or the user can fill in the remaining required argu-
ments on the web site’s form.

When a command is run in submit mode, Inky takes the
final step of causing the side-effect to occur. Submit mode
is selected by pressing Control-Enter, or by clicking the
submit button in the desired interpretation. The submit
button is labeled with the effect that it has, such as “Make
Event”, “Reserve Room”, or “Send Email” (Figure 4).
This button is disabled until all required arguments are
provided to Inky, since Inky is taking responsibility for
running the command. For example, typing email vik-
ki@mit.edu remember to buy milk today and pressing
Control-Enter will immediately send an email, with no fur-
ther interaction. The command is run by automating the
web site, however, so any confirmation pages or opportuni-
ties to cancel or undo would be visible.

email msbernst@mit.edu you're late!

M email msbermst@mit.edu about "you're late!" (attach

) [sendsmai] [Go]

M email msbernst@mit.edu about * (attach )
M view email

Figure 4. Commands can be run in either view
mode (Go) or submit mode (e.g., Send Email).

Separating commands with side effects from those without
side-effects helps discourage Inky users from making er-
rors that would be difficult to reverse. Since the default run
methods always execute the command in a view mode, it is
more difficult for a user to unknowingly cause a persistent
side effect. However, by making it possible for users to run
in a submit mode, Inky increases the efficiency of users
who trust the system and want to commit to the side effect.

Self-Disclosure

One problem with a command line is poor visibility. The
possible actions are not visible, as they are in menu-and-
form systems, making it harder to learn what the system
can do and how it is operated. Inky has two features that
mitigate this problem. First, when the Inky window ap-
pears, before the user starts typing, the feedback area dis-
plays an example of a command. The example changes
each time the window pops up, and whenever the user
presses a key that doesn’t change the text field, so the user
can cycle through examples by pressing the arrow keys.

Second, when the user uses the web site interface for a
function that Inky is capable of performing, Inky may dis-
play a reminder showing an Inky command that would
have invoked the same function (Figure 5). This is a sim-



ple example of self-disclosure [3] that reminds the user of
Inky’s presence and capabilities. This kind of reminder
risks annoying the user if it appears too often or indiscri-
minately, however. Inky displays the reminder probabilis-
tically, with a probability that decreases each time the user
sees the reminder for that function, and each time the user
actually uses that function in Inky.

Inky can speed up this task, e.g., | Cirl-Space |reserve 9925 apr 3 2pm 8
CSAIL Conference Room Booking Print Halnle Room Search:
System Preview [ P POl Descriptions

Wednesday 02 April 2008

Figure 5: Inky reminds the user how to use it.

IMPLEMENTATION

Inky is a Firefox extension built on top of Chickenfoot [2]
and created with Chickenfoot’s extension packager. The
system consists of the Inky window discussed in the pre-
vious section, which is implemented in HTML, CSS, and
Javascript; a back-end keyword command interpreter im-
plemented in Java; and XML files specifying the functions
that commands can invoke and the types that arguments
can take. Inky can be extended by adding new functions
and types to these XML files.

The keyword command interpreter takes in a command
from the user and returns an ordered list of possible inter-
pretations of that command. The function and type defini-
tion files represent the database against which the user’s
command is matched.

Types

Function arguments have types, which help constrain the
interpretation of commands. A type represents a class of
objects that can be used or created by a function. Days of
the week, airports, and conference rooms are all examples
of types used in Inky.

Types are specified by an XML file. The type file in the
Inky prototype includes string, email address, state, time,
zip code, month, and day of the week, among others. The
system can be extended with additional types by editing the
XML file.

A type specification has three parts: a recognizer that de-
tects an instance of the type in the user’s command, and
two generators that translate the matching text into Java-
script code (for running a function) or human-readable
English. For example, the month type has a recognizer that
matches various ways of writing month names and num-
bers, a Javascript generator that produces the month’s or-
dinal number, and a human-readable generator that returns
a canonical name for the month, e.g. “May.”

In its most general form, a type recognizer is a function
that takes the user’s input string (after tokenizing on whi-
tespace boundaries) and returns all matching instances of
the type, expressed as bit vectors over the token sequence.
For example, a soft-drink recognizer given the string I like
coca cola more than pepsi would return two bit vectors:
0,0,1,1,0,0,0 for the occurrence of Coca Cola and

0,0,0,0,0,0,1 for the occurrence of Pepsi. These bit vectors
are used to account for which tokens were consumed by the
type recognizer, so that the keyword command interpreter
can ensure that different recognizers don’t overlap.

The type recognizer function can be specified several ways
in the XML file: as an enumeration of possible keywords
(used, e.g., for month names), as a regular expression (e.g.,
for email addresses), or as a Javascript function if the type
is complex.

Functions

Functions represent operations that Inky can perform on a
web site. A function has several parts: a recognizer that
detects the function’s name in the user’s input keywords;
an ordered list of arguments; the body that actually runs the
function; and a generator that displays a human-readable
version of a partially-instantiated function.

A function recognizer is similar to a type recognizer, in that
it takes the user’s input and returns bit vectors for input
tokens that match the function’s name. A function recog-
nizer acts as a set of synonyms for the function. For exam-
ple, the recognizer for the send-email function recognizes
send, attach, email, mail, and e-mail.

Each function argument specifies its type, whether it is
required, whether it has a default, and how it should be
displayed to the user before the argument is filled in. Often,
this display name is simply the type name (such as email
address), but it may also be more specific (starting date) or
describe the default value (foday), in order to help the user
understand its role in the command and the effect of omit-
ting it.

The body of a function is Chickenfoot code, which is Java-
script augmented with some additional functions for auto-
mating web sites. When the function is run, this Chicken-
foot code is evaluated in the current Firefox browser tab,
and typically browses to a target web site and fills in forms
with the function arguments.

A function generator takes a (possibly incomplete) list of
bound arguments and returns a human-readable description
of the function call as a string of HTML. These descrip-
tions are displayed in Inky’s feedback window as described
in the previous section.

In the XML file defining a function, both the generator and
the arguments are specified declaratively at the same time,
using a template. Functions also have additional metadata,
such as whether the function has a side-effect, the name of
the side-effect (used to label the submit button), and a URL
for the function’s icon.

In addition to functions that represent web site operations,
the XML file can also include functions that transform their
arguments into a different type or a different value. These
functions have a return type, so that the keyword engine
can use them to construct nested function evaluations.
(Top-level functions always have void return type, since
they are run for their effect in the user’s web browser, not



for transforming values.) The Inky prototype uses this
technique to represent some natural ways to describe a
date, such as next month, which transforms the value of the
current month into the next month.

Keyword Interpreter

The keyword engine translates the user’s command into a
ranked list of interpretations. On initialization, it loads
types and functions from XML files. When invoked, it
takes the command string typed by the user, applies type
and function recognizers to it, and uses a dynamic program
to search for callable functions (with bound arguments)
that best match the command. The resulting ranked list is
passed back to the user interface to be displayed to the user
and possibly invoked.

The keyword engine in Inky uses a variant of the bottom-
up keyword matching algorithm described in [9]. Briefly,
this algorithm uses dynamic programming to find the frag-
ment of the user’s input that best matches each type known
to the system. The initial iteration of the dynamic program
runs the type-matching recognizers to identify a set of ar-
gument types possible in the function. Subsequent itera-
tions use the results of the previous iteration to bind func-
tion arguments to fragments that match each argument’s
types. Interpretations are scored by how many input tokens
they successfully explain, and the highest-scoring interpre-
tations for each type are kept for the next iteration. For
example, three integers from a previous iteration may be
combined into a date. The dynamic program is run for a
fixed number of iterations (three in the Inky prototype),
which builds function trees up to a fixed depth. After the
last iteration, the highest-scoring interpretations for the
void return type (the type used by web site functions) are
returned as the result.

The Inky algorithm differs from that discussed in [9] in
several ways. First, Inky uses bit vectors to represent
matching command fragments. Inky does not allow two
function or type recognizers to explain the same token in
an interpretation, by ensuring that the bit vectors returned
by the recognizers are disjoint. Thus, find flight SFO will
not produce an interpretation that has SFO as both the de-
parture and arrival airport.

The Inky algorithm also creates a separate bit vector for
each recognized instance of a type or function, instead of
splitting the score value between all matching tokens as in
[9]. Although this decreases the efficiency of the system by
creating many bit vectors to process (in the worst case, all
possible subsets of the input tokens, if a type recognizer
matches all of them), this change is essential for distin-
guishing multiple arguments of the same type. In practice,
the commands and function trees are so small that expo-
nential blowup doesn’t hurt.

Finally, the Inky algorithm also includes a postprocessing
step for tokens that were not used in the interpretation.
Like Koala [7], Inky tries to account for these tokens by
extracting arguments from them, particularly string argu-

ments. The string type recognizer normally identifies
strings only when they are explicitly quoted, as in google
“firefly tv show”. To handle unquoted strings, the post-
processing step locates the longest contiguous sequence of
unused tokens, puts quotation marks around it, and resub-
mits the modified command to the keyword engine to see if
a higher-scoring interpretation can be found using the new
string argument. If so, that interpretation is used instead,
and the postprocessing step is repeated until no more to-
kens can be consumed.

EVALUATION

The textual prototype was evaluated with a small field
study. The purpose of the field study was to determine how
Inky might be used in day-to-day activities and evaluate
some of the decisions in its interface design.

The field study involved seven users, all members of our
lab who regularly use Firefox, who used Inky over a period
of approximately a week. The data gathered from the study
shed light on learnability, accuracy, the importance of syn-
onyms, the importance of order independence in com-
mands, and the importance of suggestions.

For this field study, two different versions of Inky were
released, in order to explore the effect of Inky’s own feed-
back on the user’s command ordering. The first version,
InkyA, displayed all command feedback in the same stan-
dard order, with a command name first, followed by argu-
ments in a consistent order. The same order was used for
example functions displayed on startup and for the list of
interpretations. The other version, InkyB, provided mixed
feedback, sometimes with the command name at the front,
and other times in the middle or at the end. The purpose of
this variation was to investigate whether users mimicked
Inky’s feedback, or if there was instead a basic syntax us-
ers preferred regardless of how Inky prompted them. In
every case, the command displayed was readable English.

Each user was directed to a website that gave instructions
on how to download either InkyA or InkyB and install it.
The website also stated the keyboard shortcut used to in-
voke Inky and that the user should type into the Inky text-
box, but no other instructions were provided. Users were
not told about the different versions of Inky, and command
ordering was not mentioned in any of the instructions.

Inky logged all keystrokes entered into its textbox so that
uncompleted or edited commands could also be observed.
Over the course of the study, users typed 131 commands
into Inky, and actually invoked 55 of these commands. The
users were also interviewed after the study to capture their
impressions.

Results

Inky was fairly learnable with minimal instructions. Out of
the seven users, four later reported that they noticed the
startup suggestions right away and learned commands
through them. Nevertheless, all users successfully ran at
least one command by trial and error. Only two of the sev-



en users ever ran a command in submit mode (which runs
its side-effect automatically).

Alternative interpretations were used occasionally. Four of
the seven users used the arrow keys to browse the interpre-
tations. Out of the 39 commands executed by these four
users, however, 35 were the top choice, and the other 4
were the second choice. These results suggest that Inky
could display fewer suggestions to users without sacrific-
ing accuracy. In post-study interviews, users mentioned
that the suggestions often looked too similar, and it was
often easier to change the command until the top sugges-
tion was correct rather than visually scan the suggestions. It
would be undesirable to eliminate multiple interpretations
entirely, since the second-ranked interpretation was occa-
sionally used, but Inky should decrease the number of sug-
gestions made and differentiate them more clearly. Prelim-
inary work in this direction is discussed later in this paper.

Out of the 131 commands collected in the study, 95 com-
mands were correctly interpreted (i.e., the correct interpre-
tation was one of the choices offered by Inky). Assuming
every invocation of Inky was intended to issue a command,
rather than merely explore it, this gives an overall accuracy
rate of 73%. Much exploration did in fact occur: of the 36
commands that were not correctly interpreted, 21 were at-
tempts to invoke functions that the Inky prototype did not
provide, such as find an apartment and order food.

Of the correct commands, 16 used a synonym for a func-
tion keyword (i.e., a word that was defined in the XML
files for that function but never appeared in the system’s
examples or feedback for that function). Of the 36 user
commands that were not correctly interpreted by the sys-
tem, 11 failed because they used a synonym that was not
defined in the system. After adding the synonyms to the
system post-study, those commands were interpreted cor-
rectly.

These results give strong evidence that synonym support is
crucial to the system, which is well known from previous
research on command languages [4], but rarely put in prac-
tice. With synonyms, the system could correctly interpret
81% of the commands in the study. Without synonyms,
accuracy drops to 61%.

Since order independence plays a large part in the keyword
engine implementation, it was useful to see if it actually
improved the user experience. Requiring keywords and
arguments to be provided in a specific order would make
the command interpreter simpler and more predictable. The
study collected 89 commands with useful ordering infor-
mation. Commands that were a single word long or for
functions that Inky does not support are not counted in this
total. Of these 89 commands, 13 had an ordering that was
inconsistent with the feedback Inky gave them. From users
of InkyA, which always had the function keywords at the
start and the arguments in a consistent order in the feed-
back, 57 out of 60 commands matched the order of the
feedback. In the three remaining cases, the function key-

words were reordered but parameters still appeared after
the function keywords. To illustrate, one of Inky’s exam-
ples is see csail reservations tomorrow. In one case, the
user typed csail see tomorrow instead.

From users of InkyB, which had function keywords in dif-
ferent places and also reordered the arguments in different
areas of feedback, 10 out of 29 commands did not match
the order of the feedback. Seven of these commands had
the function keywords at the start of the command, whereas
the feedback Inky gave them had them in the middle or end
of the command. Six of the commands had the arguments
in an order that was inconsistent with the feedback. Three
commands satisfied both conditions.

Although the size of the study is too small to establish sta-
tistical significance, the trend suggests that users may natu-
rally put function keywords before argument keywords in a
command. However, it should be possible for different
function keywords to be reordered, and it is also important
for Inky to support order independence among the argu-
ments.

Processing Time vs. Words in Command

70.00

60.00 =

50.00

a
S
=
S

all - 16 types, 47 functions
——csail - 9 types, 14 function:
10.00 gmall - 3 types, 2 functions

20.00 A .‘-.r""N
M ‘
10.00 ./

i 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Words in Command

Milliseconds

Figure 6: Keyword interpreter performance for dif-
ferent command lengths and database sizes.

Performance

The performance of the keyword engine was evaluated by
running the commands acquired from the field study. On a
2GHz MacBook running Firefox 2 and Java 1.5, the aver-
age time to find the interpretations for a command was 15
milliseconds, and the maximum time was 55 milliseconds.
These response times are more than adequate for running
the keyword engine on every keystroke.

To determine how the keyword engine scales with very
long commands, its performance was measured with com-
mands of different lengths and with different databases of
types and functions. Commands were generated by select-
ing 1 to 30 random keywords from the commands used in
the field study. Figure 6 shows how processing time grows
as a function of command length, for three different data-
bases. In all cases, the response time is less than 70 milli-
seconds, which is adequate for the response to seem nearly
instantaneous.



PINKY: INKY FOR PIM

Based on our experience with Inky, we are currently devel-
oping a second prototype, called Pinky (Personal Informa-
tion Keywords) because its design focus is lightweight data
capture for personal information management (PIM) appli-
cations.

Motivation

This work is motivated by our previous investigation into
the prevalence of information scraps [1]: bits of informa-
tion that fall between the cracks of personal information
management tools. Information scraps are often scribbled
on Post-it notes, on paper margins, buried in emails to one-
self, or collected haphazardly in text files. Some informa-
tion scraps exist because the user has no specific tool for
managing them (e.g. guitar tabs or how-to guides). But
other scraps are precisely the sort of data that PIM tools are
designed to store. Our study of the scraps on knowledge
workers’ computers and physical desktops found that over
25% of scraps were to-do items or contact information, the
two largest categories overall [1].

This result begs the question, what goes wrong? Why
doesn’t this information make it into a PIM tool? The cost
of starting, navigating, and entering data in PIM applica-
tions is one reason why users turn to scraps, despite the
difficulties of organization and refinding that information
scraps will pose later [14]. Participants in our study re-
ported the need for quick capture as a common reason for
creating scraps. "If it takes three clicks to get it down, then
it's easier to e-mail [a scrap to myself]," reported one par-
ticipant. Another said, "Starting in Outlook forces me to
make a type assignment, assign a category, set a deadline,
and more; that takes too much work!" [1]

Starner et al. [12] found a similar effect for users of mobile
PDAs and paper day planners. When prompted to schedule
an appointment, almost half of PDA users and over half of
day planner users wrote down information scraps (general-
ly on bits of paper) rather than open up and navigate their
calendars.

Our earlier Jourknow system [14] was designed to capture
and manage information scraps, to catch these bits falling
between the cracks of current tools and give them life. One
finding from our studies of Jourknow, however, is that us-
ers are loath to abandon their current PIM tools, necessitat-
ing automatic synchronization between Jourknow and the
universe of other PIM tools — a substantial engineering
undertaking.

A Command Line for PIM

Pinky offers a possible solution to the lightweight capture
problem. Pinky is a popup command line, like Inky, that
allows the user to enter information quickly as text, then
pushes the information into the appropriate PIM tool. By
speeding up information capture, we hope to lessen users’
need to create information scraps. The text is parsed using
Inky-style keyword matching to extract PIM data (like to-
do items, calendar events, or contact information), which is

then filed immediately in the appropriate PIM tool. Since
Pinky is based on Inky, it automates web-based PIM tools,
including Google Calendar and Remember the Milk.

One consequence of focusing on fast data capture is that
Pinky takes more responsibility for assisting data entry and
providing contextual information, whereas Inky delegated
these responsibilities to the menu-and-form interface it was
automating. For example, if the user has trouble choosing
a date parameter, the Inky philosophy would simply leave
the date out of the command, and rely on the underlying
web site form to display a calendar widget to make date
picking easier. Pinky, on the other hand, aims to capture as
much as possible without forcing the user to switch to the
full PIM tool interface, so it incorporates a calendar widget
directly in its own interface.

The rest of this section describes some of the new ideas
embodied in Pinky: (1) using GUI widgets for choosing
and changing arguments on the command line; (2) display-
ing relevant clippings from the backend web site while the
user is entering a command; and (3) reorganizing the dis-
play of alternative interpretations to make them easier to
scan and select.

GUI Widgets for Command Arguments

Sometimes arguments may be easier or faster to select from
a GUI widget, such as a calendar picker, than to type. GUI
widgets also inherently offer additional feedback that can
reduce errors. For example, a calendar widget makes it
obvious that April 12 is a Saturday, so it may not be a good
day to schedule a work meeting.

The Pinky prototype incorporates three kinds of GUI wid-
gets into its interface: people, places, and dates. The
people widget (@) pops up an autocompleting list of
people’s names and email addresses, drawn from the user’s

email contacts. The places widget (@) has a similar list of
relevant places, which for our environment are the rooms

in our building. The date widget (ﬁ) is a conventional
calendar widget. These three widgets are implemented in
HTML and Javascript using the Yahoo User Interface li-
brary®.

GUI widget buttons are incorporated into Pinky’s feedback
window, so that argument slots of the appropriate type
(people, places, and dates) are automatically followed by
the relevant button. Clicking the button pops up the widget
to fill in the missing argument (or change the value already
assigned to it by command parsing).

When an argument’s value is set with a GUI widget, the
command in the textbox automatically reflects the change
as well, by either replacing the keywords that originally
matched that argument or adding new keywords on the
end. These keywords become mandated variables, which
are prefixed by an argument name, as in mtg S5pm

® http://developer.yahoo.com/yui



with:emax at:G725. This syntax forces the keyword in-
terpreter to use those keywords only for the specified ar-
gument. To avoid changing the user’s command too dras-
tically, this extra syntax is normally hidden, and mandated
variables are shown by underlining them as in mtg Spm
emax G725. Clicking on the mandated variable expands it
into its full syntax. The user can also directly type the syn-
tax for mandated variables, but this requires the user to
learn and remember names of argument.

Web Clips

GUI widgets like the calendar widget provide generic sup-
port for entering arguments accurately, reminding the user
for example that April 12 is actually a Saturday and that
msbernst@mit.edu is the right email address. For more
personalized context, Pinky uses web clippings extracted
from relevant web sites. These web clippings bring just-in-
time information to the user, anticipating the user’s infor-
mation needs so that the user does not need to break off the
entry to consult less efficient menu and form interfaces, or
worse, choose not to record the information at all.

For example, when the user is scheduling a calendar event
or reserving a conference room, Pinky automatically pops
up a clipping of the user’s calendar (Figure 7a) for that day,
to help confirm the date and time of the meeting and avoid
overbooking. When the user is sending an email, Pinky
shows a clipping of recent emails exchanged with the in-
tended recipient (Figure 7b). Clippings appear as satellites
around the main Pinky popup window.

Pinky’s clippings are reminiscent of WinCuts [13] for
desktop windows, and Apple Web Clips’ and Web Tracker
[5] for web pages. Unlike these systems, however, Pinky
extracts a clipping not by retrieving a single URL and ex-
tracting a snippet of HTML or a screenshot, but instead by
automating a web application with Chickenfoot until it
reaches the desired state. The resulting web page can thus
be customized much more dramatically than with other
tools; for example, by showing the calendar focused on the
time under consideration, by displaying only e-mails ex-
changed with the person of interest, or by skinning the con-
ference room schedule down to only the room under con-
sideration rather than a large matrix showing all rooms.

To render a web page as a clipping, it is displayed in an
HTML <iframe> element set to reasonable browsing di-
mensions (800x600), which ensures that the clipping is
rendered in a familiar and readable way. The desired re-
gion in the page is located (e.g., a single day in Google
Calendar), and its bounding box is used to clip the
<iframe> by positioning the frame appropriately inside a
viewport element, a <div> of the appropriate width and
height.

Since the clipping is a live rendition of the underlying web
application, it can update immediately when the user

7 http://www.apple.com/macosx/features/safari.html

changes arguments in the command, like the day of a meet-
ing. To interact with the web application directly, the user
can click on the clipping, which expands the <iframe> to
make the whole web page visible. Clicking away from the
<iframe> shrinks it back to a clipping again.

April Fool's Day

v # v Date v From ¥ Subject Thread]
2032 09/22/2006 Rob Miller Re: Juid] HCl Reading and [

10am : a
Rob MillE 5§ 1934 09/20/2006 Rob Miller Re: [uid] HCI Reading and C
—— 1870 09/19/2006 Rob Miller [uid] [Fwd: [HCI Seminar] TA
i 1858 09/19/2006 ob Miller call for papers, WWW 2007
= = 1818 09/19/2006 Rob Miller Re: [uid] synergy - tool for ¢
I = 1773 09/18/2006 Rob Miller [uid] hacking session toda)
= 1736 09/18/2006 Rob Miller [vid] papers for this week"t
€= 1650 09/15/2006 Rob Miller Re: Thanks
(a ) L 5] 1189 09/07/2006 Rob Miller Re: Dropping by

ﬁ 1141 09/07/2006 Rob Miller Re: Dropping by
3= 885 08/31/2006 Rob Miller Re:Dropping by

(b)

Figure 7: Web clippings of (a) the user's calendar
and (b) webmail, displayed automatically when the
user is entering a relevant command.

By automatically navigating web applications and showing
appropriate clippings, Pinky helps bridge the gap between
the user and the web application. For PIM data capture,
clippings bring useful bits of the PIM tool out to the user,
on demand, rather than requiring the user to find their own
way into the tool.

Automatic clippings suggest another use for Pinky — not
just a shortcut for data capture, but for queries as well. By
typing a partial command, like apr 17, the user can imme-
diately bring up a web clipping with useful information, in
this case their calendar for that day.

Organizing Multiple Interpretations

One observation from the Inky user study was that the list
of alternative interpretations was rarely used. Several study
participants expressed the concern that the alternatives on
the list often looked very similar, which made them hard to
compare. For example, the top few choices may all be the
same function, differing only in how the user’s keywords
are assigned to arguments. As a result, it often felt easier
to change the command until the top suggestion was right,
rather than visually scan the list of suggestions.

The Pinky prototype has a new feedback interface aimed at
addressing this problem (Figure 8). The suggestion list is
categorized by function, indicated by the tabs on the left, so
that each function that matches the command appears only
once. Within each command, the alternative parses for
each argument are shown in a drop-down list under the
argument, which the user can select.



meeting with max and rob 5:00 tomorrow

calendar |max and rob|

todo
max

CSAIL

Jogging

time location

5:00am G531

date

4/3/2008
e-mail

note

Figure 8: Pinky feedback window, grouping alterna-
tive command interpretations into tabs and alterna-
tive arguments into drop-down lists.

This interface allows the user to select the right interpreta-
tion by focusing on just one component at a time: first the
function name (by picking a tab), then each argument (by
picking from drop-down lists). Each choice may cascade
to other choices, since the keyword interpreter does not
permit two arguments to use the same keyword. For ex-
ample, when the user uses the interface in Figure 9 to indi-
cate that G531 is the location of the calendar event, G531
can be removed from the list of guesses for the title of the
meeting. The new interface also incorporates the GUI wid-
gets mentioned earlier (Figure 9A_i\nc1udes the calendar wid-

get ﬁ and the location widget %ﬁ).

This interface is still under development, and has yet to be
tested, but we hypothesize that it will make alternative in-
terpretations easier to understand and select.

CONCLUSION AND FUTURE WORK

We have presented Inky, a command line for the Web with
sloppy syntax and rich visual feedback, and Pinky, which
extends the idea to PIM data capture. Inky and Pinky ex-
ploit the fact that they are built on top of menu-and-form
web interfaces to improve the usability of a command line
without giving up its efficiency benefits. This is, in a
sense, a reversal of history, since early graphical user inter-
faces were often facades built on top of existing command
line interfaces. Now that graphical user interfaces are the
standard, we believe it’s desirable to build command lines
on top of them, to provide fast data entry and reduced na-
vigation, with the GUI still providing constraints and guid-
ance where necessary.

One avenue of future work would be allowing end users to
extend Inky with new web site functions, which currently
requires editing the XML files. For example, Inky could
be connected to a system that records web macros, like
Smart Bookmarks [6] or Koala/CoScripter [7], so that the
user could use the Inky command line for intranet web sites
or very personalized tasks. A connection to CoScripter
would be particularly interesting, because CoScripter’s
public wiki is evolving into a web-scale database of proce-
dural knowledge, “how-to” scripts for a variety of web
sites and tasks. From that perspective, Inky acts like a
keyword search interface for procedural knowledge — but a
search that doesn’t just find the how-to script, but also fills
in arguments and runs it. If CoScripter succeeds in building

10

the database, a command line like Inky may be a conve-
nient interface for exploiting it.

The Inky and Pinky prototypes are still under development,
but will be released as publicly-available, open-source
software during the summer of 2008.

ACKNOWLEDGMENTS

We thank members of the UID group who provided valua-
ble feedback on this paper, and study participants for their
time and comments about Inky. This work was supported
in part by the National Science Foundation under award
number 11S-0447800, and by Quanta Computer under the
T-Party project. Any opinions, findings, conclusions or
recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the
sponsors.

REFERENCES

1. Bernstein, M., Van Kleek, M., Karger, D.R., and schraefel,
mec. Information scraps: how and why information eludes our
personal information management tools. ACM TOIS, to ap-
pear.

2. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R.C.
Automation and customization of rendered web pages. In
Proc. UIST 2005, 163-172.

3. DiGiano, C. and Eisenberg, M. Self-disclosing design tools: a
gentle introduction to end-user programming. In Proc. DIS
1995, 189-197.

4. Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais,
S. T. The vocabulary problem in human-system communica-
tion. CACM 30, 11 (Nov 1987), 964-971.

5. Greenberg, S. and Boyle, M. Generating custom notification
histories by tracking visual differences between web page vis-
its. In Proc. Graphics Interface 2006, 227-234.

6. Hupp, D., and Miller, R. C. Smart bookmarks: automatic re-
troactive macro recording on the web. In Proc. UIST 2007,
81-90.

7. Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., and Kando-
gan, E. Koala: Capture, share, automate, personalize business
processes on the web. In Proc. CHI 2007, 943-946.

8. Little, G., and Miller, R. C. Translating keyword commands
into executable code." In Proc. UIST 2006, 135-144.

9. Little, G. and Miller, R. C. keyword programming in Java. In
Proc. ASE 2007, 84-93.

10. Miller, R. C. and Myers, B. A. Integrating a command shell
into a web browser. In Proc. USENIX 2000, 171-182.

11. Shneiderman, B and Plaisant, C. Designing the User Inter-
face, 4™ ed. Pearson/Addison-Wesley, 2005.

12. Starner, T., Snoeck, C., Wong, B., and McGuire, R. Use of
mobile appointment scheduling devices. In Proc. CHI 2004,
1501-1504.

13. Tan, D.S., Meyers, B., and Czerwinski, M. WinCuts: manipu-
lating arbitrary window regions for more effective use of
screen space. In Proc. CHI 2004, 1525-1528.

Van Kleek, M., Bernstein, M., Karger, D.R., and schraefel,
mc. GUI --- phooey!: the case for text input. In Proc. UIST
2007, 193-202.

14.



