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ABSTRACT
This paper analyzes bilateral multi-issue negotiation between self-
interested agents. Specifically, we consider the case where issues
are divisible, there are time constraints in the form of deadlines and
discount factors, and the agents have different preferences over the
issues. Given these differing preferences, it is possible to reach
Pareto-optimal agreements by negotiating all the issues together us-
ing a package deal procedure (PDP). However, finding equilibrium
strategies for this procedure is not always computationally easy. In
particular, if the agents’ utility functions are nonlinear, then equi-
librium strategies may be hard to compute. In order to overcome
this complexity, we explore two different solutions. The first is to
use the PDP for linear approximations of the given nonlinear utility
functions. The second solution is to use a simultaneous procedure
(SP) where the issues are discussed in parallel but independently of
each other. We then compare these two solutions both in terms of
their computational properties (i.e., time complexity of computing
an approximate equilibrium and the associated error of approxi-
mation) and their economic properties (i.e., the agents’ utilities and
social welfare of the resulting outcome). By doing so, we show that
an approximate equilibrium for the PDP and the SP can be found
in polynomial time. In terms of the economic properties, although
the PDP is known to generate Pareto optimal outcomes, we show
that, in some cases, which we identify, the SP is better for one of
the two agents and also increases the social welfare.

1. INTRODUCTION
Negotiation is a key form of interaction in multiagent systems. It
is a process in which disputing agents decide how to divide the
gains from cooperation [9]. This decision-making depends on fac-
tors such as the number of negotiators, the number of issues to be
negotiated, the type of issues (i.e., divisible or indivisible), and the
agents’ utility functions [9, 13]. This paper focuses on bilateral
multi-issue negotiation where issues are divisible, the agents have
time constraints in the form of deadlines and discount factors, and
the agents have different preferences over issues.

Given these differing preferences, Pareto-optimal agreements can
be reached by negotiating all the issues together using a package
deal procedure (PDP) [2]. In this procedure, the agents make alter-
nating offers to each other and each such offer specifies a division
on all the issues. The Pareto-optimality stems from the fact that
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the agents can make trade-offs across the issues and so an agent is
willing to accept a lower utility on a less important issue, because
it can obtain a higher utility on more important ones.

However, computing the equilibrium for the PDP is not always
easy. Specifically, as we will show, if the agents’ utilities are non-
linear1 then the equilibrium strategies are hard to compute. This
complexity represents a potentially significant barrier to the practi-
cal use of software negotiators. In order to overcome this problem,
we explore two different solutions for coping with the complexity
associated with nonlinear utility functions. The first is to approx-
imate nonlinear utility functions with linear ones and then use the
PDP. The equilibrium for linear utilities can be computed in poly-
nomial time. The other solution is to negotiate the issues in parallel
but independently of each other using a simultaneous procedure
(SP). Because the issues are dealt with independently, the equilib-
rium for SP can also be computed in polynomial time. However,
since the two procedures differ in terms of their equilibrium solu-
tions, our objective is to compare them in terms of their "computa-
tional properties" (i.e., their time complexities and approximation
errors) and also their "economic properties" (i.e., the agents’ util-
ities and the social welfare). In so doing, we show that an ε-Nash
equilibrium for the PDP and the exact equilibrium for the SP can be
computed in polynomial time. In terms of economic properties, al-
though the PDP is known to generate Pareto optimal outcomes, we
show that, in some cases, which we identify, the SP may be better
for one of the two agents and also improve the social welfare.

Overall, this paper makes the following key contributions. First,
it obtains, for the first time, ε-Nash equilibrium strategies for PDP
and SP . Second, since the SP results in multiple equilibria, it for-
mulates rules for reaching an outcome that maximizes social wel-
fare. Third, it compares PDP and SP both in terms of their com-
putational and their economic properties. When taken together,
these results enable the designers of complex negotiation settings
to make an informed choice about which procedure to use when.

The remainder of the paper is organised as follows. Section 2
describes the negotiation setting. Section 3 obtains the equilibrium
strategies for the PDP and analyzes its computational complexity.
Section 4 introduces two solutions for overcoming the complex-
ity of negotiating multiple issues with nonlinear utility functions.
Section 5 provides a comparative analysis of these two solutions.
Section 6 discusses related literature and Section 7 concludes.

2. THE NEGOTIATION SETTING
We extend the single issue model of [15, 2] to multiple issues. Be-
fore doing so, we give a brief overview of this model in terms of its
1Nonlinear utilities are common in many economic scenarios. For
example, utility from money is nonlinear.



equilibrium strategies. Then, we provide our analysis of this equi-
librium to show how the negotiation deadline and discount factor
affect it (the results of this analysis will subsequently be used to
maximize the social welfare for the SP).

2.1 Dealing with a Single Issue
The single issue model of [2] (a variant of the one presented in [15])
is as follows. Two agents, a and b negotiate over a single divisible
issue which is a ‘pie’ of size 1. The agents want to determine how
to split it between themselves. Let n ∈ N+ be the deadline and
0 < δ ≤ 1 the discount factor for both agents. The agents use an
alternating offers protocol [12], which proceeds through a series of
time periods. One of the agents, say a, starts in the first time pe-
riod (i.e., t = 1) by making an offer (0 ≤ x ≤ 1) to b. Agent b
can accept or reject the offer. If it accepts, negotiation ends in an
agreement with a getting x and b getting y = 1−x. Otherwise, ne-
gotiation proceeds to the next time period, in which agent bmakes a
counter-offer. This process continues until one of the agents either
accepts an offer or quits negotiation (resulting in a conflict).

Let the pair [x, y] denote the offer made at time t where x (y) de-
notes a’s (b’s) share. Then, the set of possible offers is {[x, y]|0 ≤
x ≤ 1, and x+ y = 1}. The utility functions for a and b are:

UA(x, t) =


x× δt−1 if t ≤ n
0 otherwise

UB(y, t) =


y × δt−1 if t ≤ n
0 otherwise

The conflict utility (i.e., the utility received in the event that no deal
is struck) is zero for both agents.

For this setting, the equilibrium offers were obtained in [2] as
follows. Let n = 1 and let a be the first mover. If b accepts a’s
proposal at t = 1, the division occurs as agreed; if not, neither
agent gets anything (since the deadline is n = 1). Here, a is in
a powerful position and is able to keep 100% of the pie and give
nothing to b2. Agent b accepts and an agreement takes place at
t = 1.

Now, let n = 2 and δ = 1/2. The first mover (say a) decides
what to offer at t = 1, by looking ahead to t = 2 and reasoning
backwards. Agent a reasons that if negotiation proceeds to t = 2,
b will take 100 percent of the shrunken pie by offering [0, 1/2].
Thus, in the first time period, if a offers b anything less than 1/2, b
will reject the offer. So, at t = 1, agent a offers [1/2, 1/2]. Agent
b accepts and an agreement occurs at t = 1.

In general, let SA(t) (SB(t)) denote a’s (b’s) equilibrium strategy
for time period t. Also, let Aa(t) (Ab(t)) denote a’s (b’s) share in
a’s equilibrium offer for t. The shares Ba(t) (Bb(t)) in b’s equilib-
rium offer are defined analogously. Then the following strategies
form a Nash equilibrium [2]:

SA(t) =

8>>><>>>:
IF a’s TURN TO OFFER:

OFFER [δt−1 − Bb(t+ 1), Bb(t+ 1)]
IF a RECEIVES [x, y]:

If (UA(x, t) ≥ Uat ) ACCEPT
else REJECT

SB(t) =

8>>><>>>:
IF b’s TURN TO OFFER:

OFFER [δt−1 − Aa(t+ 1), Aa(t+ 1)]
IF b RECEIVES [x, y]:

If (UB(y, t) ≥ Ubt ) ACCEPT
else REJECT

2It is possible that bmay reject such a proposal. However, irrespec-
tive of whether b accepts or rejects the proposal, it gets zero utility
(because the deadline is n = 1). Thus, b accepts a’s offer.

where Uat = UA(Aa(t+ 1), t+ 1) and Ubt = UB(Bb(t+ 1), t+ 1).
For the last time period t = n, we have Aa(n) = δn−1, Ab(n) = 0,
Ba(n) = 0, and Bb(n) = δn−1. Given this, it is easy to verify
using backward induction, that if a is the offering agent at t < n,
we have:

Aa(t) =

j=nX
i=0,j=t

(−1)iδj−1 ; Ab(t) = δt−1 − Aa(t) (1)

and if b is the offering agent at t < n, we have:

Ba(t) = δt−1 − Bb(t) ; Bb(t) =

j=nX
i=0,j=t

(−1)iδj−1 (2)

The time to compute the equilibrium offer for t = 1 is O(n) [2].
Given the above equilibrium strategies, we now analyze how the

deadline and the discount factor effect an agent’s utility. Later, we
will use the result of this analysis to find a way of maximizing so-
cial welfare for the SP.

Effect of deadline and discount factor on the equilibrium. The
strategies SA(t) and SB(t) depend on two factors: the deadline (n)
and the discount factor (δ). In order to analyze the effect of these
factors on the negotiation outcome we vary δ between zero and one,
and for each δ, determine the outcome for a range of n. The results
of this analysis are shown in Figure 1. Here the continuous lines
(dotted lines) denote the share for the first mover (second mover).
In this figure, the plot for δ = 1 shows the outcomes for n ≤ 10.
This is done to enhance clarity; the pattern remains unchanged for
n > 10. The key results of this analysis are:

R1: For δ < 0.5 and n ≥ 1, the first mover’s share is greater than
that for the second, (i.e., if a is the first mover, then Aa(1) >
Ab(1), and if b is the first mover, then Bb(1) > Ba(1)).

R2: For 0.5 ≤ δ < 1, there is a deadline nδ ≥ 1 such that for all
n > nδ , the first mover’s share is strictly greater than that
for the second mover.

For instance, for δ = 0.1, nδ = 1, and for δ = 0.9, nδ = 40 (see
Figure 1). Later, in Theorem 4, we will useR1 andR2 to maximize
social welfare for the SP.

We now extend this single issue model to multiple issues.

2.2 Dealing with Multiple Issues
Here a and b negotiate over m > 1 pies that represent m issues.
Each pie is of size 1. The agents want to determine how to split
each of the m pies. The discount factor is δ and the deadline is n
for all the m issues. Let La (Lb) be an m-dimensional vector that
represent a’s (b’s) share for them issues. We assume that the utility
functions are separable3 and nonlinear, i.e., UA and UB are of the
following form:

UA(La, t) = δt−1
mX
c=1

FAc(L
c
a) (3)

UB(Lb, t) = δt−1
mX
c=1

FBc(L
c
b) (4)

where the functions FAc and FBc are nonlinear polynomials.

3A function is said to be separable if it can be represented as the
sum of several functions (generally nonlinear) of a single variable
each [11]. Future work will deal with non-separable functions.
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Figure 1: The effect of deadline (n) and discount factor (δ) on an agent’s equilibrium share for single issue negotiation. The continu-
ous lines denote the share for the first mover and the dotted lines those for the other agent.

3. PACKAGE DEAL — EQUILIBRIUM
For the setting described in Section 2, we now analyze the strate-
gic behavior of agents to determine equilibrium strategies for an
incomplete information setting with nonlinear utilities. Before do-
ing so, we give a brief overview of the equilibrium for complete
information with linear utilities presented in [2].

3.1 The complete information setting
For the complete information setting, [2] presented the equilibrium
for the case where FA and FB are linear. These strategies were
obtained using backward induction as follows. Let SAP(t) (SBP(t))
denote a’a (b’s) strategy for time t. For the last time period t = n,
the offering agent gets a 100% of all the m shrunken pies. For all
previous time periods, t < n, the offering agent (say a) proposes a
package ([La, Lb]) such that b’s cumulative utility from it is equal
to what bwould get from its own offer for t+1. If there is more than
one package that gives b this utility, then a must find from among
them the one that maximizes its own cumulative utility. Thus, a
must solve the following maximization (or trade-off) problem:

TA : maximize UA(La, t) (or
mX
c=1

FAc(L
c
a))

subject to UA(Lb, t) = Ubt

0 ≤ Lcb ≤ 1 and Lca = 1− Lcb for 1 ≤ c ≤ m

where Ubt is b’s cumulative utility from its own offer SBP(t+1). On
the other hand, if a receives an offer [La, Lb] at time t, then it
accepts if UA(La, t) = Uat where Uat is a’s cumulative utility from
its own offer SAP(t+1). The equilibrium strategy for b (in terms of
TB) is defined analogously. Thus we have:

SAP(n) =


OFFER [1, 0] IF a’s TURN TO OFFER
ACCEPT IF b’s TURN TO OFFER

SBP(n) =


OFFER [0, 1] IF b’s TURN TO OFFER
ACCEPT IF a’s TURN TO OFFER

where 0 ( 1) denotes a vector of m zeros (ones). For all preceding
time periods t < n, the strategies are as follows:

SAP(t) =

8<: OFFER TA IF a’s TURN TO OFFER
If (UA(La, t) ≥ Uat ) ACCEPT IF a RECEIVES [La, Lb]
else REJECT

SBP(t) =

8<:
OFFER TB IF b’s TURN TO OFFER

If (UB(Lb, t) ≥ Ubt ACCEPT IF b RECEIVES [La, Lb]
else REJECT

Complexity of TA or TB. For linear utilities, (i.e., UA or UB are
linear) TA and TB are solvable in time linear in m [2].

We now obtain the equilibrium for an incomplete information
setting with nonlinear utilities.

3.2 The incomplete information setting
One of the most common sources of uncertainty is with regard to
utility functions. The agents are uncertain about their utilities and
we model this uncertainty as follows. There are r possible cumula-
tive utility functions for each agent. For agent a, these are denoted
UA1, . . . , UAr , and for b, they are UB1, . . . , UBr . Let αa denote
a discrete probability distribution function over the UA1, . . . , UAr .
and αb that over UB1, . . . , UBr . The distribution functions αa and
αb, and the utility functions UA1, . . . , UAr , and UB1, . . . , UBr are
common knowledge to a and b.

Because of this uncertainty, agents can only compute their ex-
pected utilities. Let EUA(La, t) and EUB(Lb, t) denote the ex-
pected utility that a and b get from La and Lb at time t. These
utilities are defined as follows:

EUA(La, t) = δt−1(

rX
d=1

αa(d)×
mX
c=1

FAdc(L
c
a)) (5)

EUB(Lb, t) = δt−1(

rX
d=1

αb(d)×
mX
c=1

FBdc(L
c
b)) (6)

As before, FAd and FBd are nonlinear. Given this, agent a’s trade-
off problem at time t is to find a package [La, Lb] that solves the
following maximization problem:

TA-I maximize
rX
d=1

αa(d)×
mX
c=1

FAdc(L
c
a)

subject to
rX
d=1

αb(d)× FBdc(L
c
b) = Ubt

0 ≤ Lca ≤ 1 for 1 ≤ c ≤ m and Lca = 1− Lcb

Here Ubt denotes b’s expected utility from its own offer for time
t + 1. If FAd and FBd are nonlinear, then EUA and EUB are non-
linear since EUA is a linear transformation of FA and EUB that of
FB. For the nonlinear case, a’s equilibrium strategy for time t is the
same as SAP(t) (defined in Section 3.1) with TA replaced with TA-I,
and UA replaced with EUA. Likewise for agent b. TA-I and TB-I
are both nonlinear optimization problems with both the objective
function and constraint being nonlinear.

Complexity of TA-I and TB-I. For the nonlinear utilities (defined



in Equations 3 and 4) TA-I and TB-I are nonlinear optimization
problems with nonlinear objectives and nonlinear constraints and
such problems are, in general, computationally hard. This is be-
cause, a specific instance of TA-I (or TB-I), viz., the quadratic op-
timization problem (which has a quadratic objective function and
a linear constraint) is NP-hard [5]. In more detail, for a quadratic
instance of TA-I, FAdc is quadratic and FBdc is linear. Likewise for
TB-I.

4. TOWARDS FEASIBILITY
In order to overcome the complexity of TA-I and TB-I, we explore
two solutions: approximating nonlinear utilities with linear ones
and using the PDP (Section 4.1), and using the SP (Section 4.2).

4.1 PDP with approximate linear utilities
The source of complexity in computing equilibrium strategies for
the PDP is the complexity of solving the trade-off problem, which
is a nonlinear optimization problem. One approach to solving such
problems is to approximate the nonlinear functions involved — ob-
jective function and/or constraints — with straight line segments
and then use methods that are appropriate for linear problems [11].
The resulting linear optimization problem can then be solved in
polynomial time. In more detail, in a completely general nonlinear
optimization problem, linear approximations are not easy to specify
algebraically. However, with separable functions , a mathematical
specification is more easily done [11]. As per Equations 3 and 4,
the objective and constraint in TA-I or TB-I are separable. Given
this, let UA, FA, and EUA denote the linear approximations for the
functions UA, FA, and EUA respectively. The approximation func-
tions for agent b (i.e., UB, FB, and EUB) are denoted analogously.
We assume that FAdc (FBdc ) is increasing in Lca (Lcb). Being linear,
these approximate functions are of the following form:

FAdc(L
c
a) = AdcLca and FBdc(L

c
b) = BdcLcb (7)

where Adc ∈ R+ and Bdc ∈ R+ denote the "weights" that a and b
associate with the different issues in their approximate utility func-
tions.

Note that it is not our objective to find the approximate functions.
Rather, given the functions FAdc , FBdc , and the associated approxi-
mation errors, our objective is to find an approximate equilibrium.
To this end, let η denote an upper bound on the "absolute error" in
the function FAdc or FBdc , i.e.,

abs(FAdc(L
c
a)− FAdc(L

c
a)) ≤ η

and

abs(FBdc(L
c
b)− FBdc(L

c
b)) ≤ η.

Given FA and FB, the approximate expected utilities are:

EUA(La, t) = δt−1(
rX
d=1

αa(d)×
mX
c=1

FAdc(L
c
a)) (8)

EUB(Lb, t) = δt−1(

rX
d=1

αa(d)×
mX
c=1

FBdc(L
c
b)) (9)

In order to obtain the error in EUA or EUB in terms of η, we use
standard error propagation rules [16]. This propagation gives us
abs(EUA(La, t) − EUA(La, t)) ≤ δt−1Pr

d=1 αa(d) × mη =
δt−1mη. Likewise, abs(EUB(Lb, t)− EUB(Lb, t)) ≤ δt−1mη.

Given the above linear approximations, we find an approximate
equilibrium for the PDP. Let SAP(t) (SBP(t)) denote a’s (b’s) ap-
proximate equilibrium strategy for time period t. Here agent a’s

trade-off or optimization problem for time t is called TA-I and is:

TA-I maximize
rX
d=1

αA(d)×
mX
c=1

AdcLca

subject to
rX
d=1

αA(d)×
mX
c=1

BdcLca = U
b
t

0 ≤ Lca ≤ 1 for 1 ≤ c ≤ m and Lca = 1− Lcb

whereU
b
t denotes b’s approximate expected cumulative utility from

SBP(t+ 1). Agent b’s optimization problem (TB-I) is defined anal-
ogously in terms of U

a
t . Note that both TA-I and TB-I are linear

knapsack problems and therefore solvable in O(m) time [10].
Since TA-I will give an approximately optimal solution, the error

in it must be measured with respect to the corresponding exactly
optimal solution. The exact counterpart of the approximate opti-
mization problem TA-I is called ETA-I and is:

ETA-I maximize
rX
d=1

αA(d)×
mX
c=1

FAdcL
c
a

subject to
rX
d=1

αA(d)×
mX
c=1

BdcLca = U
b
t

0 ≤ Lca ≤ 1 for 1 ≤ c ≤ m and Lca = 1− Lcb

For b, ETB-I is defined analogously. In order to find the difference
between the solutions to ETA-I and TA-I, consider time t and let a
be the offering agent. Let [Oa, Ob] (where Oa and Ob are m ele-
ment vectors that contain a’s and b’s shares for them issues) denote
the solution to ETA-I. Likewise, let [Oa, Ob] denote the solution to
TA-I. Then, let F = EUA(Oa, t) and F = EUA(Oa, t), i.e., F is
the exact maximum, F is the exact value of the function EUA at
the approximately optimal solution Oa. Finally, let ε be an upper
bound on abs(F −F ). Likewise, for b, let ε denote an upper bound
on abs(EUB(Ob, t)− EUB(Oa, t)). Theorem 1 characterizes an ε-
approximate Nash equilibrium (a strategy profile is said to form an
ε-approximate Nash equilibrium if no player can gain more than ε
by deviating) for the PDP.

THEOREM 1. The following strategies form an ε-approximate
Nash equilibrium for time t where ε = 2mηδt−1. For t = n,
SAP(n) = SAP(n) and SBP(n) = SBP(n). For all preceding time
periods t < n, the strategies are as follows:

SAP(t) =

8<:
OFFER TA-I IF a’s TURN TO OFFER

If (EUB(Lb, t) ≥ U
b
t) ACCEPT IF a RECEIVES [La, Lb]

else REJECT

SBP(t) =

8<:
OFFER TB-I IF b’s TURN TO OFFER

If (EUA(La, t) ≥ U
a
t ACCEPT IF b RECEIVES [La, Lb]

else REJECT

An agreement on all the issues occurs at t = 1.

PROOF. It is straightforward to obtain SAP(t) and SBP(t) using
backward induction. Thus we will now prove that ε = 2mηδt−1.

Consider time period t and let a be the offering agent. Let the
definitions for [Oa, Ob], [Oa, Ob], F , and F be as given earlier. In
addition, let F1 = EUA(Oa, t) and F2 = EUA(Oa, t). In other
words, F1 is the approximate value of EUA at the exact optimal
solution Oa, and F2 is the approximate value of EUA at the ap-
proximately optimal solution Oa. We need to find an ε such that
F = F ± ε. To do so, assume that Oa 6= Oa. This implies that
F ≤ F , because F is the exact maximum and so all other values



of the function EUA must be no greater than F . Recall that the up-
per bound on the approximation error in EUA ismηδt−1. Thus, we
have F2−mηδt−1 ≤ F ≤ F2+mηδt−1. Substituting this relation
in F ≤ F , we get F2−mηδt−1 ≤ F or F2 ≤ F+mηδt−1. Again,
since F2 ≥ F −mηδt−1, we get F −mηδt−1 ≤ F +mηδt−1 or
F ≥ F − 2mηδt−1. Thus, we have a lower bound on F .

We now need to find an upper bound on F . To do so, we first find
the relation between F1 and F2. We prove that F1 ≤ F2 by contr-
diction. Assume that (F1 = EUA(Oa, t)) > (EUA(Oa, t) = F2).
But F1 > F2 contradicts the fact that Oa is the optimal solu-
tion to the linear knapsack problem (TA-I) and Oa therefore max-
imizes EUA. In other words, the relation F1 > F2 has led to
a contradiction. We therefore have F1 ≤ F2. It follows that
F1 −mηδt−1 ≤ F2 −mηδt−1. We already know that F ≥ F2 −
mηδt−1. This relation together with F1−mηδt−1 ≤ F2−mηδt−1

gives F1 ≤ F + mηδt−1. Recall that F1 is the value of the
approximate function EUA which has error mηδt−1. So we have
F1 −mηδt−1 ≤ F ≤ F1 +mηδt−1 or F1 ≥ F −mηδt−1. The
relations F1 ≤ F +mηδt−1 and F1 ≥ F −mηδt−1 together give
F ≤ F + 2mηδt−1. Thus, F − 2mηδt−1 ≤ F ≤ F + 2mηδt−1.
We now have both an upper and a lower bound on F . In other
words, ε = 2mηδt−1 for the case when a is the offering agent.

In the same way, it can be shown that ε = 2mηδt−1 for the case
where b is the offering agent.

Finally, as mentioned earlier, TA-I or TB-I can be solved in O(m)
time, so the time to compute SAP(1) or SBP(1) is O(mn).

4.2 Simultaneous procedure
Another possibility for overcoming the complexity of nonlinear op-
timization is to use the simultaneous procedure to negotiate the is-
sues. This procedure works as follows. For each of the m issues,
one of the two negotiators is chosen as the first mover. Since the
first mover can be different for different issues, there are 2m possi-
ble ways from which to choose a first mover for them issues. Once
this choice is made, negotiation on each of the m issues begins in
the first time period and each issue is negotiated independently of
all other issues. So there are m single issue negotiations held in
parallel. The deadline for each of these negotiations is n.

As the issues are dealt with independently, it is optimal for an
agent to maximize its utility for each individual issue. Let SASc(t)
(SBSc(t)) denote a’s (b’s) equilibrium strategy for issue c for time
t. Thus, at t, a must solve the following optimization problem:

TAS-Ic maximize
rX
d=1

αa(d)× FAdcL
c
a

subject to
rX
d=1

αa(d)× FBdc(L
c
a) = Ubt

0 ≤ Lca ≤ 1 for 1 ≤ c ≤ m and Lca = 1− Lcb
where Ubt is b’s utility from its offer SBSc(t + 1). For b, TAS-Ic is
defined analogously. Note that Uan+1 = Ubn+1 = 0.

Theorem 2 formulates the equilibrium strategies for the SP.

THEOREM 2. The following strategies form a Nash equilibrium
for issue c (1 ≤ c ≤ m) for time period t (1 ≤ t ≤ n):

SASc(t) =

8<: OFFER TAS-Ic a’s TURN TO OFFER
If EUAc(L

c
a, t) ≥ Uat ACCEPT a RECEIVES [Lca, L

c
b]

else REJECT

SBSc(t) =

8<:
OFFER TBS-Ic b’s TURN TO OFFER

If EUBc(L
c
b, t) ≥ Ubt ACCEPT b RECEIVES [Lca, L

c
b]

else REJECT

An agreement on all the issues takes place in the first time period.

PROOF. As for linear utilities (see Section 2.1).

Note that, solving TAS-Ic or TBS-Ic takes O(1) time. Since TAS-Ic
or TBS-Ic must be solved for n time periods for each of the m
issues, the time to compute an offer for t = 1 is O(mn).

Recall that the time to compute an equilibrium offer for t = 1 for
the PDP is O(mn). Thus, the PDP for approximate linear utilities
and the SP for the given nonlinear utilities are identical in terms
of the time required to compute an equilibrium offer. However,
they differ in terms of their equilibrium outcomes i.e., the individ-
ual agents’ utilities, the Pareto optimality, and the social welfare of
the outcome. Since the PDP (unlike the SP) is known to generate
Pareto optimal outcomes, we compare the two procedures in terms
of the agents’ utilities and the social welfare. Clearly, this compar-
ison depends on the agents’ utility functions. If we compare the
procedures for one specific utility function, we cannot draw any
general conclusions regarding the performance of the two proce-
dures. Thus, instead of considering one specific nonlinear utility
function, we do the following. We compare the two procedures
in terms of the approximate linear utilities. The weights for these
linear utilities are generated randomly as per a given probability
distribution function (details in Section 5). This will allow us to
do the comparison for a wide range of utility functions and thereby
draw some general conclusions about the two procedures. To this
end, we first formulate approximate equilibrium strategies for the
SP. Let SASc(t) (SBSc(t)) denote a’s (b’s) approximate equilibrium
strategy for issue c for time period t.

For the approximate linear utilities FA and FB (see Equation 7),
agent a’s optimization problem that corresponds to TAS-Ic is de-
noted TAS-Ic and is of the following form:

TAS-Ic maximize
rX
d=1

αa(d)× FAdcL
c
a or Lca

subject to
rX
d=1

αa(d)× FBdc(L
c
a) = U

b
t

0 ≤ Lca ≤ 1 for 1 ≤ c ≤ m and Lca = 1− Lcb

where U
b
t is b’s approximate utility from its own offer SBSc(t+ 1).

For b, TAS-Ic is defined analogously in terms of U
a
t .

Theorem 3 gives approximate equilibrium strategies for the SP.

THEOREM 3. The following strategies form an ε-approximate
Nash equilibrium for time period t where ε = 2mηδt−1. An agree-
ment on all the issues occurs at t = 1.

SASc(t) = SA(t) for issue c

SBSc(t) = SB(t) for issue c

PROOF. As per Equation 7, FBdc (FBdc ) is increasing in Lca (Lcb).
Also, since the issues are negotiated independently, the optimal
strategy for each agent is to maximize its share for each individ-
ual. We therefore get SASc(t) = SA(t), and SBSc(t) = SB(t) for
issue c (see Section 2.1 for a definition of SA(t) and SB(t) in terms
of Aa, Ab, Ba, and Bb). We will now find ε (an upper bound on the
error in an agent’s approximate cumulative utility).

For time t, Theorem 1 gives ε = 2mηδt−1 as the upper bound
for the error in an agent’s cumulative utility. Thus, for a single
issue, (i.e., m = 1) we get ε = 2ηδt−1. Since there are m issues,
the upper bound on the error in an agent’s cumulative utility is
ε = 2mηδt−1.



Note that the outcome for the SP (for both, the exact equilibrium
of Theorem 2 and the approximate equilibrium of Theorem 3) de-
pends on the choice of the first mover for each of the m issues.
This choice affects the agent’s utilities and also the social welfare.
Given this, it is important to find the maximum possible social wel-
fare and show how the first mover for each issue must be chosen in
order to achieve this maximum.

Maximum Possible Social Welfare: Since there are multiple out-
comes, we determine the maximum possible approximate social
welfare (measured in terms of the sum of the agents’ approximate
cumulative utilities) that can be obtained in equilibrium. Let SWU

denote this maximum. Recall from Section 2 (results R1 and R2),
that, in most cases, the first mover gets a greater share of the pie. In
other words, the outcome for the SP depends on the choice of the
first mover for each of the m issues.

We first introduce some notation and then obtain SWU . Let L
and L each denote m element vectors. Also, for a given c, let
β = L

c − Lc. Given this, let ∆EUAcβ and ∆EUBcβ be defined as
follows:

∆EUAcβ = EUA(L
c
, t)− EUA(Lc, t) (10)

∆EUBcβ = EUB(L
c
, t)− EUB(Lc, t) (11)

Then, a is said to "value" issue c more than b if, for some β >
0, ∆EUAcβ > ∆EUAcβ . Theorem 4 uses ∆EUAcβ and ∆EUAcβ to
formulate rules to maximize the approximate social welfare. These
rules (calledR1 andR2) are formulated in terms of the results R1

and R2 of Section 2.1.

THEOREM 4. For the SP, letR1 andR2 be two rules for choos-
ing the first mover for issue c (1 ≤ c ≤ m) where:

R1: If ∆EUAcβ > ∆EUBcβ then a is the first mover for issue c, else
if ∆EUAcβ < ∆EUBcβ b is the first mover.

R2: If ∆EUAcβ = ∆EUBcβ then the first mover is chosen randomly.

If (δ < 0.5) or (δ > 0.5 and nc < nδ), then the social welfare for
the ε-Nash equilibrium outcome for rulesR1 andR2 is SWU .

PROOF. Since the issues are dealt with independently, the wel-
fare from all the m issues is maximized by maximizing the welfare
for each individual issue. From Theorem 3 and Figure 1, we know
that, for a given n and δ, the approximate equilibrium outcome for
an issue depends on the first mover. Consider issue c. There are
two possible outcomes for this issue: one that corresponds to a be-
ing the first mover and the other to b being the first mover. For
the former, a’s and b’s shares are Aa(1) and Ab(1) respectively,
while for the latter, they are Bb(1) and Ba(1). From Figure 1, we
know that Aa(1) > Ab(1) and Bb(1) > Ba(1). In order to show
that R1 and R2 give social welfare SWU , we let L

c
= Aa(1),

Lc = Ab(1). As per Equations 1 and 2, we have Aa(1) = Bb(1)
and Ab(1) = Ba(1). This implies L

c
= Aa(1) = Bb(1) and

Lc = Ab(1) = Ba(1). Then, let β = L
c − Lc and consider the

following three possible relations between ∆EUAcβ and ∆EUBcβ .

1. ∆EUAcβ > ∆EUBcβ: From Equations 10 and 11, we have
the following relation:

EUA(L
c
, 1)− EUA(Lc, 1) > EUB(L

c
, 1)− EUB(Lc, 1)

This can be rewritten as:

EUA(L
c
, 1) + EUB(Lc, 1) > EUB(L

c
, 1) + EUA(Lc, 1).

Thus, the social welfare if a is the first mover (i.e., EUA(L
c
, 1)+

EUB(Lc, 1)) is higher than the welfare if b is the first mover

(i.e., EUB(L
c
, 1) + EUA(Lc, 1)), so SWc

U = EUA(L
c
, 1) +

EUB(Lc, 1) and the ruleR1 gives this welfare.

2. ∆EUAcβ = ∆EUBcβ: From Equations 10 and 11, we have
the following relation:

EUA(L
c
, 1)− EUA(Lc, 1) = EUB(L

c
, 1)− EUB(Lc, 1)

This can be rewritten as:

EUA(L
c
, 1) + EUB(Lc, 1) = EUB(L

c
, 1) + EUA(Lc, 1)

Thus, the social welfare if a is the first mover is equal to the
social welfare if b is the first mover, so SWc

U = EUA(L
c
, 1)+

EUB(Lc, 1) = EUB(L
c
, 1)+EUA(Lc, 1) andR2 gives SWc

U .

3. ∆EUAcβ < ∆EUBcβ: From Equations 10 and 11, we have
one of the following relations:

EUA(L
c
, 1)− EUA(Lc, 1) < EUB(L

c
, 1)− EUB(Lc, 1)

or

EUA(L
c
, 1) + EUB(Lc, 1) < EUB(L

c
, 1) + EUA(Lc, 1)

In other words, the social welfare if b is the first mover is
higher than the social welfare if a is the first mover and the
ruleR1 chooses b as the first mover.

Thus, the rules R1 and R2 always give an outcome with social
welfare SWU .

5. COMPARISON BETWEEN PDP AND SP
In order to compare the PDP and the SP in terms of the utilities they
yield to the agents and also in terms of their social welfare, we con-
ducted the following experimental analysis. Since the outcomes for
the two procedures depend onm, n, δ, and the players’ weights (A
and B defined in Equation 7) for the different issues, we consider a
wide range of settings by varying these four parameters. For these
settings, we compare the PDP and the SP as follows.

Let a be the first mover for the PDP. Then, unlike the PDP, the
first mover for the SP may be the same or different for different is-
sues. Specifically, for the SP, we consider the following two cases:

C1: Agent a is the first mover for each issue

C2: The first mover for each issue is chosen as per the rules R1

andR2

Note that, for both cases, a is the first mover for the PDP. Since
there is only one first mover for the PDP, case C1 compares the PDP
with the SP by having a as the first mover for PDP and also for each
issue for the SP. In contrast, case C2 compares the best outcome
(best in terms of social welfare) for the SP with the outcome for
PDP4.

At this stage, we would like to point out that we will compare
the two procedures in terms of their approximate equilibria. Re-
call from Section 4, that ε is the upper bound on the error in the
approximate equilibrium utilities. Hence, in what follows, we will
quantify the approximation error in the results of our comparative
analysis in terms of ε.

We first introduce notation and then describe the experimental
setting. For t = 1, let the approximate equilibrium offer for the
4For our experimental analysis we also considered the case where
b is the first mover for the PDP and for each issue for the SP. Since
the players are symmetric, the results for this case are the same
as those for the case where a is the first mover for all the issues.
Hence, we only describe the case with a as the first mover.



δ m = 50 m = 65 m = 75 m = 85 m = 100
∆UA ∆UB ∆SW ∆UA ∆UB ∆SW ∆UA ∆UB ∆SW ∆UA ∆UB ∆SW ∆UA ∆UB ∆SW

0.1 7.98 8.1 7.99 8.05 8 8 8.31 8.18 8.3 8.14 8.2 8.14 8.35 8.14 8.33
±ε ±ε ±1.8ε ±0.7ε ±0.7ε ±1.4ε ±0.6ε ±0.6ε ±1.2ε ±0.5ε ±0.5ε ±ε ±0.5ε ±0.5ε ±0.9ε

0.3 17.8 17.8 17.8 17.8 17.65 17.8 17.7 17.8 17.7 17.9 17.7 17.8 18.13 17.8 18
±0.5ε ±0.5ε ±0.7ε ±0.4ε ±0.4ε ±0.6ε ±0.3ε ±0.3ε ±0.5ε ±0.3ε ±0.3ε ±0.4ε ±0.3ε ±0.3ε ±0.4ε

0.5 21.9 22 21.99 24.4 22.2 22.35 22.9 21.25 22.36 23 22.9 23 22.57 22.89 22.69
±0.4ε ±0.4ε ±0.6ε ±0.3ε ±0.3ε ±0.4ε ±0.3ε ±0.3ε ±0.4ε ±0.2ε ±0.2ε ±0.3ε ±0.2ε ±0.2ε ±0.3ε

0.7 23.7 23.3 23.56 24.9 22.18 23.78 26.5 21.8 24.59 26.5 21.1 24.3 24.77 21.2 23.26
±0.49ε ±0.49ε ±0.54ε ±0.3ε ±0.3ε ±0.4ε ±0.3ε ±0.3ε ±0.4ε ±0.2ε ±0.2ε ±0.3ε ±0.2ε ±0.2ε ±0.3ε

0.9 26.18 22.83 24.62 28 21.88 25.12 28.08 20.95 24.64 28.12 21.27 24.87 25.63 24.6 25.17
±0.5ε ±0.5ε ±0.6ε ±0.3ε ±0.3ε ±0.4ε ±0.3ε ±0.3ε ±0.4ε ±0.2ε ±0.2ε ±0.3ε ±0.2ε ±0.2ε ±0.25ε

Table 1: A comparison of the two procedures for uniformly distributed weights for the case C1.

δ m = 50 m = 65 m = 75 m = 85 m = 100
∆UA ∆UB ∆SW ∆UA ∆UB ∆SW ∆UA ∆UB ∆SW ∆UA ∆UB ∆SW ∆UA ∆UB ∆SW

0.1 33.3 -503 -14.1 36.8 -535 -16.4 35.84 -532 -16.5 34.55 -519 -14.8 38.6 -549 -15.3
±0.3ε ±0.3ε ±1ε ±0.2ε ±0.2ε ±0.7ε ±0.2ε ±0.2ε ±0.6ε ±0.2ε ±0.2ε ±0.6ε ±0.1ε ±0.1ε ±0.5ε

0.3 37.95 -113 3.7 36.8 -106 3.9 36 -105 4.46 36.84 -108 4.2 37.7 -111 3.14
±0.3ε ±0.3ε ±4ε ±0.2ε ±0.2ε ±4ε ±0.2ε ±0.2ε ±0.6ε ±0.2ε ±0.2ε ±4ε ±0.1ε ±0.1ε ±2ε

0.5 35.2 -31 12.5 34.7 -28 13.9 35.6 -30 13.43 35.3 -28 14.4 35.6 -29 13.58
±0.3ε ±0.3ε ±ε ±0.2ε ±0.2ε ±0.7ε ±0.2ε ±0.2ε ±0.6ε ±0.2ε ±0.2ε ±0.5ε ±0.2ε ±0.2ε ±0.5ε

0.7 33.16 3.85 20.6 33.1 0.01 19 32.6 4.4 20.9 31.2 4.6 20.55 32.4 3.7 20.5
±0.4ε ±0.4ε ±0.6ε ±0.3ε ±0.3ε ±0.5ε ±0.2ε ±0.2ε ±0.4ε ±0.2ε ±0.2ε ±0.4ε ±0.2ε ±0.2ε ±0.3ε

0.9 27.8 21.8 24.95 26.9 18.8 23.03 28.4 20.1 24.4 21.8 17.6 23.2 27.6 18.11 23.2
±0.4ε ±0.4ε ±0.5ε ±0.3ε ±0.3ε ±0.4ε ±0.3ε ±0.3ε ±0.4ε ±0.2ε ±0.2ε ±0.3ε ±0.2ε ±0.2ε ±0.3ε

Table 2: A comparison of the two procedures for uniformly distributed weights for the case C2.

PDP be [La, Lb], for the SP for case C1 let it be [La, Lb], and for
the SP for case C2 let it be [L̂b, L̂b]. Also, let UP a (UP b) be a’s
(b’s) approximate cumulative utility from [La, Lb], UP

a
(UP

b
) be

a’s (b’s) approximate cumulative utility from [La, Lb], and ÛP
a

(ÛP
b
) be a’s (b’s) approximate cumulative utility from [L̂b, L̂b].

And let SW be the approximate social welfare for the PDP, SW that
for the case C1 for the SP, and ŜW for case C2. In other words, we
have SW = UP a+UP b, SW = UP

a
+UP

b
, ŜW = ÛP

a
+ÛP

b
.

For a given m, n, δ, Ac, and Bc (1 ≤ c ≤ m), let PUA (PUB)
denote the percentage difference in a’s (b’s) utilities for the PDP
and case C1 for the SP. Likewise, let PSW denote the percentage
difference in the social welfare for the PDP and case C1 for the SP.
Thus, for a given m, n, δ, Ac, and Bc, we have:

PUA = 100× (UP a − UP a)/UP a (12)

PUB = 100× (UP b − UP b)/UP b (13)
PSW = 100× (SW − SW)/SW (14)

For the case C2, PUA, PUB , and PSW are defined analogously.
The experimental setting is as follows. We vary the number

of issues m between 50 and 100. For each m, we vary n (s.t.
nδ ≤ n ≤ 50) in increments of 10. For each m and n, we vary
δ between 0.1 and 0.9 in increments of 0.2. For each m, n, and δ,
we randomly generate the weights (Ac, and Bc for 1 ≤ c ≤ m) for
the m issues using a uniform distribution in the interval [1, 100].
Here, the players are symmetric in that weights are independently
and identically distributed across the two players. Note that the
probability distribution for the weights is identical for a and b but
the actual weights are different for the two agents.

For each m, n, and δ, we find all six percentage differences (i.e.,
PUA, PUB , PSW , PUA, PUB , and PSW ) for 10 sets of randomly
generated weights and find the average over these 10 cases. This
is done for weights that are distributed uniformly on the interval
[1, 100]. Let ∆UA, ∆UB , ∆SW , ∆UA, ∆UB , and ∆SW denote the
averages (taken over the 10 cases) for PUA, PUB , PSW , PUA, PUB ,
and PSW respectively. It was found that each of the six percentage
differences depended on m and δ but not on n5 Hence, we will
show how the percentage differences vary with m and δ.

As mentioned before, the percentage differences we are measur-
ing are with respect to the linear approximations of nonlinear utility
functions. Thus, there is some error in these measurements which
we quantify as follows. Recall from Section 4, that ε denotes an
upper bound on the absolute error in an agent’s cumulative utility
computed using FA or FB. Given ε, we find an upper bound on
the error in the percentage differences (i.e., PUA, PUB , PSW , PUA,
PUB , or PSW ) as follows. Consider PUA (see Equation 12). In
order to propagate the error (ε) to the error in PUA, we use the fol-
lowing standard rules for error propagation [16]: If u and z are two
random variables with errors εu and εz respectively, then the error
in u + z or u − z is εu + εz . Also, the error in u/z is εu

|u| + εz
|z| ,

and the error in ku where k is a constant is kεu.
Since the error inUP a,UP b,UP

a
orUP

b
is ε, the error in PUA

(denoted EPUA) is 100 × ( 2ε

|UPa−UPa| + ε
UPa ). In other words,

the true value of PUA lies in the range PUA ± EPUA. Likewise, the
error in PUB is EPUB = 100×( 2ε

|UP b−UP b|
+ ε
UP b ). And the error

5This is because, as mentioned before, we vary n s.t. nδ ≤ n ≤ 50.
Form Figure 1, we know that, for nδ ≤ n ≤ 50, the players’ shares
for an issue do not vary much with n.



in PSW is EPSW = 100 × ( 4ε

|SW−SW | + ε
SW

). Finally, the error
in PUA, PUB , or PSW is defined analogously.

Given these definitions, Tables 1 and 2 show a comparison of the
PDP and the SP in a wide range of settings for cases C1 and C2.
We first explain the results for the case C1 and then for C2. For the
former, Table 1 shows ∆UA, ∆UB , and ∆SW . For instance, for
m = 50 and δ = 0.1, ∆UA = 7.98 ± ε. Thus, which procedure
is better for a depends on ε; if ε < 7.98, then ∆UA is positive
and therefore the PDP is better. On the other hand, for agent b,
∆UB = 8.1± ε, so the PDP is better if ε < 8.1. In terms of social
welfare, ∆SW = 7.99 ± 1.8ε — so the PDP is better if ε < 4.
Likewise for other entries in the table.

Table 2 shows ∆UA, ∆UB , and ∆SW for the case C2. In con-
trast to Table 1, some entries in this table are negative. For in-
stance, for m = 50 and δ = 0.1, ∆UB = −503 ± 0.3ε. Thus for
ε < 1666, the SP is better for b. On the other hand, for agent a,
∆UA = 33.3 ± 0.3ε, so the PDP is better if ε < 111. In terms
of social welfare, we see that ∆SW = −14.1 ± ε — so the SP is
better if ε < 14.1.

In summary, although the PDP is known to always generate Pareto
optimal outcomes, the above analysis shows that the SP may be bet-
ter for one of the two agents and also increase the social welfare.

6. RELATED WORK
Since Schelling first noted that the outcome of negotiation depends
on the choice of negotiation procedure, much research effort has
been devoted to the study of different procedures for negotiating
multiple issues. This research can be broadly divided into two cat-
egories: negotiation with divisible issues [1, 4, 2] and with indivisi-
ble issues [14, 3]. For instance, [2] analyzes the equilibrium for the
PDP and the SP in the context of divisible issues and linear utility
functions. Again, in the context of divisible issues, [1, 4] examine
the effect of negotiation agenda on the outcome of sequential nego-
tiations. On the other hand, [14] focuses on indivisible issues and
analyzes the task allocation problem when the agents maximize the
benefit of the system as a whole. In contrast, our focus is on two
agents where both of them are self-interested and want to maximize
their individual utilities. In the same context, [3] shows that it is NP
hard to find the equilibrium strategies for indivisible issues and lin-
ear utilities. However, a common feature of all the above work is
that it deals with linear utility functions. In contrast, we focus on
nonlinear utilities as a more realistic model in many settings.

A small number of researchers have tackled the problem of multi-
issue negotiation with nonlinear utility functions under different
simplifying assumptions. For instance, in [6], multi-issue nego-
tiation is studied under the assumption that utility functions are
nonlinear but are monotonic and concave. This assumption means
that there is a unique global optimum which can easily be found
(note that our work does not require monotonicity or concavity).
On the other hand, in [7], the negotiating agents submit bids to a
mediator which then chooses the final allocation. However, there
is no game-theoretic analysis of the agents’ strategic behavior and
it is assumed that the agents will bid truthfully. Likewise, [8] deals
with nonlinear utility functions but again there is no game-theoretic
analysis that shows the proposed strategies form an equilibrium. In
contrast, our work takes the strategic aspect into consideration and
does a game-theoretic analysis of negotiation in terms of equilib-
rium outcomes. Also, in our work, the agents negotiate directly
with each other without going through a mediator, which is, we
believe, a more realistic setting for many problems.

In summary, the key differences between existing work and ours
are as follows. First, the former has dealt with linear utilities while

we deal with nonlinear utilities. Second, much of the work has
focused on a single negotiation procedure while we compare the
equilibrium for two different procedures both in terms of the time
complexities and approximation errors, and also in terms of the util-
ities they yield to the agents and the social welfare. Finally, nego-
tiation for nonlinear utility functions has previously been studied,
but under the assumption that agents do not behave strategically. In
contrast, we take the strategic aspect into account and compare the
two procedures in terms of their equilibrium outcomes.

7. CONCLUSIONS
This paper analyzes bilateral multi-issue negotiation between strate-
gic self-interested agents. The issues are divisible, there are time
constraints in the form of deadlines and discount factors, and the
agents have different preferences over the issues. For such sce-
narios, we consider nonlinear utilities and show that finding the
equilibrium for the PDP is computationally hard. Then, in order to
overcome this complexity, we investigate two solutions: (i) approx-
imating nonlinear utilities with linear ones and then using the PDP,
and (ii) using the SP to negotiate the issues in parallel. This study
shows that the equilibrium for the PDP (for approximate linear util-
ities) and the equilibrium for the SP (for nonlinear utilities) can be
computed in timeO(mn). In terms of the economic properties, al-
though the PDP is known to generate Pareto optimal outcomes, we
show that, in some cases, the SP may be better for one of the two
agents and also increase the social welfare.

There are several interesting directions for future work. First,
for the comparison of the two procedures, we focused on symmet-
ric agents (i.e., for both agents, the weights were distributed iden-
tically). A comparison for asymmetric case (i.e., the distribution
of weights is not identical for the two agents) will broaden the ap-
plicability of our results. Second, this work focused on separable
nonlinear utility functions. An extension of the analysis to non-
separable nonlinear utility functions is part of future work.
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