On Measuring Expertise in Collaborative Tagging Systems


Au Yeung, Ching Man, Noll, Michael, Gibbins, Nicholas, Meinel, Christoph and Shadbolt, Nigel (2009) On Measuring Expertise in Collaborative Tagging Systems. In, Web Science Conference: Society On-Line, Athens, Greece, 18 - 20 Mar 2009. (Submitted).

Download

[img] PDF - Submitted Version
Download (257Kb)

Description/Abstract

Collaborative tagging systems such as Delicious.com provide a new means of organizing and sharing resources. They also allow users to search for documents relevant to a particular topic or for other users who are experts in a particular domain. Nevertheless, identifying relevant documents and knowledgeable users is not a trivial task, especially when the volume of documents is huge and there exist spamming activities. In this paper, we discuss the notions of experts and expertise in the context of collaborative tagging systems. We propose that the level of expertise of a user in a particular topic is mainly determined by two factors: (1) there should be a relationship of mutual reinforcement between the expertise of a user and the quality of a document; and (2) an expert should be one who tends to identify useful documents before other users discover them. We propose a graph-based algorithm, SPEAR (SPamming-resistant Expertise Analysis and Ranking), which implements the above ideas for ranking users in a collaborative tagging system. We carry out experiments on both simulated data sets and real-world data sets obtained from Delicious, and show that SPEAR is more resistant to spamming than other methods such as the HITS algorithm and simple statistical measures.

Item Type: Conference or Workshop Item (Paper)
Additional Information: Event Dates: 18th-20th March 2009
Keywords: collaborative tagging, expertise, folksonomy, spam, ranking
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Web & Internet Science
ePrint ID: 267176
Date Deposited: 09 Mar 2009 11:04
Last Modified: 27 Mar 2014 20:13
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/267176

Actions (login required)

View Item View Item