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Application of the Front-Fixing Method to Numerical Modeling of Field
Diffusion in Nonlinear Systems

Igor O. Golosnoy and Jan K. Sykulski
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

Application of a finite volume front-fixing method to a thermistor problem with strongly nonlinear material properties is discussed.
Advantages and implementation problems of the method are highlighted. Particular attention is paid to conservation properties of the
algorithm and accurate solutions close to the moving transition region. The algorithm is compared with other popular numerical tech-
niques. The gains in reduced computational effort and increased accuracy are emphasized.

Index Terms—Diffusion processes, moving boundary, numerical analysis, thermistors.

1. INTRODUCTION

THERMISTOR is a circuit device with a very nonlinear

dependence of electric conductivity o on temperature T’
[1]. The changes in o may be rapid; typical ¢ variations of four
orders of magnitude with T increasing from about 100 °C to
200 °C have been recorded [2] (Fig. 1). The transition region
for a given point between temperatures 77 and 7%, which corre-
sponds to coordinates s; and ss, is typically small and a coupled
treatment of electric and thermal fields is complex. It is quite
common to ignore the transition and consider a sharp interface
with a step behavior in o [3], [4]. But it was noted [2], [5] that
the step function is not the most realistic model for o and that
a more complex relationship o(7") should be used for accurate
predictions.

This paper deals with modeling the coupled electric current
and heat flow in a thermistor with particular attention paid to a
moving transient region. The motion is assumed to be a com-
plex function of the solution itself. Many numerical methods
developed previously, such as front tracking or remeshing tech-
niques, are often not able to cope effectively with such strong
coupling. On the other hand, the front-fixing transformations [6]
introduce a coordinate system in which all of the spatial region
boundaries are fixed to s; and so. One advantage of discretizing
in the transformed space is that the meshes automatically adjust
themselves to accommodate the moving interface position. It is
therefore possible to impose irregular meshes with fine resolu-
tion in regions where large temperature and field gradients are
expected, while using larger space steps elsewhere.

The main challenges are the implementation of conservation
laws at the moving boundaries and an effective mesh refinement.
These issues are addressed in this paper.

II. FORMULATION OF THE THERMISTOR PROBLEM

A. Geometry of the Device and Material Properties

Typically, the device is a ceramic disk with a diameter 7oy of
about 5 mm and thickness (2z.xt) of about 2 mm with a wire
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Fig. 1. Typical variation of conductivity with temperature for a thermistor.
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Fig. 2. Geometry of the thermistor device.

soldered to the flat edges [2]. The material properties used for
the modeling are identical to those given in [2].

B. Electric Circuit and Governing Equations

The electric current flow in the system and associated Joule
heating are described by Ohm’s law
VI=0, J=0V$, Qu=01I>=0(Ve)?® ()
where J is the current density, ¢ is an electric potential, and
Q.1 is a Joule heat. For simplicity, the electric circuit includes
external voltage V| applied to a load Ry in series with the
thermistor.
When high current passes through the thermistor, Joule heat
is released in the middle of the device. The heat affected zone
(HAZ) with low conductivity develops inside the thermistor. It
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has initially a complex shape but for rext > Zext, it almost
immediately spreads to the edges, and the transformation front
becomes straight and the thermistor problem can be considered
by using a 1-D approximation with all parameters depending
on the z coordinate only. The current density is linked with the
external load and the variable conductivity inside the device

Zext

9 dz

fo+2 / o (T(2))

0

V() =J | nr (2)

ext

It is coupled with the heat transport which is governed by the
heat diffusion equation
oT 17 9]
Cp— = — (&(T)==T -tz 3

arn az<“( )52 >+” )
where C is the specific heat, p is the density, and & is the thermal
conductivity. Appropriate initial and boundary conditions for
(1)—(3) are discussed elsewhere [2]. In the form just shown,
(1)-(3) provide an excellent case for testing various numerical
techniques to solve coupled diffusion problems.

III. NUMERICAL MODELING TECHNIQUES
A. Fixed Grid

Second-order approximations in space and time require semi-
implicit finite-difference approximation for (3) [7]. Integrals of
(3) around each node ¢ over one time step provide a set of conser-
vative equations in the bulk material [8], which are represented
on a fixed grid by (4), where a subscript notation to denote dis-
cretizations of space (e.g., z;) is used and superscripts (e.g., /)
indicate time

- .
(Tj - Tf) (zi+0.5 — Zi—0.5)

J+0.5 J40.5
T: -1

_ (tj+1 . tj) Ri40.5 441

Cp Zi41 — %

j40.5 j4+0.5

_ki-05 TiJ — thj—l
Cp Zi — Zi—1

( 40 5)2

5 - A 5 — Z2i—0.5 1
+(tj+1—t])( 140. 1—0 ) (4)

Cp

7405
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where o depends on 7'. The current density is defined by ap-
proximating the potential (1) on a staggered grid which yields

¢j+1 _ ¢j+1 1
Jj+1_ i+0.5 1—0.5 Jj+1 Jj+1 -0
i 0 ) i+t1 — i =y
Zi40.5 — 2i—0.5 Zi+1l — Zi

(&)
Since all of the equations are coupled, the entire system (4),
(5) must be solved simultaneously. But the fact that they form a
nonlinear system means that this is potentially very demanding
in terms of computing times. Normally, it takes only two iter-
ations to reach a consistent solution of a fully coupled set (4)
and (5) under smooth operation conditions, whereas modeling
of the temperature surge event could require as many as 10 or
even 20 iterations.
It is a common computational practice to separate source
terms from the diffusion. The so-called “fractional steps” or
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Fig. 3. Numerical predictions for temperature distribution in a thermistor at
different moments of the surge stage by using the front-fixing technique. The
nodes are automatically adjusted to the high-temperature region.
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Fig. 4. Numerical predictions of current density during temperature surge in a
thermistor.

“splitting methods” are widely used in computational fluid dy-
namic for the modeling of gas flow with chemical reactions
[7]1, [8]. On the first substep, only diffusional fluxes in (4) con-
tribute to temperature changes in a cell. Joule heat sources in
(4) are added during the second substep, which is effectively
the second-order Runge—Kutta integration. The splitting makes
the computation iteration free, but requires small time steps for
high accuracy to be achieved (Fig. 4). This is not surprising
since large changes in the temperature profile at the surge stage
(Fig. 3), due to Joule heat, are directly influenced by strong
thermal diffusion.

B. Front-Fixing Method

Landau transformation utilizes new positional variables (one
for each domain). In practical applications, the temperature
rarely exceeds T5. Only two domains with a boundary at s = s1
need to be considered, constituting an additional simplification.
In the plane case, an introduction of u = z/s(t) fixes the extent
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of the low conductivity region A to the domain 0 < v < 1,
while v = (2 — $)/(zext — $) fixes the extent of the other
domain B to 0 < v < 1 [6]. Using the results from [9], the
divergent form of (3) for v and v, together with (1) for potential
and interface equations at s, may be written as

I(CpsT) _dsd(Cpul) 10 ( 0T
ou s du Kau

ot dt
o6\>
+ so <%> , (6)
0 (Cp(zext —5)T) _ds d(Cp(1 —v)T)
ot T dt v
1o (or
+ Zext — 8 OV <H8v>
2
+ (Zext — 8)o (%) (7
0 dp\ )
£(0£> —0, ’uE(O,l),
0 dp\
%(O’%> =0, 'Ue(071) (8)

with interface conditions for temperature and potential

1/ 9T 1 aT
GO =
1/ d¢ o ap
G T

It should be noted that the Landau transformation introduces
a coordinate system in which all of the spatial boundaries are
fixed to O or 1. (Detailed illustration of the nodes’ motion in real
space is given in [9]). Under the transformation, the new compu-
tational domains remain the same with an additional advection
term in (6) and (7) and nonlinear equations for the boundary
motion (9) and (10). This allows treating the nodes close to the
interface as being independent of the motion, which gives higher
accuracy for the same number of nodes used. A divergent form
of (6)—(8) ensures that there are no artificial energy sources [9].
The technique allows easy extension to 2-D geometry as shown
in [6]. Its general application to 3-D models could be compli-
cated, but often the transformation of only two coordinates is
needed [6].

Equations (6)—(10) represent a typical Stefan problem with
the so-called implicit moving boundary [6] and strongly non-
linear Joule heat source. The interface position is not strictly de-
fined in this case and the displacement s should be selected from
physical considerations. The “effective” transformation temper-
ature 77 can be varied during the modeling in such a way as
to achieve a better description of the transient process. The ap-
proach has already demonstrated a very high accuracy at sharp
fronts, for example, in modeling an electric-field penetration
into superconducting tapes [10].

Numerical scheme. In order to derive a finite volume scheme,
space is discretized at M + 1 points. The first N + 1 points
are defined by a fixed discretization of u, which corresponds

)

u=1 v=0

(10)

v=0

u=1

to the extent of A. The points in A are written as ug = 0,
u1,...,uny = 1. The last M — N + 1 points are in B as given
by a fixed discretization vy = 0, vn41,...,vyr = 1. The fi-
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nite volume discretization [8] of (6)—(10) is based on integration
around the nodes and is fairly straightforward [9] (e.g., for the
high-temperature phase A)

J+1 j+1 J o
(Ti sIT 1T s]) (tit0.5—Ui—0.5)
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3

The interface equations are approximated in a consistent way to
conserve energy [9] (e.g., for (9), (hy, =1 —un_1, hy = v1)
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The interface position is defined implicitly by requiring that
T s ) =06 (137 + 14 )
if0.6 (13 + 14 ") < 140°C
T4 (at 1) =140 °C,
i 0.6 (Tg”rl n TJ{;”) > 140 °C. (13)

The particular choice in (13) ensures that the grid nodes are
adjusted to the crucial location in the center of the thermistor.
The set of the simultaneous equations (11)—(13) involves the
unknown future temperature field and potentials together with
the future interface position. Since all of the equations are cou-
pled, if the implicit scheme is to conserve energy, the entire
system must be solved simultaneously. But the fact that they
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Fig. 5. Numerical predictions of electric conductivity in a thermistor in the
middle of the surge stage. Coupled treatment provides high accuracy.

form a nonlinear system means that this is potentially very de-
manding in terms of computing times. It is interesting to note,
however, that (6)—(8) as well as (9) and (10) are only weakly
coupled; thus, if the future interface positions were known, the
diffusion problem (6), (7), and the Poisson problem (8) would
become quasilinear. With a known temperature profile, the po-
tential could be found from (8) by using standard algorithms.
Conversely, if future temperature and potentials were known,
the future interface position could be calculated easily from
(13). It is possible to derive an efficient algorithm based on de-
coupling the problem in this way. Normally, it only requires a
few iterations to reach a consistent solution.

IV. TEMPERATURE SURGE MODELING

When a high current passes through the circuit, the temper-
ature in the thermistor starts to rise. It takes a few tenths of a
second to reach the low conductivity phase (~ 130°C) from
the operational room temperature. At this stage, the surge takes
place: the temperature increases by ~ 50 °C just in 5 ms (Fig. 3)
and the current drops by two orders of magnitude (Fig. 4).

Looking at the predictions for electric conductivity (Fig. 5),
it is obvious that conventional splitting methods fail to deliver
sufficient accuracy during the surge at points with rapid temper-
ature changes, as the method requires very small time steps to
accomplish good accuracy, see Fig. 4. On the other hand, a fully
coupled implicit method on a fixed grid provides good accu-
racy for temperature and electric conductivity at the grid nodes
(Fig. 5). However, significant errors still exist for predicted cur-
rent density (Fig. 4). This is related to the coarse discretization
at crucial locations where the conductivity varies in an exponen-
tial manner. It should be noted here that the temperature varia-
tion is a secondary effect. The current density is very sensitive
to a detailed description of high-temperature (low-conductivity)
regions, and moving the coordinate system places the nodes at
important positions. That is why the adjustment of nodes to the
crucial location by moving the coordinate system yields excel-
lent accuracy even for large time steps and a small number of
discretization points.
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TABLE 1
COMPARISON OF COMPUTING TIMES
1 1 0]
Number Iterations i . Overall
Method G o computations | computations compl exi
steps per step per step per step ’
Spl itting 10 1 1 2 30
Standard
Coupling 2 i 1 1 28
Moving
Coupling 1 11 1 1 22

The splitting method utilizes a two-step Runge—Kautta integration and requires
two solutions of Poisson equations at each step. To obtain the matching
accuracy (Fig. 4), the standard coupling technique should use a smaller time
step At = 0.5 ms compared with A¢ = 1 ms for the front-fixing method.

Finally, as demonstrated in Table I, the conventional tech-
niques exhibit similar performance, while the front-fixing re-
duces the computational effort by about a quarter.

V. CONCLUSION

The following conclusions can be drawn from this work:

1) There are several advantages in using a front-fixing method
for modeling nonlinear diffusion processes in various elec-
tromagnetic phenomena, in particular, high accuracy can
be obtained with a small number of grid points and large
time increments.

2) Standard numerical methods for advection problems with
diffusion can be utilized.

3) Bulk diffusion and complex interface conditions in the
front-fixing method are usually weakly coupled. Efficient
algorithms based on decoupling of the problem can be
implemented.

4) High accuracy can be achieved on a coarse irregular mesh
since the interface is automatically adjusted to crucial re-
gions in new coordinates.
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