Divided Backend Duplication Methodology for
Balanced Dual Rail Routing

Karthik Baddam and Mark Zwolinski

Electronics Systems and Devices Group,
School of Electronics and Computer Science,
University of Southampton,

SO17 1BJ, UK
{kb04r,mz}@ecs.soton.ac.uk
http://www.esd.ecs.soton.ac.uk/

Abstract. Dual Rail Precharge circuits offer an effective way to address
Differential Power Analysis Attacks, provided routing of differential sig-
nals is fully balanced. Fat Wire [I] and Backend Duplication [2] methods
address this problem. However they do not consider the effect of coupling
capacitance on adjacent differential signals. In this paper we propose a
new method, Divided Backend Duplication, which is based on Divided
Wave Dynamic Differential Logic [3] and Backend Duplication [2], that
effectively addresses balanced routing problem of Dual Rail Precharge
circuits. Experimental results on an AES test circuit in 130nm technol-
ogy show improvements in achieving a balanced dual rail design. Further
our method can also be successfully applied to FPGAs. Results from an
sbox test circuit implementation on a Xilinx FPGA are presented.

Keywords: Differential Power Analysis, Dual Rail Routing, Dual Rail
FPGA Implementation.

1 Introduction

Security is an important and often primary design goal in embedded systems such
as smart-cards [4] sidelining other design parameters such as cost, performance
and power consumption. Differential Power Analysis Attack (DPA) [5] pose a
serious threat to secure embedded systems such as smart-cards. As a result,
researchers have developed several DPA countermeasures [BI6I7ISQITOITT]. Of
these, the logic level countermeasures that fall under Dynamic and Differential
logic (also referred to as Dual Rail Precharge - DRP) style, theoretically offer
more resistance to DPA. The basic principle behind DRP logic is to eliminate
any information leaks, by consuming the same amount of power in every clock
cycle. DRP circuits have been proved to prevent DPA, provided the routing of
differential nets is balanced [12].

Balancing differential nets (balanced Dual Rail routing) is not, however, a triv-
ial task. To address the routing problem, to date the following proposals have
been put forward: DWDDL [3], FatWire [I], Backend Duplication [2], Three

E. Oswald and P. Rohatgi (Eds.): CHES 2008, LNCS 5154, pp. 396 2008.
© International Association for Cryptologic Research 2008

http://www.esd.ecs.soton.ac.uk/

Divided Backend Duplication Methodology for Balanced Dual Rail Routing 397

Phase Dual Rail [I3], Path Switching [9], Double WDDL [I4] and an iterative
correction flow [I5]. Of these, three proposals [II23] impose some constraints
on backend implementation flows. Three Phase Dual Rail [13] tries to avoid the
routing problem by introducing a third phase, which is an additional overhead.
Path Switching [9] offers an improvement to dual rail circuits and only protects
registers and buses with high capacitance. Double WDDL, as the name implies,
has two separate WDDL implementation thereby increasing the area overheads
by four times. Double WDDL was developed mainly for use in FPGAs [I4]. The
first WDDL part is implemented using normal place & route flow. The second
WDDL part is obtained by copying the first WDDL part, including the routing
details, and reversing the orginal and complementary logic [I4]. Backend correc-
tion flow, described in [I5], is iterative and can consume a significant amount of
time to implement a design.

In this paper we concentrate on the implementation of balanced Dual Rail
Precharge logic styles rather than the alternatives. We try to present a simple yet
effective solution to improve Dual Rail circuit routing capacitance. In Section
we discuss Dual Rail Precharge Logic Styles, give a brief introduction to backend
design flow, and discuss existing methods and their shortcomings. In Section[3we
present the inversion problem and discuss its solutions. In Section [] we present
our proposed methodology. In Section 1] & Section we present ASIC &
FPGA implementations respectively and then conclude the paper.

2 Background

2.1 Dual Rail Precharge Logic Styles

Dynamic and Differential Logic (also referred to as Dual Rail Precharge - DRP)
[3U7U8] has been proposed to prevent DPA. The idea is to consume the same
amount of power for any combination of inputs. This is achieved by using differ-
ential logic (two signals instead of one) and by precharging both the differential
nets in every clock cycle. In DRP circuits for every logic gate, a complementary
gate exists, usually referred to as false logic (or false part).

Dual Rail Precharge logic styles can be classified into two types based on
the way precharge is applied. Sense Amplifier Based Logic (SABL) is a DRP
logic based on the principles of domino logic, where a special precharge signal is
applied to every gate to force the gate to precharge. Wave Dynamic Dual Rail
(WDDL) and Dual Spacer Dual Rail (DSDR) on the other hand propagate the
precharge signal from a design’s primary inputs and state-elements (flip-flops).
WDDL and DSDR have the following differences over SABL: 1) WDDL and
DSDR can be constructed using existing CMOS standard cells and 2) that the
true logic and false logic are two different cells. The second point is not true in
all cases. WDDL and DSDR both need special inverters, where the true and false
wires are cross connected. As differential logic has both true and false outputs,
an inverter is implemented by exchanging the outputs. Moreover an inverter is
an inverting gate, it will stop the precharge wave propagation. Fig. [l shows the
basic building blocks of WDDL with master slave WDDL flip-flops. Although

398 K. Baddam and M. Zwolinski

Precharge wave generation AND gate DDL Registers

D Q D Q
clk clk QN f
OR gate Qe — Q
2 A'j>lw t Inverter
Bt
At
e out t
reh eval

At out f

Encryption Module

Fig. 1. Building blocks of WDDL,with Master Slave WDDL flip-flops

double the clock frequency is required to get same data rate using master slave
flops, these are recommended [3]. All primary inputs are driven by a ‘precharge
wave generation’ block, so that individual gates will propagate the precharge.
Note that the inverter is implemented by exchanging the dual rail pairs.

2.2 Backend Design Flow

Most of the digital designs implemented today are based on a standard cell
flow. A set of commonly used standard cells are designed and characterized
such that CAD tools can be used to automate most of the design flow. Design
entry is typically in behavioral HDL and is synthesized and mapped to the
target technology’s standard cells. After the synthesis, the resulting netlist is
placed and routed to get the final design. Backend design is usually referred to
the implementation of the design after the synthesis phase and mainly involves
floorplanning, placement and routing. A placer partitions the available core area
into rows, where the standard cells are placed. In a similar fashion, a router
partitions the core area into horizontal and vertical routing grids. Each grid has
a minimum size defined by the target technology’s wire pitch size.

The place and route flow usually involves the following steps, shown in Fig.
First a floorplan is made (Fig. . This is where the aspect ratio (or the dimen-
sions) of the chip are determined. Next the standard cells are placed (Fig.
and finally the wires are routed (Fig. 2(c]).

2.3 Existing Methods

Divided Wave Dynamic Differential Logic (DWDDL) was proposed by Tiri and
Verbauwhede [3] to address routing imbalances in DRP logic styles. DWDDL’s
idea is to place and route a single ended design (the ¢rue part), copy it and
replace the complementary cells (for example ‘and’ with ‘or’ and vice versa) to
get the false part. However, this method assumes that there is no inversion in
the single rail design, as an inverting cell would stop the precharge wave propa-
gation. However, in practice it is difficult to have logic without inversion. This is

Divided Backend Duplication Methodology for Balanced Dual Rail Routing 399

VDD
Placement row 4

(regular orientation)

Placement row 3
(upside-down)

Placement row 2
(regular orientation)

GND

Placement row 1
(upside-down)

VDD

(a) Normal Backend flow: (b) Normal Backend flow: (¢) Normal Backend flow:
Create a Floor plan Place the standard cells Route the wires

Fig. 2. Normal Backend flow overview

the only known limitation for DWDDL and no further work has been reported
on it.

Fat Wire was proposed by Tiri and Verbauwhede [I] to address routing im-
balances in DRP logic styles. In this methodology a Fat Wire is constructed by
two adjacent normal wires. For the Fat Wire method to work, first the dual rail
netlist, instantiating dual rail cells, has to be placed. Then instead of routing
two differential wires (for the true and false signals) a single Fat Wire is routed
and later decomposed into two normal single wires which will have same wire
length.

Backend Duplication was proposed by Guilley et al. [2] to address routing
imbalances in DRP logic styles. The basic idea of backend duplication is based
on placement and routing obstructions (constraints to the CAD tool). The first
step of Backend Duplication is to constrain the CAD tool (1) to only use alternate
rows for placing cells and routing horizontal routes (2) and to use the alternate
routing pitches for routing vertical routes. Thus, when the placer has finished
placing the single rail design, a dual rail design can be obtained from copying
(and transforming) the single rail into the previously obstructed rows. Note that
this operation is a simple shift in coordinates of the placed cells. Duplicating
the routes is done in two steps. Once the design is routed, horizontal routes are
duplicated in the same way as cells. Vertical routes are duplicated by simple
shift in the x-axis of the routing pitch.

2.4 Shortcomings of the Existing Methods

Coupling capacitance (crosstalk) has become one of the most critical issues in
deep sub micron physicaql designs because of 1) interconnect dominated circuit
delay and 2) strong coupling effects between intqerconnect wires [16]. As tech-
nology scales the wire widths, their height is increased and coupling capacitance
between wires increases [16] (Fig. B(a)).

In the Fat Wire and Backend Duplication methods (vertical routes) dual rail
wires end up next to each other, as shown in Fig. With coupling capacitances
increasing, the effective capacitance seen by a true and false signal will vary. For

400 K. Baddam and M. Zwolinski

bt
at

Cy Cy Cy
cf
b,
a-f /
(a) Effect of shrink- (b) Coupling Capacitance in
ing wire widths on Dual Rail circuit

coupling capacitance

Fig. 3. Coupling Capacitance effects

example consider dual rail pairs b t & b f. The coupling capacitance seen by b ¢
is Cy & C'3 whereas the coupling capacitance seen by b f is C5 & Cy. Now if the
capacitances Cy & Cy vary by a huge difference, the resulting design can have
unbalanced wire capacitance and can lead to information leaks. Note that this
effect becomes more and more dominant as technology scales down. The effect
of coupling between differential wires is more significant in the Fat Wire method
than in Backend Duplication as the horizontal wires are also next to each other.
Of course spacing between dual rail wires can always be increased to reduce the
coupling capacitance, however such an increase comes at the expense of increased
area and reduced routing resources. Of the three methods to address routing prob-
lems, DWDDL is the simplest and most effective. However practical designs will
always have inversion and hence will not be able to use the DWDDL method.

3 Inversion Problem in DRP Logic

Inversion in Dual Rail Precharge Logic styqles is considered as a free operation,
as dual rail signal pairs are coqmplementary; inversion is simply obtained by
exchanging the dual rail pairs. On the other hand an inverter cannot exist in
a WDDL or DSDR style design as it would stop the precharge wave propaga-
tion. In other words, inversion is only possible by exchanging the dual rail pair.
This property of WDDL and DSDR logic styles prevents designs from using a
DWDDL style of implementation. Of course dual rail pairs can be exchanged
after DWDDL implementation, but there is no systematic way of doing this.
Moreover the extra wire capacitance from this exchange can add to the critical
path delay of a design and can introduce unbalanced wires. This issue of ex-
changing wires can be worst when the number of unused inverters in a design
increases. As an example a 8ns clock period, 128 bit AES had 5,762 inverters
from a total gate count of 22,704, excluding buffers used for the clock tree. For
this example, we increased the area and delay cost of the original inverter by 10
times so that synthesis tool will use it only when inversion is needed and not for
buffering.

Divided Backend Duplication Methodology for Balanced Dual Rail Routing 401

3.1 Mitigating the Inversion Problem in DRP Logic

Inverters cannot exists in WDDL and DSDR style designs as they would stop
the precharge wave propagation. On the other hand, designing logic without
inversion is difficult. It is possible to have a cell that behaves as an inverter and
still not prevent the precharge wave propagation. This is possible by using a
two input Exclusive-OR, (XOR) gate instead of an inverter and connecting the
second input of XOR to the negated precharge signal that is used in generating
the precharge wave (Fig. [I).

zt zt
bt ;
bt [it it
prch

at bt it |prch | zt at bt it |prch | zt
0 0 1 1 0 0 0 0 1 0

— I — —
1190 |1 | 04 SRS O S N S D S e
0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 1 0 1
1 1 0 0 0 1 1 0 0 0

Fig. 4. Using XOR instead of Inverter (Inputs a ¢ & a f are driven by Precharge Wave
Generation Block shown in Fig. [I)

Consider the example circuit on the left side of Fig. @l with the truth table
shown. When the prch signal is high all primary inputs are set to logic 1 (Inputs
a; & ay are driven by Precharge Wave Generation Block shown in Fig. [IJ).
However intermediate signal i ¢ (output of the inverter) will not propagate the
precharge wave and the output signal z ¢ will not be precharged. Now consider
the circuit on the right of Fig.[d A two input Exclusive-Or (XOR) gate is used
instead of an inverter. The original input and output of the inverter are connected
as before to the XOR. The second input of the XOR is connected to the prch
signal, which is used in precharge wave propagation. When prch is high the XOR
will act as a buffer allowing the precharge wave to propagate and when prch is
low XOR will act as an inverter as intended in the original circuit.

It is also possible to use a Domino-style inverter (similar to the one presented
in [I3]) instead of an XOR gate. As in the case of the XOR, prch is used to
precharge the domino-inverter. In the case of a domino style inverter, the timing
of prch is important for the circuit to work. Because of this, we prefer to use an
XOR gate and in the rest of this paper we use XOR gates to replace inverters.
Note that inverters that are used in clock tree synthesis need not be replaced,
as the clock signal is not precharged like normal inputs. Based on this, we now
present a method to implement a fully balanced dual rail design.

402 K. Baddam and M. Zwolinski

4 Proposed Method: Divided Backend Duplication

With XOR gates replacing inverters, a dual rail circuit can be implemented as
physically separate (without any connections) true part (original single-ended
part) and false part (complementary part). The primary inputs and outputs will
still remain common for both the true and false parts. With this advantage the
Divided WDDL implementation, [3], can now be implemented provided that 1)
the pins of complementary standard cells should be same, i.e at same location
and same metal layer and 2) the size of the complementary standard cells are
the same.

| T a w |
I T b e iy |
L 3 L P_I 5 T
L s L i
L 3 L N L
L 1 L -
L | L Ttrh
L 3 L Trh
L | L T T T
L HE i 1
| LT |
| | HHE
| | |
(a) Initial Floor Plan (b) Reserve space for duplicat- (¢) Flip every object (cells &
ing complimentary logic routes) to right

Fig. 5. Proposed method overview

Fig. Bl shows the overview of our proposed method for balanced dual rail
routing. This method is similar to the Backend Duplication method, [2]. A single
ended design is used for the initial place and route process and then duplicated
to get the final dual rail design. The process can be divided into the following
steps (shown in Fig. [).

1. A WDDL-compliant single rail design is processed to replace the inverter
cells with XOR cells (Fig.H). A program has been written for this conversion,
based on OPENACCESS [I7]. At this stage the design is still single rail.

2. A floorplan is made for the processed single rail design, with utilization of
half the required final utilization. This ensures that there is enough space
for duplicating the complementary part (Fig. .

3. Half of the floorplan area is reserved (obstructed) for the complementary
part (Fig. .

4. The Single Rail design is implemented in the usual way, i.e place and route,
timing analysis, SI analysis, ECO fixes, etc.

Divided Backend Duplication Methodology for Balanced Dual Rail Routing 403

: : script N route
design dr.v : design sr.v :
j (DBD) § 1 (DBD)) |

placed & routed placed & routed

. \
; 1

replace | ﬂoogrlplan :

design sr.v inverters design sr.v i reserve area |
I

(WDDL) with XOR (DBD) : for duplication I

| I

| I

| |

| |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
‘ ‘ 1 :

design dr.def : : design sr.def : :
H |

(DBD) : . —(__(OBD) | place !

: duplicate ! & i

| |

I

| |

| |

1 I

Fig. 6. Divided Backend Duplication implementation overview

5. After the Single Rail design is finalized, the complementary part can be
obtained by flipping every object in the single rail design to the right and by
replacing the complementary cells, AND with OR and vice versa, as shown
in Fig. This step can be done by processing the DEF file and is similar
to the process used in Fat Wire [I] and Backend Duplication [2].

As our proposed method is derived from DWDDL and Backend Duplication,
we call it Divided Backend Duplication (DBD). A small variation to the dupli-
cation process can be made: 1) Instead of flipping the design objects to right,
they can be shifted by half of the core width. 2) Instead of flipping the design
objects along the x-axis, this can be done on the y-axis too (flipping to top or
bottom).

4.1 ASIC Implementation

To show the effectiveness of Divided Backend Duplication, we implemented an
AES test circuit with 20k+ gates in a 130nm process. Three different designs are
implemented. All designs have the same constraints and netlist. The difference
is in implementation. The first implementation, which we call “regular place
& route design”, is implemented without any special techniques. The second
implementation, which we call “backend duplicated design”, is implemented as
suggested in [2] and is based on the WDDL logic style [3]. The third design,
which we call “divided backend duplicated design”, is implemented as suggested
in Section M and is also based on WDDL logic style [3]. All the designs as-
pect ratios are set to 1. The row utilization of “regular place & route design”
is set to 0.70 while for “backend duplicated design” and “divided backend du-
plicated design” it is set to 0.35 (half the required utilization, so that enough
room is available for duplication). We used Cadence Encounter tools [I8] to per-
form the backend implementation. For parasitic extractions we used Encounter’s

404 K. Baddam and M. Zwolinski

100 100 T T T T
Divided Backend Duplication ———1

Divided Backend Duplication
Backend Duplication Fwirs:

Backend Duplication
Regular Place & Route

80 [— 80

60 [— 60

% of differential pair nets
% of differential pair nets

20 [

0.8 0.85 0.9 0.95

1 105 11 115 12 08 08 09 095 1 105 11 115 12
Cirue/Craise Coupling Cyrye/Craise

(a) Ratio of Total Capacitance of Differential (b) Ratio of Coupling Capacitance of Differen-
Pair nets tial Pair nets

Fig. 7. Ratio of Capacitance of Differential Pair nets

native extractor and set the “detailed” and “coupling” switches to true. After
the parasitic extraction, all the parasitic information was exported into a Stan-
dard Parasitic Exchange Format (SPEF) file containing the ground capacitance,
coupling capacitance and resistance of every wire.

Fig. [@ shows histograms in which the internal interconnect capacitance of
the regular place and route design, the Backend Duplicated design and Divided
Backend Duplicated (DBD) design are compared. We have not implemented
Fat Wire [I] as the effect of coupling on dual rail signal pairs from Fat Wire
should be similar to that of the Backend Duplication method [2]. The capacitance
per net was extracted from the SPEF file, which in turn was reported from
Encounter. Fig. [7(a)]shows the distribution of the ratio between the capacitance
at the true signal net and the capacitance at the corresponding false signal
net (Ctrue/Clraise). The ratio Cirye/Clralse for regular place & route method is
between 0.01 & 10 and for the backend duplication method it is between 0.70 &
1.5. On the other hand, for the divided backend duplication method this ratio
is only between 0.90 & 1.1. The percentage of nets that have a ratio of 1 for
Divided Backend Duplication is 93.25% when compared to 28.34% for backend
duplication.

Fig. is similar as Fig. except that coupling capacitance is only con-
sidered instead of total capacitance. The cumulative coupling capacitance per
net was extracted from SPEF file, which in turn was reported from Encounter.
Coupling capacitance ratio, Coupling Cirye/Craise for regular place & route
method are not shown as the ratio for some nets was as high as 70. For the
backend duplication method, the ratio Coupling Cirue/Cfaise is between 0.22 &
3.52 while for divided backend duplication is 0.60 & 1.9. The percentage of nets
that have a ratio of 1 for Divided Backend Duplication is 85.15% when compared
to 24.86% for Backend Duplication. As discussed in Section [2.4] this increase in
capacitance ratio for Backend Duplication method is due to unevenly distributed
coupling capacitance, whereas the Divided Backend Duplication method shows
much less variation.

Divided Backend Duplication Methodology for Balanced Dual Rail Routing 405

replace logic
design sr.v inverters design sr.v wnthesis | ——= duplicate design dr.v
(WDDL) with XOR (DBD) (FPGA) seript (DBD) J to place & route

Fig. 8. Divided Backend Duplication Synthesis for FPGAs

design dr design dr
design T sr

Xy

Lo
19 L8

e WEX Y

[
[RIEANE NS AN

U design F sr

YL oo
X111213141516:718" w width of true part
(a) Unconstrained Initial (b) Constrained Floorplan for
Floorplan for dual rail dual rail module, with boundaries
module for true and false part

Fig. 9. Floorplanning to implement Divided Backend Duplication Dual Rail design on
FPGAs

4.2 FPGA Implementation

Differential routing on FPGAs is more difficult than on ASICs as the routing
resources are limited. Tiri and Verbauwhede [19] have discussed a WDDL imple-
mentation on FPGAs and proposed a synthesis flow. However, the differential
routing problem in FPGAs has not been addressed to the best of our knowledge.
In this section we discuss how the Divided Backend Duplication method can be
applied to get balanced differential routing in FPGAs.

Before implementing a design in FPGA, it has to be synthesized to the target
FPGA. Synthesizing for a secure dual rail implementation has been discussed
in detail in [19]. We adopt the flow presented in [I9] to synthesize for Divided
Backend Duplication implementation with the modifications shown in Fig.
After replacing the inverters with XORs, FPGA synthesis can be done with a
commercial CAD tool or “Clustering” technique described in [19]. Care needs
to be taken if Commercial CAD tools are used, to preserve the wave dynamic
nature of the design. Note that the structural ¢rue and false part are identical
for FPGAs, the only difference being the LUT programming value.

FPGAs have highly regular structure as shown in Fig. Each box in
Fig. corresponds to a Configurable Logic Block (CLB) and its associated
routing resources. Unlike ASICs, the place & route process of FPGAs is not
standardized. This makes it difficult to duplicate the placement and routing
information for complementary parts of a dual rail design. Although each FPGA
vendor has a specific implementation tool, most of the tools offer procedures to
1) floorplan and 2) constrain a design’s instance to a specific location. However,
constraining a net to a specific routing resource is not supported. Based on this,

406 K. Baddam and M. Zwolinski

Divided Backend Duplication ———1
Regular Place & Route s

% of differential pair nets

08 08 09 095 1 105 14 115 12
Delayyye/Delayraise

(a) Floorplan view of duplicated design on a (b) Ratio of Delay of Differential Pair nets
Xilinx FPGA

Fig. 10. Divided Backend Duplication implementation results on a Xilinx FPGA

the process to implement a balanced dual rail design in FPGAs can be divided
into the following steps.

1. The WDDL-compliant single rail design is processed to replace the inverter
cells with XOR cells and to transform the netlist into a FPGA-specific netlist
(Fig. B).

2. The floorplan area is divided into two equal parts (for the true and false
parts), comprising equal number of CLBs, local routing resources and global
routing resources (Fig. @(b)).

3. The top-level dual-rail design is implemented in the usual way, without vio-
lating the boundary constraints set above. The implementation steps usually
are place & route, timing analysis, ECO fixes, etc.

4. After the top-level dual-rail design is successfully implemented, locations of
all the instances of true part are saved to a file. Based on the location of
a true part’s instance, the corresponding false part’s instance is calculated
and written to a constraint file.

5. Based on the new constraints, the false part is re-implemented.

To see the effectiveness of backend duplication, we implemented a DES sbox on
a Xilinx FPGA [20]. Xilinx’s XST tool was used for synthesis and ISE was used
for implementation. The Xilinx Floorplan editor was used to constrain the floor-
plan. After the initial place & route Xilinx’s Floorplan editor was used to save all
the instance locations. The final place & route process was constrained by using
Xilinx’s UCF file. Fig. shows a floorplan view of such a duplicated design.
Although FPGA implementation tools do not report detailed parasitic informa-
tion, they report delays associated with an instance and interconnect in a Stan-
dard Delay File (SDF). This SDF file was analyzed and the resulting distribution
of the ratio between the delay at the true signal net and the delay at the corre-
sponding false signal net (Delayi e/ Delay faise) is shown in Fig. The delay
ratio Delayirye/Delayfaise for the regular place & route method is between 0.40
& 2.7 and for the divided backend duplication method it is between 0.8 & 1.2. The
percentage of nets that have a ratio of 1 for Divided Backend Duplication is 64.25%

Divided Backend Duplication Methodology for Balanced Dual Rail Routing 407

compared to 46.34% for regular place & route. Although we have constrained an
instance to be at a specific location, the implementation tool is free to connect
the wires and may be the reason for only 64.25% of nets to have a ratio of 1. Note
that we are not constraining the FPGA tool to duplicate the routes, as we could
not find a way to achieve this. Yu and Schaumont have implemented a duplica-
tion method for Double WDDL style on Xilinx FPGAs [14] that can be used to
completely balance the routing of differential nets on FPGAs.

4.3 Advantages of Divided Backend Duplication

The main advantage of Divided Backend Duplication is that both the ¢rue and
false parts see the same environment. The coupling capacitance problem dis-
cussed in Section [Z4] is now eliminated. As Divided Backend Duplication is
based on standard cells implementation styles such as WDDL and DSDR, it can
be adapted to both ASICs and FPGAs.

Divided Backend Duplication will not have a problem with diagonal routing,
an upcoming interconnect technology (already available in Xilinx FPGAs and
supported by the Cadence X architecture router), whereas Backend Duplication
currently cannot handle it. Implementing Divided Backend Duplication process
is a straightforward process. Neither specific design rules need to be changed nor
specific routing blocks have to be imposed on the design. In our example imple-
mentation for ASIC, the run time was 3 times less when compared to Backend
Duplication. As the true and false parts are not interleaved, implementing any
Engineering Change Orders (ECOs) is also simple and straightforward.

The only requirements to implement Divided Backend Duplication are that 1)
the pins of complementary standard cells should be same, i.e. at same location
and same metal layer and 2) the size of complementary standard cells are the
same. This is an advantage when compared to the requirements imposed by Fat
Wire [I] and Backend Duplication [2].

As Divided Backend Duplication separates the true and false part, a by-
product is that two separate data sets can be processed at the same time, in-
stead of one. Divided Backend Duplication designs can have a random mode
where one part can process the required data and the other can process random
data. Further the entire design can be configured such that the design can ran-
domly switch from dual rail mode to random mode and back. Divided Backend
Duplication designs can even be configured to operate either the true or false
part at a given time to reduce power consumption, when DPA countermeasure is
not required. The only requirement to achieve this is to change the input/output
interface to the dual rail design.

4.4 Disadvantages of Divided Backend Duplication

The main disadvantage of the Divided Duplication method is the additional
area and delay overhead introduced by replacing inverters with XOR gates. The
number of XOR cells used depends on the design and cannot be generalized. For
our AES test circuit about 25% of cells were XORs. This increased the critical

408 K. Baddam and M. Zwolinski

Fig. 11. Hierarchical Divided Backend Duplication

path delay by 1.2 times. The delay and area overhead introduced by XOR can
be minimized by using a domino style inverter instead of XOR. Also the prch
signal needs to be buffered as it drives all the extra XOR cells.

As the true and false part of the design are physically separated, there may
be a concern that EM analysis attacks [2I] may be successful, by only observing
the true or false part. Although this may seem unlikely, one may minimize the
extent of this concern by taking a hierarchical approach to implementing Divided
Backend Duplication compared with that shown in Fig.[6l An example floorplan
for a hierarchical Divided Backend Duplication is shown in Fig. Il Another
approach would be to use the Backend Duplication method [2], but with the
following difference for duplication: instead of shifting to the right, every object
can be flipped to the right.

5 Conclusion

We have shown that coupling capacitance between dual rail nets can cause rout-
ing imbalances. To address this, we have proposed a new method, called Divided
Backend Duplication. We have shown that the Divided Backend Duplication
method can be applied to get a balanced dual rail design in both ASICs and
FPGAs and that it offers a significant improvement in balancing routing capac-
itance compared to previous methods. Divided Backend Duplication is the first
method to address routing imbalances in FPGAs. Divided Backend Duplication
has an area overhead of around 25% and a delay overhead of around 1.2 times.

Acknowledgments

We are very thankful to Sylvain Guilley for his valuable discussions & sugges-
tions regarding implementation of Backend Duplication and for sharing his Perl

Divided Backend Duplication Methodology for Balanced Dual Rail Routing 409

script to implement Backend Duplication. We would also like to acknowledge
the anonymous referees for their valuable comments & suggestions.

References

1.

10.

11.

12.

13.

14.

Tiri, K., Verbauwhede, I.: Place and Route for Secure Standard Cell Design. In:
6th International Conference on Smart Card Research and Advanced Applications
(CARDIS 2004), August 2004, pp. 143-158 (2004)

Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The Backend Duplication
Method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383-
397. Springer, Heidelberg (2005)

Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In: DATE 2004: Proceedings of the
conference on Design, automation and test in Europe, pp. 246-251. IEEE Computer
Society, Washington (2004)

Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded sys-
tems: Design challenges. Trans. on Embedded Computing Sys. 3(3), 461-491 (2004)
Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999)
Bucci, M., Guglielmo, M., Luzzi, R., Trifiletti, A.: A power consumption random-
ization countermeasure for DPA-resistant cryptographic processors. In: Macii, E.,
Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254, pp. 481—
490. Springer, Heidelberg (2004)

Sokolov, D., Murphy, J., Bystrov, A., Yakovlev, A.: Design and Analysis of Dual-
Rail Circuits for Security Applications. IEEE Transactions on Computers 54(4),
449-460 (2005)

Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In: Walter, C.D.,; Kog, C.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125-136. Springer, Heidelberg
(2003)

Baddam, K., Zwolinski, M.: Path switching: a technique to tolerate dual rail
routing imbalances. Design Automation for Embedded Systems (accepted for
publication) (2008), http://www.springerlink.com/content/32181g28411w2121)
doi:10.1007/s10617-008-9017-z

Pramstaller, N., Oswald, E., Mangard, S., Giirkaynak, F.K., Haene, S.: A Masked
AES ASIC Implementation. In: Ofner, E., Ley, M. (eds.) Proceedings of Austrochip
2004, Villach, Austria, October 2004, pp. 77-82 (2004)

Popp, T., Mangard, S.: Masked Dual-Rail Pre-Charge Logic: DPA-Resistance with-
out Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 172-186. Springer, Heidelberg (2005)

Tiri, K., Verbauwhede, I.: Prototype IC with WDDL and Differential Routing
DPA Resistance Assessment. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 354-365. Springer, Heidelberg (2005)

Bucci, M., Giancane, L., Luzzi, R., Trifiletti, A.: Three-Phase Dual-Rail Pre-charge
Logic. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 232-241.
Springer, Heidelberg (2006)

Yu, P., Schaumont, P.: Secure FPGA circuits using controlled placement and rout-
ing. In: CODES+ISSS 2007: Proceedings of the 5th IEEE/ACM international con-
ference on Hardware/software codesign and system synthesis, pp. 45-50. ACM,
New York (2007)

http://www.springerlink.com/content/32181g28411w2121

410

15.

16.

17.

18.

19.

20.
21.

K. Baddam and M. Zwolinski

Bouesse, G.F., Renaudin, M., Dumont, S., Germain, F.: DPA on Quasi Delay In-
sensitive Asynchronous Circuits: Formalization and Improvement. In: DATE 2005:
Proceedings of the conference on Design, Automation and Test in Europe, pp.
424-429. TEEE Computer Society, Washington (2005)

Weste, N., Harris, D.: CMOS VLSI Design A Circuits and Systems Perspective,
3rd edn. Addison-Wesley, Reading (2004)

Si2.org: OpenAccess Coalition (April 2007), http://openeda.si2.org/

Cadence Design Systems: ENCOUNTER DIGITAL IC DESIGN PLATFORM
(April 2007),

http://www.cadence.com/products/digital ic/index.aspx?lid=dic

Tiri, K., Verbauwhede, I.: Synthesis of Secure FPGA Implementations. In: Inter-
national Workshop on Logic and Synthesis (IWLS 2004), June 2004, pp. 224-231
(2004)

Xilinx Inc: Xilinx Inc. (April 2007), http://www.xilinx.com/

Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Kog, C.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251-261. Springer, Heidelberg (2001)

http://openeda.si2.org/
http://www.cadence.com/products/digital_ic/index.aspx?lid=dic
http://www.xilinx.com/

	Divided Backend Duplication Methodology for Balanced Dual Rail Routing
	Introduction
	Background
	Dual Rail Precharge Logic Styles
	Backend Design Flow
	Existing Methods
	Shortcomings of the Existing Methods

	Inversion Problem in DRP Logic
	Mitigating the Inversion Problem in DRP Logic

	Proposed Method: Divided Backend Duplication
	ASIC Implementation
	FPGA Implementation
	Advantages of Divided Backend Duplication
	Disadvantages of Divided Backend Duplication

	Conclusion
	References

