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Abstract---The Bridge project is an EU FP6 project
funded by the European Commission to support the
EU-China joint effort on secure and distributed
cooperation between European and Chinese industrial
communities such as the distributed aircraft design
optimization etc. The interoperability  between
SIMDAT GRIA and CNGrid GOS, which enables a
joint grid platform between SIMDAT and CNGRID
infrastructures, is_ fundamental to achieve this goal.
This paper presents the interoperability solution
adopted by the Bridge project, including job
management, data sharing, and authentication &
authorization. A prototype of distributed aircraft
design optimization based on the interoperability
between GRIA and GOS has been implemented, which
can effectively aggregate and integrate different
analysis services that are provided by different
geographical distributed partners. The strategies
adopted in implementing the prototype are discussed
and preliminary results are presented.
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L INTRODUCTION

Analysis services, such as mesh generation tools,
structural prediction tools and Meta-Modeling services
are the basis of virtual product development in many
different industries. Such analysis services are, to an
increasing extent, being integrated into complex
problem solving environments to allow engineers to
easily drive the whole development process in an
integrated environment. To meet the challenges of
geographically and logically distributed development
processes, analysis services have to be Grid-enabled
and integrated into Grid-enabled problem solving
environments.

In general, Grid technologies [1] [2] have evolved to
fulfill two major aspects. First, distributed resources
are to be virtualized to provide a single consistent view
to the end-user and allow him/her to use these

resources without having to worry about infrastructure
or business aspect details. Second, Grid technologies
are based on open standards. Both aspects are essential
analysis  services requirements for distributed
companies and their suppliers that are working in
multiple product development disciplines and want to
share analysis services based on open standards. In this
view, Grid technologies are the only viable alternative
to fulfill these requirements.

In order to address these challenges, the European
Research project “BRIDGE” [3] has been set up. This
project extends the interoperability of underlying Grid
infrastructures (SIMDAT [4] and CNGrid [5]) through
the development of enhanced specification-based
services and gafeway technology to support secure and
distributed cooperation between European and Chinese
industrial communities.

Based on the experiences from SIMDAT and CNGrid,
the Bridge project has a special focus on industrial
applications. In particular, this paper focuses on the
aerospace application developed during the Bridge
project and demonstrates the use of analysis services
based on GRIA and GOS, workflow definition and
execution based on GRIA as applied to the
optimization of the topology of an airplane wing
structure. To achieve this goal, cross domain grid
infrastructures interoperability between European and
China is therefore needed.

The paper is organized as follows: section 2 describes
distributed design optimization; section 3 introduces
system architecture of aerospace application; section 4
explains cross-domain analysis services coordination
based on the middlewares interoperability between
GRIA and GOS; section 5 gives a preliminary result of
our work; finally, in section 6, the conclusions and
future works are described.

IL.

In this paper, the flap position for an aircraft wing is
optimized to reduce noise during landing without
losing lift. The wing and body geometry models are
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created by using Dassault CATIAvS5. The wing and
body models have been taken from a civil
transportation aircraft; these models have been used to
create aerodynamic, acoustic and aeroelastic models
for analysis.

The generated geometry has been modified according
to the optimization needs. Therefore, an automatic
model creation tool has been implemented to generate
the parameterized model according to geometry
modifications. The design parameters are the x, y and
theta position of each flap, as shown in Figure 1.
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Figure 1: Design Parameters

In order to achieve the noise reduction objective, a
complex simulation process has been set up, including
a number of different analyses, each provided by a
partner of the Bridge project consortium. The
simulation process includes a geometry model
generator, an acrodynamic simulation service, an aero-
elastic simulation service (provided by AVIC-II,
China), a Meta-Modeling service (provided by FhG-
SCAI, German) and an acoustic simulation service
(provided by EADS, France). An outline of the logical
integration of these disciplines is shown in Figure 2.
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Figure 2: Aerospace Optimization Scenario
A dedicated genetic algorithm (provided by AVIC-II,
China) has been applied to carry out the optimization
process. Meta-Modeling technology has been used to
reduce the number of needed evaluations in order to
accelerate the optimization process. The workflow
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service (provided by LMS, Belgium) captured the
above simulation process as well as the optimizer with

a grid enabled workflow and completed the
optimization loop.
The simulation structure described above is a

representative multi-disciplinary analysis case for the
aeronautic industry, and the normal analysis
procedures and optimization processes cannot be used
to achieve an optimal result in a reasonable timeframe.

IIL.

The aerospace application has been developed by
AVIC-II, Beihang University and LMS International.
The application development can be classified into
three different parts:

1. Development of the automatic model creation

SYSTEM ARCHITECTURE

tools.

2.  Creation of GRIA and GOS based analysis
services;

3. Development of the aerospace application

analysis workflow (called AGrid hereafter);
In Figure 3, the system architecture of the aerospace
application is outlined.
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Figure 3: System Architecture
It can be divided into five separate layers:
»  Platform Level: it’s the basic level and consists of
underlying computing & storage resources and
GRIA/ GOS;
Application Level: it consists of analysis services
used in aerospace application, including HAJIF-II,
acoustic simulation service and Meta-Modeling
services etc;
Optimization Level: it’s the core of aerospace
application, consists of Genetic Algorithm
Optimization (GAO for short hereafter) and
Neural-network;
Integration Level: it provides unified interface to
underlying applications and resources, we support
both GRIA and GOS;
Workflow: it in charge of integrating distributed
analysis services to form a functional aerospace
application.
GAO is the core of AGrid; OPTIMUS is used to
integrate and drive the simulation process, which is
defined as a multi-level workflow. The analysis
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services in the optimization process for aerospace
application are assigned to geographically distributed
clusters. OPTIMUS can integrate grid related services
by executing batch file, which submits jobs to
underlying grid middleware. The analysis applications
in the process of GAO can be launched from a batch
jobs

file, which
middlewares.

submits to underlying grid

Opsmus chont

Figure 4: Aerospace Application Deployment

Figure 4 shows the deployment of analysis services
required in the aerospace application across China and
Europe. In this deployment, LMS OPTIMUS workflow
drives the scenario, orchestrating acoustic and Meta-
Modeling services in Europe, as well as aeroelastic and
optimization services in China. The relationships
among the different modules in the runtime are shown
in Figure 5.
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Figure 5: Relationships among Different Modules

As Figure 5 shown, analysis services deployed in

Europe are integrated into the main workflow directly

through GRIA, but the services deployed in CNGrid

are integrated through the GRIA/GOS gateway which

will be introduce in section 4.2.

AGrid Worker Node
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IV. CROSS-DOMAIN INTEROPERABILITY

To implement distributed design optimization, we need
to resolve cross-domain service coordination. Many
things need to be considered during this process. In this
section, we will introduce the work done.
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A.  Multiple Level Distributed Aircraft Design
Optimization

The simulation services participate collaboratively in
the overall aerospace design process. The big challenge
in this scenario lies in that we need to deal with
multiple level optimization design that is driven by the
genetic algorithm, which is more complex than
traditional optimization design.
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Figure 6: Multiple Level OPTIMUS Workflow

As Figure 6 show, OPTIMUS provides the main
mechanisms for the execution of the grid-enabled
workflow in the optimization loops. OPTIMUS is the
workflow engine we used in the Bridge project. It is a
generic workflow definition, capture and federation
tool, allowing the creation of “simulation” based
workflows. OPTIMUS executes the workflow in a
distributed manner on the individual grid infrastructure
of China and Europe. It integrates the aerodynamic
service, aeroelastic service, acoustic service, Meta-
Modelling service and genetic algorithm optimiser to
form the complete optimization application.

B.  GRIA/GOS Interoperability

It’s important to implement interoperability in order to
support effectively coordination among the analysis
services. Achieving interoperability among
heterogeneous grids is not a trivial task [6] [7] [8]. In
order to fulfill the interoperability requirements of
Bridge project, three problems must be addressed:

1.  Authentication & Authorization;

2. Cross-Domain Job Management;

3. Efficient Cross-Domain Data Share.

1) Authentication & Authorization
Authentication & authorization are two basic pillars of
the security mechanism. Authentication is used to
determine the identity of a security principal, whereas
authorization is used to determine whether a known
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security principal is permitted to perform a requested
action on a resource.
The security mechanisms of GRIA and GOS are
compared in Table 1

Table 1 Difference in Security Mechanisms

Middleware Authentication Authorization
GOS WS-Security SAML Token
GRIA WS-Security PBAC

WS-Security is supported by both GRIA and GOS, so
the authentication problem can be resolved through
using X.509 certificates and the difficulties lie in
authorization.

GOS adopts SAML token as the authorization solution
which utilizes assertions and per-define rules to decide
whether an operation is allowed or not. While GRIA
provides a dynamic access control mechanism called
PBAC that enforces access control policies in respect
to business processes for interacting with stateful
resources. Figure 7 shows a typical PBAC system.
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Figure 7: PBAC Architecture

There are many differences between SAML token and
PBAC, a simple and unified mechanism is needed to
express the access control requirements and make the
decisions. In the Bridge project, GOS was extended to
support the policy management operations defined in
the security profile of NextGRID project [9]. Support
for this profile was added to GRIA in the NextGRID
project itself. The core of the policy management
operations is the PolicyRule type, which is used to
carry the information. It consists of three parts:

1. MatchPattern: A match pattern can be applied to a
set of credentials presented by a subject to
determine whether the subject matches the pattern
or not;

2. Roles: Each type of resource has a set of
roles which a subject may have. Each policy
rule affects membership of only a single role,
given by the role element. Unlike the tokens
matched by the match patterns, which are chosen
by and meaningful only to the client, roles must
be meaningful to both client and service. The set
of available roles for a resource is defined by the
instance.

3.  Type: Three types of rule are defined including
NECESSARY, SUFFICIENT, DENY

Two examples of PolicyRules follow the first matching
an X.509 identity and the second matching a SAML
assertion:
<rule>
<matchPattern>
<subjectDN>CN=Beihang</ subjectDN>
<issuerCertificate>q8qqhf</issuerCertificate>
</matchPattern>
<type>SUFFICIENT</type>
<role>reader</role>
</rule>
<rule>
<matchPattern>
<issuerCertificate>q8qqghf</issuerCertificate>
<attributeName>project</attributeName>
<attributeValue>Bridge</attributeValue>
</matchPattern>
<type>SUFFICIENT</type>
<role>writer</role>
</rule>
PolicyRule contains all the necessary information for
access control operation. GRIA and GOS can make
their own decisions based on them.

2) Gateway-Based Job Management
In the current gateway-based solution, GRIA acts as a
front interface for GOS and it transparently forwards
received jobs to CNGrid for processing.
The GRIA job service is used to manage jobs, but it
does not access underlying resource mangers directly
to submit and check jobs. Instead, it introduces an extra
layer of underlying resource manager dependant
platform scripts to submit and check jobs respectively.
For each resource manager, GRIA requires a separate
suite of platform scripts to handle jobs such as:
»  Start job script to submit jobs;
»  Check job script to check the status of a job;
»  Kill job script to terminate a job.
The job service then can be configured to use different
platform scripts suitable for corresponding underlying
resource manager. These platform scripts know how to
handle (start, check, kill) jobs for that particular
resource manager, and can be instructed to run a
particular application via its application wrapper. At
present, three different kinds of platform scripts are
shipped with GRIA by default to support Condor,
TorquePBS and Local Execution.
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Figure 8: GRIA Job Service Interfaces and Scripts
Figure 8 illustrates how the platform script layer sits
between the job service and application wrappers
hiding resource manager details.

Table 2 compares the job description languages and
submission manners adopted by GRIA and GOS.

Table 2: Job Management Mechanisms

Middleware | Job Description Submission
Language Manner
GOS JSDL Portal, Web Service
GRIA JSDL, created using | Web Service, Client
Application metadata Toolkit

Because of the differences between job management
mechanisms, two issues must be handled during cross-
domain job management:

1. Job Description Language;

2. Job Submission Manner.

Job description language is used to define job
requirements, its major elements includes: command
definition, resource requirement definition and data
staging definition. Different syntax is used to describe
job requirements in different job description languages,
a conversion must be performed between the JSDL [10]
dialects used by GOS and GRIA by the gateway during
job processing.

Table 3: Job Description Languages Mapping

Job GOS GRIA

Description

Language

Application JobDefinition/Appli | JobDefinition/Applic
cation/ ation/ApplicationNa
POSIXApplication/ me
Executable

Argument JobDefinition/Appli | JobDefinition/Applic
cation/ ation/
POSIXApplication/ POSIXApplication/
Arguments Arguments

Data Transfer JobDefinition/DataS | JobDefinition/DataSt
taging aging EPR

Table 3 shows a mapping of major elements between
GOS and GRIA JSDL dialects.

We implement a GOS client toolkit which encapsulates
all the necessary conversions including JSDL creation,
job submission, and job status checking etc. The job
submission and status checking operations are done
through the Web Services interface provided by GOS
which complies with OGSA-BES. The GOS client
toolkit is packaged as the application wrapper which
will be launched by the Local Execution platform
scripts shipped with GRIA. We also extend the GOS
data transfer mechanism to support direct interaction
with GRIA Data Service using HTTPs protocol.

The whole process of gateway-based interoperability

between GRIA and GOS is illustrated in Figure 9 and

the steps can be summarized as:

1.  The end user firstly uploads necessary input data
to the GRIA Data Service using the HTTPs
protocol, then invoke the target application,
which is published through the GRIA Job Service;

2. The GRIA Job Service invokes GRIA/GOS
wrapper through Local Execution platform scripts;

3. The GRIA/GOS wrapper modifies the access
control rules of data uploaded in step 1 to make
sure GOS can access it, then invokes GOS using
the GOS client toolkit;

4. GOS downloads data from the GRIA Data service
using the HTTPs protocol, processes the job
request and uploads the result files to the GRIA
Data Service;

5. The end user downloads result files from the
GRIA Data Service and prepares the next service
invocation.

In step 3, access permissions are modified based on the

pre-configured GOS BES certificate. If users are

allowed to access the GOS service directly, not just via

GRIA, then it’s possible that one user can access the

data that does not belong to him/her because GOS may

on behalf of multiple end users. To avoid this situation,
we propose a dynamic security token based permission

mechanism which will be introduced in section 4.2.3.
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Figure 9: Gateway Based Job Management

3) Cross-Domain Data Management
In many situations, the output of one service will
become the input of another service. And considerable
amounts of data are generated by distributed design
optimization such as CFD computation.
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Figure 10: Cross-Domain Data Management
For efficiency reasons, data, especially large volume
data, should be transferred directly from the output of
one service to the input of another, rather than having
the client download it from one service and upload it to
the other. Here, the output of a GRIA job is used as
input for a GOS-BES job as shown in Figure 10.
Table 4 compares GOS and GRIA in data management
mechanism.

Table 2: Difference in Data Management
Middleware Protocol Authentication Authorization
GOS FTP User/Pass SAML Token
GRIA HTTPs TLS/SSL PBAC

TLS/SSL [11] is the authentication mechanism of
HTTPs. During handshakes phase of TLS/SSL, all the
participating parties should know each other’s
certificates in advance. Multiple GOS installations may
access the same GRIA simultaneously, as GRIA stores
the required certificates in the access control rules of
each individual data resource. To support flexible
administration, GRIA  utilizes  AnyCertProvider
provided by Shibboleth [12] which is a plug-in of Java
security framework. The AnyCertProvider disables the
simple default trust check performed by Tomcat so that
authorization is enforced through PBAC instead.

Because service will perform data transfer operations
for multiple users and it is important that one user
cannot use the service to access another user's data
without permission. Let’s take the sample scenario
shown in Figure 10 as an example. When a user
requests that data stager B should fetch data from data
stager A, stager B first invokes an extra operation on A
to ensure that the client has read access to the data. If
this succeeds, B invokes a second operation to actually
fetch the data. But using two calls introduces a small
race condition and is somewhat inefficient. For
example, imagine that some user has a public data
stager which anyone can read. This user now decides
to upload some sensitive information into it and change
the access control rules to remove public access, and
then uploads the sensitive data. If a user tried to
transfer the data at the same time, it is possible that the
first test call would pass (while the data was still public)
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but that the actual data received would be the private
information.

Therefore, it is desirable to perform the check in the
same invocation as the transfer. There are two
reasonable methods for doing this:

1. Include the identity of the client somewhere in the
fetch message sent from B to A. Stager A must
check if the specified client has the read access
right, in additional to its usual check on the
sender (B) of the message. A new custom header
must be defined to contain this information.
Stager B creates a new identity (including a new
private key) representing the service acting on
behalf of the client. To stager A, this appears as a
new identity (to which the client has granted read
access). Stager A therefore only performs one
check and no custom header is required. However,
stager B must communicate with the client with
the new identity.

A variation on method 2 is to have the client sign
stager B's new identity. Stager A could then
automatically allow B access to the data, even without
an explicit policy rule. The authorization is in the new
certificate signed by the client. In the Bridge project,
solution 2 has been adopted, as it does not require
modifications to the transfer software.

Figure 11 depicts the data access sequence diagram for
the GOS service to access the output of a GRIA service
directly. Security token used during data access need to
uniquely identify the end user and a dynamically
signed GSI proxy [13] is suitable for this purpose.
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client Apps GO5-BES

create job

PUT input data

i

submit :

r

addPolicyRule(proxyCen, "reader")

create job

RequestSecurityToken

submitjobi(proxyCert)

GET output from GRIA

GET output of GOS-BES job

y

Figure 11: Data Access Sequence Diagram
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V.

A testbed installation has been deployed across China
and European administrative domains as shown in
Figure 12.
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Figure 12: Testbed for Aerospace Application
It consists of the following components:

»  Optimization Client: includes two different
components:

B Genetic Optimizer: the GAO optimization
module of aerospace application;

B OPTIMUS: workflow engine used to
integrate analysis services to form a
optimization process;

»  GRIA/CNGrid gateway: includes a wrapper used
to forward invocations from GRIA to GOS:

B GRIA: acting as the frontend of GOS,
supporting integration with OPTIMUS,;

B GRIA/GOS GW: acting as the wrapper of the
GOS;

B GOS: exposing AGrid as GOS service;

»  AGrid Environment

B AGrid Master Node: deployed as the GOS
service and acts as the central control node
of AGrid,

B AGrid Worker Node: used to interact with
underlying cluster resource managers,

supporting both Condor Pool and OpenPBS;
The testbed has being running stably for more than half
a year and has been successfully used for a live demo
performed during the first project review meeting held
in Leuven, Belgium on March 14", 2008.
An application showcase has been executed with the
testbed and the results can be observed in Figure 13.
Here, average is the average fitness value of all
individuals. The bestvalue can be calculated with
weight sum of x1 and x2 values. The x1 and x2
represent aeroelastic and acoustic objective fitness
respectively. The x1 and x2 converge to some certain
value with the optimization step, which shows that the
testbed can be used for the optimization in aeroelastic
and acoustic problems and proved to be an effective
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method for solving the multi-objective multi-discipline
optimization in aircraft design.
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Figure 13: Test Result generated by Testbed
VL

Interconnecting the heterogeneous grid infrastructures
in Europe and China, SIMDAT and CNGRID,
respectively, is very important for scientific research
and industrial applications which allows researchers of
the two regions, Europe and China, to access
computing and data resources which were not available
before. This approach will certainly have a
considerable positive impact to scientific research and
industrial applications.

The interoperability solution proposed in this paper has
proven to work well and can be considered as a valid
solution to achieve transparent interoperability between
GRIA and GOS. The activities to achieve higher level
interoperability between GRIA and GOS will be
continued. The development and the tests of the
presented solution will be completed and a full
deployment of our solution on the production grid
infrastructures will be carried out to support the three
application scenarios of the Bridge project, including
aerospace, meteorology and pharmaceutical.

From the experience gained in this work, the major
difficulty in middleware interoperability mainly came
from the authentication & authorization aspects. This is
primarily caused by different security mechanism
adopted by different middleware platforms, i.e. SAML
token in GOS and PBAC in GRIA. A special attention
has been devoted and will be devoted in the next future
to cross-domain security in order to allow interoperable
access to computing and storage resources across
different infrastructures.
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