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Abstract---The Bridge project is an EU FP6 project 
funded by the European Commission to support the 
EU-China joint effort on secure and distributed 
cooperation between European and Chinese industrial 
communities such as the distributed aircraft design 
optimization etc. The interoperability between 
SIMDAT GRIA and CNGrid GOS, which enables a 
joint grid platform between SIMDAT and CNGRID 
infrastructures, is fundamental to achieve this goal.  
This paper presents the interoperability solution 
adopted by the Bridge project, including job 
management, data sharing, and authentication & 
authorization. A prototype of distributed aircraft 
design optimization based on the interoperability 
between GRIA and GOS has been implemented, which 
can effectively aggregate and integrate different 
analysis services that are provided by different 
geographical distributed partners. The strategies 
adopted in implementing the prototype are discussed 
and preliminary results are presented. 

Keywords: Interoperability, Distributed Design 
Optimization 

I. INTRODUCTION

Analysis services, such as mesh generation tools, 
structural prediction tools and Meta-Modeling services 
are the basis of virtual product development in many 
different industries. Such analysis services are, to an 
increasing extent, being integrated into complex 
problem solving environments to allow engineers to 
easily drive the whole development process in an 
integrated environment. To meet the challenges of 
geographically and logically distributed development 
processes, analysis services have to be Grid-enabled 
and integrated into Grid-enabled problem solving 
environments. 
In general, Grid technologies [1] [2] have evolved to 
fulfill two major aspects. First, distributed resources 
are to be virtualized to provide a single consistent view 
to the end-user and allow him/her to use these 

resources without having to worry about infrastructure 
or business aspect details. Second, Grid technologies 
are based on open standards. Both aspects are essential 
analysis services requirements for distributed 
companies and their suppliers that are working in 
multiple product development disciplines and want to 
share analysis services based on open standards. In this 
view, Grid technologies are the only viable alternative 
to fulfill these requirements. 
In order to address these challenges, the European 
Research project “BRIDGE” [3] has been set up. This 
project extends the interoperability of underlying Grid 
infrastructures (SIMDAT [4] and CNGrid [5]) through 
the development of enhanced specification-based 
services and gateway technology to support secure and 
distributed cooperation between European and Chinese 
industrial communities.  
Based on the experiences from SIMDAT and CNGrid, 
the Bridge project has a special focus on industrial 
applications. In particular, this paper focuses on the 
aerospace application developed during the Bridge 
project and demonstrates the use of analysis services 
based on GRIA and GOS, workflow definition and 
execution based on GRIA as applied to the 
optimization of the topology of an airplane wing 
structure. To achieve this goal, cross domain grid 
infrastructures interoperability between European and 
China is therefore needed. 
The paper is organized as follows: section 2 describes 
distributed design optimization; section 3 introduces 
system architecture of aerospace application; section 4 
explains cross-domain analysis services coordination 
based on the middlewares interoperability between 
GRIA and GOS; section 5 gives a preliminary result of 
our work; finally, in section 6, the conclusions and 
future works are described. 

II. DISTRIBUTED DESIGN OPTIMIZATION

In this paper, the flap position for an aircraft wing is 
optimized to reduce noise during landing without 
losing lift. The wing and body geometry models are 
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created by using Dassault CATIAv5. The wing and 
body models have been taken from a civil 
transportation aircraft; these models have been used to 
create aerodynamic, acoustic and aeroelastic models 
for analysis.  
The generated geometry has been modified according 
to the optimization needs. Therefore, an automatic 
model creation tool has been implemented to generate 
the parameterized model according to geometry 
modifications. The design parameters are the x, y and 
theta position of each flap, as shown in Figure 1. 

Figure 1: Design Parameters 
In order to achieve the noise reduction objective, a 
complex simulation process has been set up, including 
a number of different analyses, each provided by a 
partner of the Bridge project consortium. The 
simulation process includes a geometry model 
generator, an aerodynamic simulation service, an aero-
elastic simulation service (provided by AVIC-II, 
China), a Meta-Modeling service (provided by FhG-
SCAI, German) and an acoustic simulation service 
(provided by EADS, France). An outline of the logical 
integration of these disciplines is shown in Figure 2. 

Figure 2: Aerospace Optimization Scenario 
A dedicated genetic algorithm (provided by AVIC-II, 
China) has been applied to carry out the optimization 
process. Meta-Modeling technology has been used to 
reduce the number of needed evaluations in order to 
accelerate the optimization process. The workflow 

service (provided by LMS, Belgium) captured the 
above simulation process as well as the optimizer with 
a grid enabled workflow and completed the 
optimization loop. 
The simulation structure described above is a 
representative multi-disciplinary analysis case for the 
aeronautic industry, and the normal analysis 
procedures and optimization processes cannot be used 
to achieve an optimal result in a reasonable timeframe.  

III. SYSTEM ARCHITECTURE

The aerospace application has been developed by 
AVIC-II, Beihang University and LMS International. 
The application development can be classified into 
three different parts: 
1. Development of the automatic model creation 

tools. 
2. Creation of GRIA and GOS based analysis 

services;
3. Development of the aerospace application 

analysis workflow (called AGrid hereafter);  
In Figure 3, the system architecture of the aerospace 
application is outlined.  

Figure 3: System Architecture 
It can be divided into five separate layers: 

Platform Level: it’s the basic level and consists of 
underlying computing & storage resources and 
GRIA/ GOS; 
Application Level: it consists of analysis services 
used in aerospace application, including HAJIF-II, 
acoustic simulation service and Meta-Modeling 
services etc; 
Optimization Level: it’s the core of aerospace 
application, consists of Genetic Algorithm 
Optimization (GAO for short hereafter) and 
Neural-network;
Integration Level: it provides unified interface to 
underlying applications and resources, we support 
both GRIA and GOS;  
Workflow: it in charge of integrating distributed 
analysis services to form a functional aerospace 
application. 

GAO is the core of AGrid; OPTIMUS is used to 
integrate and drive the simulation process, which is 
defined as a multi-level workflow. The analysis 

486

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on June 19, 2009 at 07:36 from IEEE Xplore.  Restrictions apply.



services in the optimization process for aerospace 
application are assigned to geographically distributed 
clusters. OPTIMUS can integrate grid related services 
by executing batch file, which submits jobs to 
underlying grid middleware. The analysis applications 
in the process of GAO can be launched from a batch 
file, which submits jobs to underlying grid 
middlewares.  

Figure 4: Aerospace Application Deployment 
Figure 4 shows the deployment of analysis services 
required in the aerospace application across China and 
Europe. In this deployment, LMS OPTIMUS workflow 
drives the scenario, orchestrating acoustic and Meta-
Modeling services in Europe, as well as aeroelastic and 
optimization services in China. The relationships 
among the different modules in the runtime are shown 
in Figure 5.  

Figure 5: Relationships among Different Modules 
As Figure 5 shown, analysis services deployed in 
Europe are integrated into the main workflow directly 
through GRIA, but the services deployed in CNGrid 
are integrated through the GRIA/GOS gateway  which 
will be introduce in section 4.2. 

IV. CROSS-DOMAIN INTEROPERABILITY

To implement distributed design optimization, we need 
to resolve cross-domain service coordination. Many 
things need to be considered during this process. In this 
section, we will introduce the work done. 

A. Multiple Level Distributed Aircraft Design 
Optimization 

The simulation services participate collaboratively in 
the overall aerospace design process. The big challenge 
in this scenario lies in that we need to deal with 
multiple level optimization design that is driven by the 
genetic algorithm, which is more complex than 
traditional optimization design.  

Figure 6: Multiple Level OPTIMUS Workflow 
As Figure 6 show, OPTIMUS provides the main 
mechanisms for the execution of the grid-enabled 
workflow in the optimization loops. OPTIMUS is the 
workflow engine we used in the Bridge project. It is a 
generic workflow definition, capture and federation 
tool, allowing the creation of “simulation” based 
workflows. OPTIMUS executes the workflow in a 
distributed manner on the individual grid infrastructure 
of China and Europe. It integrates the aerodynamic 
service, aeroelastic service, acoustic service, Meta-
Modelling service and genetic algorithm optimiser to 
form the complete optimization application.  

B. GRIA/GOS Interoperability 
It’s important to implement interoperability in order to 
support effectively coordination among the analysis 
services. Achieving interoperability among 
heterogeneous grids is not a trivial task [6] [7] [8]. In 
order to fulfill the interoperability requirements of 
Bridge project, three problems must be addressed: 
1. Authentication & Authorization; 
2. Cross-Domain Job Management; 
3. Efficient Cross-Domain Data Share. 

1) Authentication & Authorization 
Authentication & authorization are two basic pillars of 
the security mechanism. Authentication is used to 
determine the identity of a security principal, whereas 
authorization is used to determine whether a known 
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security principal is permitted to perform a requested 
action on a resource. 
The security mechanisms of GRIA and GOS are 
compared in Table 1 

Table 1 Difference in Security Mechanisms 
Middleware Authentication Authorization 
      GOS WS-Security SAML Token 

GRIA WS-Security PBAC
WS-Security is supported by both GRIA and GOS, so 
the authentication problem can be resolved through 
using X.509 certificates and the difficulties lie in 
authorization. 
GOS adopts SAML token as the authorization solution 
which utilizes assertions and per-define rules to decide 
whether an operation is allowed or not. While GRIA 
provides a dynamic access control mechanism called 
PBAC that enforces access control policies in respect 
to business processes for interacting with stateful 
resources. Figure 7 shows a typical PBAC system. 

Figure 7: PBAC Architecture 
There are many differences between SAML token and 
PBAC, a simple and unified mechanism is needed to 
express the access control requirements and make the 
decisions. In the Bridge project, GOS was extended to 
support the policy management operations defined in 
the security profile of NextGRID project [9]. Support 
for this profile was added to GRIA in the NextGRID 
project itself. The core of the policy management 
operations is the PolicyRule type, which is used to 
carry the information. It consists of three parts: 
1. MatchPattern: A match pattern can be applied to a 

set of credentials presented by a subject to 
determine whether the subject matches the pattern 
or not;  

2. Roles: Each  type  of  resource  has  a  set  of  
roles  which  a  subject  may  have.  Each  policy  
rule  affects membership of only  a  single  role,  
given by  the  role  element. Unlike the tokens 
matched by the match patterns, which are chosen 
by and meaningful only to the client, roles must 
be meaningful to both client and service. The set 
of available roles for a resource is defined by the 
instance.

3. Type: Three types of rule are defined including 
NECESSARY SUFFICIENT DENY 

Two examples of PolicyRules follow the first matching 
an X.509 identity and the second matching a SAML 
assertion:
<rule>

<matchPattern> 
<subjectDN>CN=Beihang</ subjectDN> 
<issuerCertificate>q8qqhf</issuerCertificate> 

    </matchPattern> 
    <type>SUFFICIENT</type> 
    <role>reader</role> 
</rule>
<rule>

<matchPattern> 
<issuerCertificate>q8qqhf</issuerCertificate> 

          <attributeName>project</attributeName> 
          <attributeValue>Bridge</attributeValue> 

</matchPattern> 
<type>SUFFICIENT</type> 

    <role>writer</role> 
</rule>
PolicyRule contains all the necessary information for 
access control operation. GRIA and GOS can make 
their own decisions based on them. 

2) Gateway-Based Job Management 
In the current gateway-based solution, GRIA acts as a 
front interface for GOS and it transparently forwards 
received jobs to CNGrid for processing.  
The GRIA job service is used to manage jobs, but it 
does not access underlying resource mangers directly 
to submit and check jobs. Instead, it introduces an extra 
layer of underlying resource manager dependant 
platform scripts to submit and check jobs respectively. 
For each resource manager, GRIA requires a separate 
suite of platform scripts to handle jobs such as: 

Start job script to submit jobs; 
Check job script to check the status of a job; 
Kill job script to terminate a job. 

The job service then can be configured to use different 
platform scripts suitable for corresponding underlying 
resource manager. These platform scripts know how to 
handle (start, check, kill) jobs for that particular 
resource manager, and can be instructed to run a 
particular application via its application wrapper. At 
present, three different kinds of platform scripts are 
shipped with GRIA by default to support Condor, 
TorquePBS and Local Execution.  
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Figure 8: GRIA Job Service Interfaces and Scripts 
Figure 8 illustrates how the platform script layer sits 
between the job service and application wrappers 
hiding resource manager details. 
Table 2 compares the job description languages and 
submission manners adopted by GRIA and GOS. 

Table 2: Job Management Mechanisms 
Middleware Job Description 

Language 
Submission

Manner
    GOS JSDL Portal, Web Service

GRIA JSDL, created using 
Application metadata 

Web Service, Client 
Toolkit 

Because of the differences between job management 
mechanisms, two issues must be handled during cross-
domain job management: 
1. Job Description Language; 
2. Job Submission Manner. 
Job description language is used to define job 
requirements, its major elements includes: command 
definition, resource requirement definition and data 
staging definition. Different syntax is used to describe 
job requirements in different job description languages, 
a conversion must be performed between the JSDL [10] 
dialects used by GOS and GRIA by the gateway during 
job processing. 

Table 3: Job Description Languages Mapping 
Job
Description 
Language

GOS GRIA 

Application JobDefinition/Appli
cation/
POSIXApplication/
Executable

JobDefinition/Applic
ation/ApplicationNa
me 

Argument JobDefinition/Appli
cation/
POSIXApplication/
Arguments

JobDefinition/Applic
ation/
POSIXApplication/
Arguments 

Data Transfer JobDefinition/DataS
taging

JobDefinition/DataSt
aging EPR 

Table 3 shows a mapping of major elements between 
GOS and GRIA JSDL dialects. 

We implement a GOS client toolkit which encapsulates 
all the necessary conversions including JSDL creation, 
job submission, and job status checking etc. The job 
submission and status checking operations are done 
through the Web Services interface provided by GOS 
which complies with OGSA-BES. The GOS client 
toolkit is packaged as the application wrapper which 
will be launched by the Local Execution platform 
scripts shipped with GRIA. We also extend the GOS 
data transfer mechanism to support direct interaction 
with GRIA Data Service using HTTPs protocol.  
The whole process of gateway-based interoperability 
between GRIA and GOS is illustrated in Figure 9 and 
the steps can be summarized as: 
1. The end user firstly uploads necessary input data 

to the GRIA Data Service using the HTTPs 
protocol, then invoke the target application, 
which is published through the GRIA Job Service; 

2. The GRIA Job Service invokes GRIA/GOS 
wrapper through Local Execution platform scripts; 

3. The GRIA/GOS wrapper modifies the access 
control rules of data uploaded in step 1 to make 
sure GOS can access it, then invokes GOS using 
the GOS client toolkit; 

4. GOS downloads data from the GRIA Data service 
using the HTTPs protocol, processes the job 
request and uploads the result files to the GRIA 
Data Service; 

5. The end user downloads result files from the 
GRIA Data Service and prepares the next service 
invocation. 

In step 3, access permissions are modified based on the 
pre-configured GOS BES certificate. If users are 
allowed to access the GOS service directly, not just via 
GRIA, then it’s possible that one user can access the 
data that does not belong to him/her because GOS may 
on behalf of multiple end users. To avoid this situation, 
we propose a dynamic security token based permission 
mechanism which will be introduced in section 4.2.3. 

Figure 9: Gateway Based Job Management 

3) Cross-Domain Data Management 
In many situations, the output of one service will 
become the input of another service. And considerable 
amounts of data are generated by distributed design 
optimization such as CFD computation.  
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Figure 10: Cross-Domain Data Management  
For efficiency reasons, data, especially large volume 
data, should be transferred directly from the output of 
one service to the input of another, rather than having 
the client download it from one service and upload it to 
the other. Here, the output of a GRIA job is used as 
input for a GOS-BES job as shown in Figure 10.  
Table 4 compares GOS and GRIA in data management 
mechanism. 

Table 2: Difference in Data Management 
Middleware Protocol Authentication Authorization
    GOS FTP User/Pass SAML Token

GRIA HTTPs TLS/SSL PBAC
TLS/SSL [11] is the authentication mechanism of 
HTTPs. During handshakes phase of TLS/SSL, all the 
participating parties should know each other’s 
certificates in advance. Multiple GOS installations may 
access the same GRIA simultaneously, as GRIA stores 
the required certificates in the access control rules of 
each individual data resource. To support flexible 
administration, GRIA utilizes AnyCertProvider
provided by Shibboleth [12] which is a plug-in of Java 
security framework. The AnyCertProvider disables the 
simple default trust check performed by Tomcat so that 
authorization is enforced through PBAC instead. 
Because service will perform data transfer operations 
for multiple users and it is important that one user 
cannot use the service to access another user's data 
without permission. Let’s take the sample scenario 
shown in Figure 10 as an example. When a user 
requests that data stager B should fetch data from data 
stager A, stager B first invokes an extra operation on A 
to ensure that the client has read access to the data. If 
this succeeds, B invokes a second operation to actually 
fetch the data. But using two calls introduces a small 
race condition and is somewhat inefficient. For 
example, imagine that some user has a public data 
stager which anyone can read. This user now decides 
to upload some sensitive information into it and change 
the access control rules to remove public access, and 
then uploads the sensitive data. If a user tried to 
transfer the data at the same time, it is possible that the 
first test call would pass (while the data was still public) 

but that the actual data received would be the private 
information. 
Therefore, it is desirable to perform the check in the 
same invocation as the transfer. There are two 
reasonable methods for doing this: 
1. Include the identity of the client somewhere in the 

fetch message sent from B to A. Stager A must 
check if the specified client has the read access 
right, in additional to its usual check on the 
sender (B) of the message. A new custom header 
must be defined to contain this information. 

2. Stager B creates a new identity (including a new 
private key) representing the service acting on 
behalf of the client. To stager A, this appears as a 
new identity (to which the client has granted read 
access). Stager A therefore only performs one 
check and no custom header is required. However, 
stager B must communicate with the client with 
the new identity. 

A variation on method 2 is to have the client sign 
stager B's new identity. Stager A could then 
automatically allow B access to the data, even without 
an explicit policy rule. The authorization is in the new 
certificate signed by the client. In the Bridge project, 
solution 2 has been adopted, as it does not require 
modifications to the transfer software. 
Figure 11 depicts the data access sequence diagram for 
the GOS service to access the output of a GRIA service 
directly. Security token used during data access need to 
uniquely identify the end user and a dynamically 
signed GSI proxy [13] is suitable for this purpose.  

 
Figure 11: Data Access Sequence Diagram 
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V. PRELIMINARY RESULTS

A testbed installation has been deployed across China 
and European administrative domains as shown in 
Figure 12.  

Figure 12: Testbed for Aerospace Application 
It consists of the following components: 

Optimization Client: includes two different 
components:  

Genetic Optimizer: the GAO optimization 
module of aerospace application; 
OPTIMUS: workflow engine used to 
integrate analysis services to form a 
optimization process; 

GRIA/CNGrid gateway: includes a wrapper used 
to forward invocations from GRIA to GOS: 

GRIA: acting as the frontend of GOS, 
supporting integration with OPTIMUS; 
GRIA/GOS GW: acting as the wrapper of the 
GOS; 
GOS: exposing AGrid as GOS service; 

AGrid Environment 
AGrid Master Node: deployed as the GOS 
service and acts as the central control node 
of AGrid; 
AGrid Worker Node: used to interact with 
underlying cluster resource managers, 
supporting both Condor Pool and OpenPBS; 

The testbed has being running stably for more than half 
a year and has been successfully used for a live demo 
performed during the first project review meeting held 
in Leuven, Belgium on March 14th, 2008. 
An application showcase has been executed with the 
testbed and the results can be observed in Figure 13. 
Here, average is the average fitness value of all 
individuals. The bestvalue can be calculated with 
weight sum of x1 and x2 values. The x1 and x2 
represent aeroelastic and acoustic objective fitness 
respectively. The x1 and x2 converge to some certain 
value with the optimization step, which shows that the 
testbed can be used for the optimization in aeroelastic 
and acoustic problems and proved to be an effective 

method for solving the multi-objective multi-discipline 
optimization in aircraft design. 

Figure 13: Test Result generated by Testbed 

VI. CONCLUSIONS & FUTURE WORKS

Interconnecting the heterogeneous grid infrastructures 
in Europe and China, SIMDAT and CNGRID, 
respectively, is very important for scientific research 
and industrial applications which allows researchers of 
the two regions, Europe and China, to access 
computing and data resources which were not available 
before. This approach will certainly have a 
considerable positive impact to scientific research and 
industrial applications. 
The interoperability solution proposed in this paper has 
proven to work well and can be considered as a valid 
solution to achieve transparent interoperability between 
GRIA and GOS. The activities to achieve higher level 
interoperability between GRIA and GOS will be 
continued. The development and the tests of the 
presented solution will be completed and a full 
deployment of our solution on the production grid 
infrastructures will be carried out to support the three 
application scenarios of the Bridge project, including 
aerospace, meteorology and pharmaceutical. 
From the experience gained in this work, the major 
difficulty in middleware interoperability mainly came 
from the authentication & authorization aspects. This is 
primarily caused by different security mechanism 
adopted by different middleware platforms, i.e. SAML 
token in GOS and PBAC in GRIA. A special attention 
has been devoted and will be devoted in the next future 
to cross-domain security in order to allow interoperable 
access to computing and storage resources across 
different infrastructures. 
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