

Improving the pedagogical expressiveness of IMS LD

Onjira Sitthisak, Department of Mathematics, Faculty of Science,

Thaksin University, Thailand, onjira@tsu.ac.th

Lester Gilbert, Learning Societies Lab, School of Electronics and Computer Science,

University of Southampton, UK, lg3@ecs.soton.ac.uk

Abstract: The IMS Learning Design specification (LD) was introduced in order to describe any learning and teaching scenario in a formal way. Its high level of generality, however, may make it difficult for teachers and instructional designers to apply it to their learning and teaching scenarios. This limitation suggests the need to explicitly separate and identify the roles of learner and teacher, identify more carefully the teaching activities of evaluation and feedback, and integrate more fully learning objectives into learning activities. The paper suggests an expanded IMS LD model to make the learning and teaching components more explicit. Benefits and impacts of an improved model include reuse of learning content, automated processes for metadata creation and search, providing additional detail to the participating teacher and learner descriptions, increasing the granularity for such descriptions, and making more precise the different steps in the learning and teaching process by defining relevant data and structures such as competence, evaluation, artefact, and feedback.

Introduction

The IMS Learning Design specification (IMS LD) is based on: a well-founded conceptual model, an information model, and a behavioral model with the diversity of concepts existing in a wide range of pedagogic techniques (IMS LD, 2003). Though IMS LD provides a containment framework of elements that can describe any design of a learning and teaching process in a formal way, it is insufficient in modeling certain important details of learning and teaching activities. We observe that the high level of abstraction of IMS LD allows it to model a business process such as a mortgage application just as well as it can model a tutorial.

Figure 1 illustrates the 'Learning Transaction' (Gilbert, Sim and Wang, 2005) which identifies the essential components of any learning and teaching situation, with terminology modified for consistency with IMS LD notation.

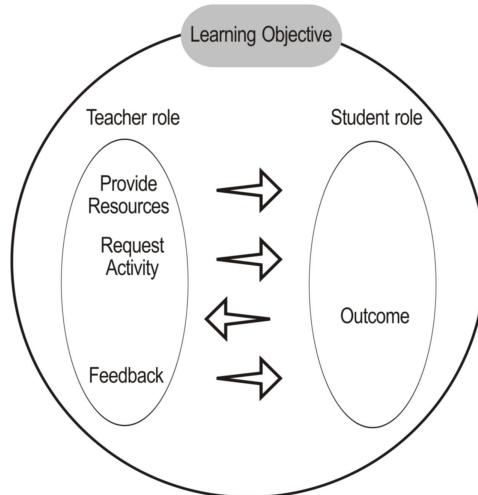


Figure 1 Model of the learning transaction

This suggests that the modeling of learning and teaching situations in IMS LD requires more specificity and appropriate detail. For example, IMS LD has no means to specify how the actors of roles interact within each

learning activity, and can only approach this by using optional descriptive elements. For this reason, research around limitations and extensions over the current IMS LD specification is gaining more attention in order to improve it.

Caeiro, Anido and Llamas (2003) suggested a modification and extension of the specification in the activity and method parts using Activity Theory (AT) and Workflow Management Systems (WFMS) in order to provide more flexibility and modularity in the description of learning designs. We take up this suggestion by explicitly separating the roles of learner and teacher.

Hernández-Leo, Asensio-Pérez and Dimitriadis (2005) proposed an extension to the IMS LD service description, consisting of the definition of a special type of service to support collaborative learning activities. However, this extension still has some limitations as it does not allow the specification of privileged roles, among others.

Miao *et al.* (2005) discussed the major limitations for modeling collaborative learning processes and proposed five core elements: roles, activities, transitions, artefacts, and environments within a Computer-support collaborative learning (CSCL) scripting language. We take up their differentiation of teaching activities, and also add a differentiation of outcomes.

Most extensions are focused on collaborative learning activities, and do not address improving pedagogical learning and teaching activities. There are other initiatives to overcome such limitations for those situations such as the semantic web. The semantic web provides a language that expresses both data and rules for reasoning about data, and that allows rules from any existing knowledge-representation system to be exported to the web.

Amorim *et al.* (2006) and Sánchez *et al.* (2008) presented an ontology to represent the semantics of IMS LD using a taxonomy of concepts and set of formally defined axioms. However, the XML-Schema language is not expressive enough to represent all the knowledge compiled in the models of the IMS LD specification. Our approach therefore is to continue developing the IMS LD conceptual model.

In this paper, we have focused our attention on the elements used by IMS LD to describe the different parts involved in a learning design. First, the paper explains what LD does, and then presents limitations of IMS LD that we have found in the way IMS LD elements are described and structured. Finally, the proposed extension of IMS LD is discussed and the main contributions are summarized.

The IMS LD specification

The IMS LD (IMS LD, 2003) is based on the following principles: in a learning process each person has a role (learner or staff) and carries out learning activities and/or support within an environment.

A major concept of IMS LD, the *Method*, is an element which allows the coordination of activities of each role in the associated environment to achieve learning objectives. The learning process is modelled from a structural point of view as a theatrical play. A method consists of one or more concurrent play(s); a play consists of one or more sequential act(s); an act defines who (which role) has to perform which activities and consists of one or more concurrent role-part(s), and each role-part associates exactly one role with one activity or activity-structure. The activity provides a description of what each role has to perform and what environment is at its disposal. These concepts explained above from part of conceptual model of overall Learning Design as shown in Figure 2.

Activities in IMS LD are associated with a role in a role-part, and they contain the actual instruction for a person in that role. If the activity is directed at a learner and aims to achieve a specific learning objective it is referred to as a learning activity, alternatively the activity can be a support activity which may be performed by a person in a staff role. A method may contain conditions, i.e. If-Then-Else rules that further refine the assignment of activities and environment entities for persons and roles. The 'If' part of the condition uses Boolean expressions on the properties that are defined for persons and roles in IMS LD.

There are two predefined *roles*, a learner role and a staff role. Each role can be assigned to different activities. For a role, outcomes result from performing learning activities for learners, or support activities for those in a staff role.

Environments are where learning objects and services are located. Learning objects are typically used by learners when performing an activity. Services are used to provide facilities that are helpful for completing activities such as conference and mail services.

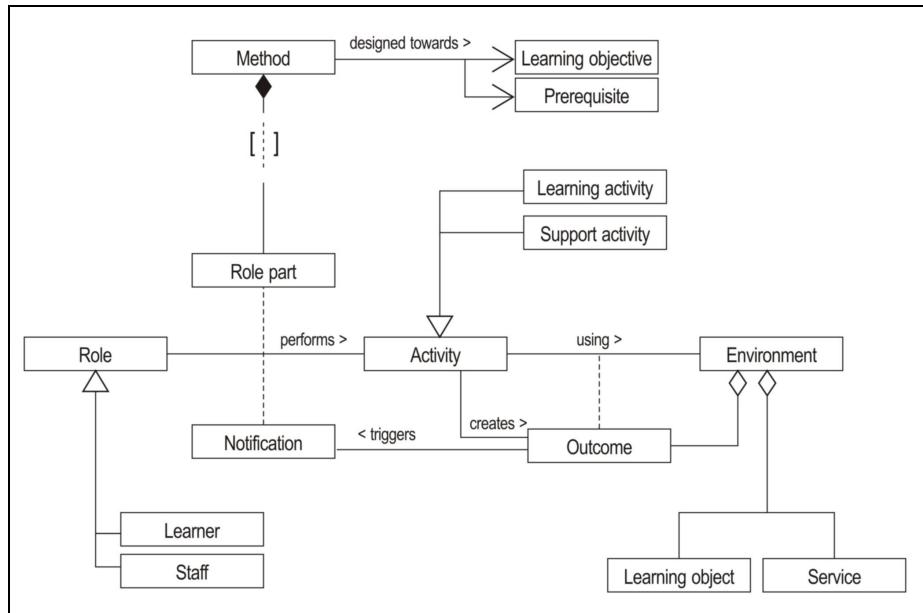


Figure 2 Conceptual model of overall Learning Design (adapted from IMS LD, 2003)

Limitations of IMS LD

Koper and Oliver (2004) explained a pedagogical model as "a set of rules that prescribes how a class of learners can achieve a class of learning objectives in a certain context or knowledge domain in the most effective way". Currently, there are many pedagogical models such as mastery learning, problem-based learning, active learning, and any notions of teachers about good teaching and learning. Hence, instructional designers can design courses in different ways depending on pedagogical models (Koper and Oliver, 2004).

The IMS LD specification was developed to support pedagogical diversity and innovation, as well as to promote the exchange and interoperability of E-learning materials (IMS LD, 2003). The IMS LD specification is able to express various pedagogical approaches, as well as ensuring that its content can be adapted to personal needs and its assessments can be integrated (Van Es and Koper, 2006).

IMS LD provides its flexible conceptual model by using relatively unstructured textual definitions. This high level of generality may mislead instructional designers in applying learning and teaching activities and may make it difficult for teachers to recognise and apply IMS LD to their teaching activities. This paper proposes a development of IMS LD to make the learning and teaching components more explicit. We address the following elements in IMS LD to improve its pedagogical expressiveness.

Learning Objective and Prerequisite

A learning and teaching process can only take place when there are meaningful learning activities performed by the learner, and this implies that learning objectives are required and are not optional (Chew, 2005). Such learning objectives can be formulated by teachers using their own principles of learning. They require considerable thought to write. While the IMS LD specification allows a means for defining diverse learning designs, the unstructured and optional textual definition of learning objectives does not integrate such significant components as a necessary part of the design. This is currently a problem in IMS LD because the required learning objectives and prerequisites are not amenable to machine processing.

Activity and Role

Activities are carried out by the roles that participate in these activities as instances of the learner and staff. The specification does not assign directly an activity for each role. In the real situation of a learning and teaching process process, the learner role always performs an educational activity within a learning activity concept that establishes a relation with the prerequisites and the intended learning outcomes (Gagne, Briggs and Wager, 1992). This reality is not fully reflected in IMS LD since there is no necessary connection between the activity as a learning activity and the intended learning outcomes or educational objectives which it addresses. The support activity is introduced to facilitate the execution of a learning activity. An instance of the support activity is performed by a staff role. However, this generalization does not reflect the crucially important role of the teacher in evaluating the learner's activity and in providing appropriate feedback. If IMS LD defines more specific activity for each role, this would help teachers and instructional designers to better align their designs with established pedagogical requirements.

Environment

Environment describes the educational resources to be used in the activities. Assessment is part of the developmental process of learning (Kommers, Grabinger and Dunlap, 1996) and is related to the accomplishment of learning outcomes. Although assessments in IMS LD can be treated as simple learning objects, it is worth defining as them necessary parts in the environment concept in order to support learning outcomes in learning and teaching designs.

A proposed extension to the IMS LD element

We propose one new component for the IMS LD model (black box in Figure 3), competence; four developed components (medium grey), feedback, artefact, assessment, and evaluation; and three differentiated components (light grey), resource, learner role, and teacher role.

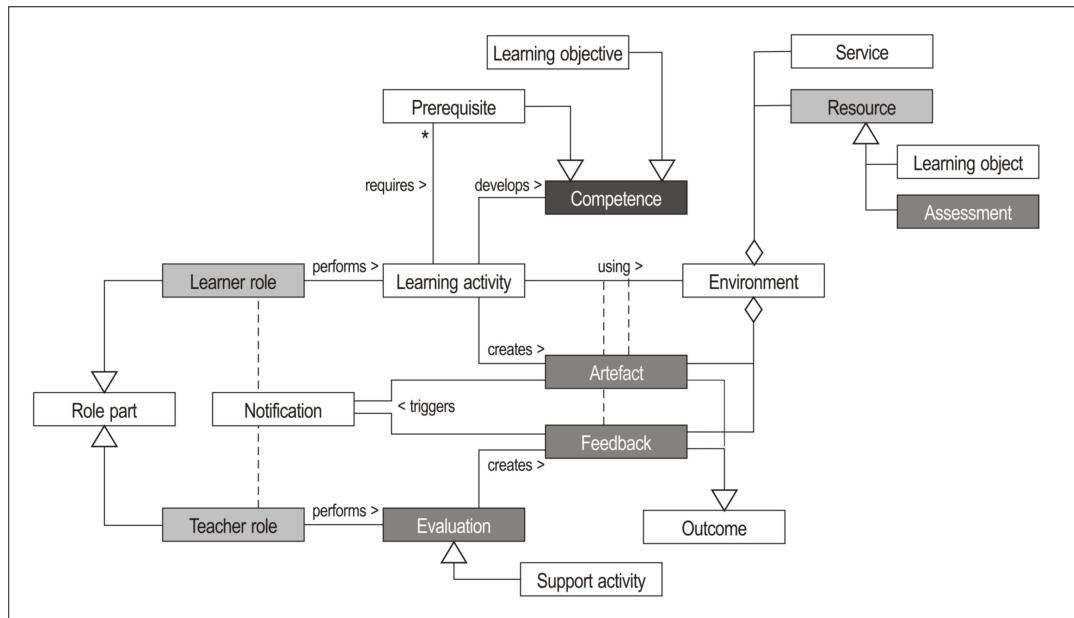


Figure 3 Developed and differentiated IMS LD conceptual model

The achievement of learning objectives indicates a learner's competencies. A competency provides a rich data structure for description, comprehensive reference, and exchange, to support a learner's competency profile. This requires modelling the learning objectives to identify and integrate appropriate learned capability and subject matter knowledge within the broader teaching and learning context of unit, course, and programme.

Learning objective and prerequisite elements can be described by the *competency* element in order to provide a containment framework. The learning activity will be based on a given competency. The prerequisites will now be able to be expressed as competencies which should already be possessed by the learner.

Building learning activities requires identifying the scenarios that will be proposed by the teachers, the different tasks for learners to perform, and the different roles to be distributed. A role is used to distinguish users who have different privileges and obligations in the processes. So a *learner role* element should perform a learning activity element. A *teacher role* should perform explicitly pedagogical activities related to that role.

The relevant activity for the teacher role may be expressed as *evaluation* which is a type of a support activity. Evaluation permits the critical assessment of a learner's achievement as evidenced by the outcome (an artefact) of the learner's activity. This can provide feedback and motivation for continued improvement for learners and teachers. To ensure that learners are supported in their learning, the outcome of the teaching evaluation is a *feedback* element. Hence, the generalised outcome of activity in IMS LD is now differentiated as either feedback or artefact. An *artefact* may be created and shared in and/or across activities as an intermediate product and/or a final outcome.

Finally, we propose *assessment* as a type of *resource* in an environment element in order to encapsulate the aspects of assessment for learning and teaching.

Benefits and impacts

Learning activities aim at developing a learner's competence, and there are consequent processes of seeking and interpreting evidence to decide where the learners are in their learning, where they want to go, and how they can get there. In order to support these activities and objectives, appropriate data and metadata content and structure are required for storing, organising, and sharing pedagogically-related data. The benefits of these proposed extensions to IMS LD are expected to enable search, comparison, gap analysis, recommendation, and visualising of learning objects, learning resources, and teaching assets. While this may promote reuse of learning content, automated processes for metadata creation and search are required so that these burdens can be alleviated by machines (Al-Khalifa and Davis, 2006).

The design of an environment requires both the definition of the learning activity as well as that of the support activity (Gounon, Leroux and Dubourg, 2006). The proposed model assists and guides the learning activity description in association with the teaching activity which supports the learning activity. The purpose of this model is to describe the learning and teaching structures that the instructional designer wishes to create. The model becomes the basis for reflection upon the desired accompaniment in a given learning activity and the description of the teaching structures in an e-learning platform. In this model, we detail which role carries out which activity and when in order to improve the accompaniment by sharpening the description in terms of roles' activities and roles. This enables adding a level of detail to the participating tutor and learner's description and increasing the granularity for such description.

Refining the main activities introduces more precision in the different steps in learning and teaching processes by defining relevant data and structures such as competence, evaluation, artefact, and feedback. The elaborated resources definition denotes the service and the material resources such as assessment. This model can now be seen as a planning tool which will allow learning activities to be defined in greater detail and shared between teachers and learners. Instructional designers can also use the proposed model to state all the information required for setting up a learning activity.

Conclusion

In this paper we have proposed several changes over the current IMS LD specification in order to provide more pedagogically appropriate elements in the description of learning designs. Our ideas improve the description of learning designs without introducing too much complexity. We are interested in the IMS LD specification in order to have a containment framework of elements that can describe any design of a learning and teaching process in a formal and machine processable way. Instructional designers could use this model to describe the activities that should be carried out in a learning process without being constrained by any particular pedagogy.

Further work is needed to develop a prototype based on the proposed model. There are currently tools for implementing IMS LD including Reload (Reload, 2006) and Copper Core (Copper Core, 2005). These tools allow user to design and execute a Unit of Learning. However, the main drawback of our proposal is that these software programs will need to be modified in order to include the suggested developments.

References

Al-Khalifa, H. S. and Davis, H. C. (2006). The Evolution of Metadata from Standards to Semantics in E-Learning Applications. *In Proceedings of Hypertext'06*, Odense, Denmark.

Amorim, R. R., Lama, M., Sánchez, E., Riera, A. and Vila, X. A. (2006). A Learning Design Ontology based on the IMS Specification. *Educational Technology & Society* 9(1): 38-57.

Caeiro, M., Anido, L. and Llamas, M. (2003). A Critical Analysis of IMS Learning Design. *In Proceedings of computer Supported Collaborative Learning*, Norway, pp. 363-367.

Chew, L. K. (2005). IMS Learning Design and eLearning. *In Proceedings of International Conference on eLearning for Knowledge-Based Society*, Bangkok, Thailand.

Copper Core (2005). Retrieved November 4, 2008, from <http://coppercore.sourceforge.net/>

Gagne, R. M., Briggs, L. J. and Wager, W. W. (1992). *Principles of instructional design*, Harcourt Brace Jovanovich Publisher.

Gilbert, L., Sim, Y. W. and Wang, C. (2005). Modelling the Learning Transaction. *In Proceedings of the 5th IEEE International Conference on Advanced Learning Technologies*, Kaohsiung, Taiwan.

Gounon, P., Leroux, P. and Dubourg, X. (2006). An IMS-LD Editor to Describe a Tutoring Activity in an On-line Training. *In Proceedings of International Conference on Advanced Learning Technologies*, pp. 190-192.

Hernández-Leo, D., Asensio-Pérez, J. I. and Dimitriadis, Y. (2005). Computational Representation of Collaborative Learning Flow Patterns using IMS Learning Design. *Educational Technology & Society* 8(4): 75-89.

IMS LD (2003). "IMS Learning Design Best Practice and Implementation Guide" Retrieved November 4, 2008, from http://www.imsglobal.org/learningdesign/ldv1p0/imsld_bestv1p0.html.

Kommers, P., Grabinger, S. and Dunlap, J. (1996). Hypermedia Learning Environments. *Instructional Design and Integration*.

Koper, R. and Oliver, B. (2004). Representing the Learning Design of Units of Learning. *Educational Technology & Society* 7(3): 97-11.

Miao, Y., Hoeksema, K., Hoppe, H. U. and Harrer, A. (2005). CSCL Scripts: Modelling Features and Potential Use. *In Proceedings of Computer Supported Collaborative Learning*, pp. 423-432.

Reload (2006). "Reload Learning Design editor." Retrieved November 4, 2008, from <http://www.reload.ac.uk/ldeditor.html>

Sánchez, E., Lama, M., R. Amorim, R., Vidal, J. C. and Novegil, A. (2008). On the use of an IMS LD ontology for creating and executing Units of Learning: Application to the Astronomy case study. *Journal of Interactive Media in Education*.

Van Es, R. and Koper, R. (2006). Testing the pedagogical expressiveness of IMS LD. *Educational Technology & Society* 9(1): 229-249.