Resilient Critical Infrastructure Management using
Service Oriented Architecture

Martin Hall-May, Mike Surridge
IT Innovation Centre
2 Venture Road
Southampton, SO16 7NP, UK
{mhm, ms}@it-innovation.soton.ac.uk

Abstract—The SERSCIS project aims to support the use of
interconnected systems of services in Critical Infrastructure (CI)
applications. The problem of system interconnectedness is aptly
demonstrated by ‘Airport Collaborative Decision Making’ (A-
CDM). Failure or underperformance of any of the interlinked
ICT systems may compromise the ability of airports to plan
their use of resources to sustain high levels of air traffic, or
to provide accurate aircraft movement forecasts to the wider
European air traffic management systems. The proposed solution
is to introduce further SERSCIS ICT components to manage
dependability and interdependency. These use semantic models
of the critical infrastructure, including its ICT services, to identify
faults and potential risks and to increase human awareness of
them. Semantics allows information and services to be described
in such a way that makes them understandable to computers.
Thus when a failure (or a threat of failure) is detected, SER-
SCIS components can take action to manage the consequences,
including changing the interdependency relationships between
services. In some cases, the components will be able to take
action autonomously — e.g. to manage ‘local’ issues such as the
allocation of CPU time to maintain service performance, or the
selection of services where there are redundant sources available.
In other cases the components will alert human operators so they
can take action instead. The goal of this paper is to describe a
Service Oriented Architecture (SOA) that can be used to address
the management of ICT components and interdependencies in
critical infrastructure systems.

Index Terms—resilience; QoS; SOA; critical infrastructure,
SLA;

I. INTRODUCTION

The SERSCIS (“Semantically Enhanced, Resilient and Se-
cure Critical Infrastructure Services”) project aims to support
the use of interconnected ICT systems used to plan and man-
age operations in critical infrastructure such as airports. Failure
or underperformance of any of the interlinked ICT systems
owing to faults, mismanagement or (cyber-)attack compromise
the ability of any or all the interconnected businesses to plan
their use of resources, to maintain high levels of efficiency,
and to continue providing information needed by others. The
SERSCIS approach is to develop service-oriented technologies
for creating, monitoring and managing ICT systems, allowing
dynamic adaptation to manage changing situations, and to
counter the risk amplification effect of interconnectedness.
This can be evaluated by investigating failure scenarios caused
by or impacting ICT systems, to show how SERSCIS provides
more accurate risk assessments and thereby allows the impact

of such failures to be minimised.

The technical approach used in SERSCIS is to treat each
ICT component as a service, which has a specification of
its dependability properties incorporated into a Service Level
Agreement (SLA) with its users (humans or other services).
This allows interconnections between services to be managed
to maintain the dependability of the overall system in which
they are used. The overall system is then able to specify its
own dependability characteristics for the services it in turn
provides to its users.

The key objectives of SERSCIS are the following:

o to devise ways to encode dependability commitments in a

machine readable way, so they can be included in SLAs;

e to develop service governance mechanisms to ensure

these commitments will be met, using autonomous mon-
itoring and management of available resources (which
may themselves be services), and adaptive workflow
technology to orchestrate and utilise these resources;

« to verify the approach and its impact on best practice in

an application scenario in air transportation.

A certain amount of ‘machine intelligence’ will be needed
to understand SLA commitments and to govern and orchestrate
services according to this approach. The project therefore
makes extensive use of semantic modelling and reasoning
methods to underpin machine understandable dependability
specifications and decision-making. These models are also
used to analyse ICT dependencies and threats and to provide
decision support for human end-users during system design,
deployment and operation.

II. RELATED WORK

In its aims, SERSCIS builds on the successes of a number of
projects. Research in project DIRC and its successor InDeED
[1] raised the need to tackle dependability throughout the
lifecycle of a system, including its interactions with humans.
CRUTIAL [2] used Petri net and state modelling to understand
the operation, behaviour and failure modes of CI in systems of
systems arrangements. The IRRIIS project [3] is also improv-
ing CI dependability through Middleware Improved Technol-
ogy and simulation in synthetic environments. SERSCIS will
work with partners from IRRIIS, using and extending their
work on the Taxonomy of Interdependencies for modelling
cascading and escalating failures. There has been work on fault

and sabotage tolerance using SLA for Grids [4], [5], which
SERSCIS aims to build on to create resilient service-oriented
infrastructures.

DeDiSys [6] aims to manage the trade-off between availabil-
ity and meeting service constraints in loosely coupled Grid or
P2P systems. SERSCIS aims to manage a similar dependabil-
ity trade-off through a framework of automated service gov-
ernance, including SLA negotiation, dynamic resourcing and
run-time QoS and Quality of Experience (QoE) monitoring, as
well as adaptive workflow composition, decision support and
risk-aware system modelling techniques.

III. SERSCIS COMPONENTS

The SERSCIS project proposes a service-oriented archi-
tecture with SLA-based management that builds on semantic
models. This architecture comprises the following four main
areas of component technology:

A. System Modelling

System modelling covers the development of (seman-
tic) models of critical infrastructure requirements and be-
haviour, including the ICT components. These models are
used throughout the SERSCIS framework as computer-
understandable descriptions that provide the basis for auto-
mated, dependable ICT operation and feedback. The Web
Ontology Language, OWL-DL, is used to model ontologies
describing critical infrastructure aspects. Models contain valu-
able system knowledge as well as performance and pricing
models [7].

B. System Governance

System governance covers the development of monitoring
mechanisms and management actions and policies to maintain
the dependability (including security and trust relationships)
exhibited by SERSCIS-enabled services. The service-oriented
infrastructure middleware GRIA [8] is used as a basis for
the governance technological framework. The emphasis is on
controlling available resources such that dependability require-
ments can be met, and where the system provides services,
describing their non-functional characteristics in (semantically
tractable) Service Dependability Agreements (SDAS).

C. System Composition

System composition covers the development of automated
composition and orchestration of services to implement work-
flows at the system level to meet dependability requirements,
using Service Dependability Agreement terms to control the
selection of services from those made available by the system
governance mechanisms. The emphasis is on development
of dynamically adaptive workflow orchestration mechanisms
based on semantic descriptions of workflows, dependability
requirements, and (via SDA) available resources.

Critical ICT + Semiauomaled SERscis-
Infrastructure ¢ d operator
(=)
Control @
— =)
pgement by humans > <Vfi/
Monitoring ——
(2]
£
S
Assisted E
[e}
management =
Control {
Automated management)SERBCIS
Frapiework
Monitoring

Fig. 1. SERSCIS Interactions with Critical Infrastructure and Operators

D. Decision Support

Decision support covers the provision of tools to present
information to human operators of critical infrastructure and its
associated ICT. SERSCIS will make use of autonomic service
management models driven by high-level policies supplied
by the operators, who may also be involved in initiating or
carrying out management actions. It is therefore necessary
to provide tools to help ICT implementers understand how
a SERSCIS-enabled network will behave. Decision support
tools aid operators that decide how to deploy applications in
defining high-level policies in a SERSCIS-enabled framework,
and in understanding the resulting (dynamically adaptive)
behaviour that changing these policies has in an operating
critical infrastructure.

IV. CRITICAL INFRASTRUCTURE MANAGEMENT

The key to SERSCIS is that it helps to manage risks and
interdependency in the use of ICT systems within critical
infrastructure, by adapting the ICT composition in response
to events. Management in this context is concerned with
sending controlling signals to the critical infrastructure ICT
components when monitoring data indicates a need to do so.

Without SERSCIS, the ICT operators can of course monitor
information supplied by ICT components used within the
critical infrastructure, and take action when they consider
this information indicates a need to do so. This provides a
‘humanised’ or ‘slow’ management loop between the operators
and the infrastructure, indicated in the upper half of Figure 1.
However, without SERSCIS, the interconnectedness of ICT
systems used makes human decision-making very difficult, as
problems (or actions taken) elsewhere may affect the quality of
information available with which to make decisions. Moreover,
any action a human operator takes may have an adverse impact
elsewhere. Thus the risk of incorrect responses and the damage
this might do are both increased. One of the key goals of

SERSCIS is to address this ‘risk amplification’ effect from
ICT interconnectedness.

The SERSCIS framework monitors the critical infrastructure
and uses a common Web service management interface to
manage the dynamic composition of services and underlying
resources. This process represents an automated management
loop (marked as ‘automated management’ in Figure 1), in
which the SERSCIS framework takes action as and when
required by management policy. The management policy is
defined by a SERSCIS-assisted operator and may be dynami-
cally updated.

In addition to the above, SERSCIS governance components
may conclude that some action is required that cannot be
implemented autonomously. In such cases a signal is sent
to the human operators. These signals may simply advise
the operator that management action may be needed, leaving
the human to decide what action to take (if any). In some
cases, the signal may also propose the action, but leave the
human to decide whether or how to carry out this action. This
provides an ‘assisted’ management loop, which is also shown
in Figure 1.

The operators can also provide control inputs to the SER-
SCIS framework, e.g. to change the models it uses to analyse
the critical infrastructure, or to change the range of monitoring
inputs or automatic actions available to it. These control inputs
do not directly affect the critical infrastructure itself, but do
change the way SERSCIS uses agile service composition
models to support its future management. It is important to
recognise that this facility to define SERSCIS models and
policies is relevant even before the critical infrastructure and
associated ICT is deployed, as well as during its operation.
In the pre-deployment phase, this interaction can be used to
support the ICT implementers, helping them to design and
configure interconnected ICT systems in a way that allows
risks to be managed by design as well as through subsequent
adaptation.

V. HIGH-LEVEL SERVICE ARCHITECTURE

The management of critical infrastructure ICT components
and interconnections is considered an integral part of the over-
all SERSCIS approach. This is addressed by treating all ICT
components as services, whose dependability can be specified
via machine-understandable SDAs, allowing automatic and
semi-automatic management of ICT dependability and inter-
dependence, along with the rest of the critical infrastructure.
Thus the SERSCIS Framework from Figure 1 contains the
following:

e services whose purpose is to establish and keep track
of the SLA that specify how critical infrastructure ICT
services should interact;

e services to monitor each critical infrastructure ICT com-
ponent and to ensure (through automated or assisted
control actions) that it behaves in accordance with its
SLA;

« services or other components to support dynamic adap-
tation of critical infrastructure ICT, especially its access

control policies, interconnectedness and resourcing levels.

The high-level architecture provides a preliminary decom-
position of these SERSCIS Framework facilities into software
components, and explains how they interact with the critical
infrastructure services they monitor and manage. To derive this
architecture, we first consider how the lifecycle of SLA (which
are new entities introduced by SERSCIS) should relate to the
critical infrastructure ICT services (the application to which
SERSCIS is being applied).

This will lead to a decomposition of the SERSCIS Frame-
work needed by each service provider into components for
managing the SLA, the critical infrastructure services, the
resources available to those services, and the way services
are composed and interact with each other.

VI. SLA LIFECYCLE

The most important architectural issue in developing for
resilience is to have a common understanding regarding the
lifecycle of SLAs, services and resources, a lesson learned pre-
viously in the GRIA project [8]. Unfortunately, these lifecycles
are only loosely coupled, which leads to a large variety of pos-
sible scenarios as shown in Figure 2. SERSCIS builds on the
SLA definition and lifecycle developed under the NextGRID
project [9] as implemented in the GRIA middleware [10], [11].

In Figure 2, the following four main state models are
illustrated:

o the service itself: its definition including its implementa-
tion as a piece of software and description via models of
its behaviour, configuration (by specifying management
models) for use at a service provider, and deployment to
make it executable using allocated resources;

« resources: their acquisition by the service provider, and
their allocation (or deallocation) for use by a particular
service according to the provider’s management policies;

o the SLA offer (or template): the specification by the ser-
vice provider of terms (including dependability commit-
ments) under which they can make the service accessible,
and the publication of these terms to potential consumers;

« the interaction between a service provider and a service
consumer: this includes the initial request for an SLA
based on a published template/offer, the granting (or
otherwise) of the request leading to an SLA being made
between the two, and enabling access to the service under
this SLA.

The solid lines in Figure 2 represent state transitions in each
of these processes. The loose coupling between the processes
is indicated by the dashed arrows linking different processes,
which signify that one process must be in a given state for the
other process to enter a given state. For example, consumer
interactions have a state where the service is accessible to
the consumer. This state can only be reached if the service
is deployed at the service provider, which is denoted by the
dashed arrow from the ‘Service Deployed’ state in the service
lifecycle to the ‘Service Accessible’ state in the consumer
interaction lifecycle. To summarise these couplings:

Resource

Service

Defined

Service
Configured

Service
Deployed |«

8oINIBS

Service
Accessible

Resource
Acquired

Resource
Allocated

SLA
In Force

SLA Breached/
Suspended

Service Offers

SLA
Requested

Consumer Interactions

Fig. 2. Lifecycle Models

o the service must be defined before an SLA Template
(specification of offered dependability commitments) can
be formulated;

o the SLA Template must be published before potential
consumers can request an SLA embodying its commit-
ments;

« the service must be configured with a management policy
before resources can be allocated to it;

« at least some resources must be allocated before a service
can be deployed; and

e a service must be deployed before it can be made
accessible to consumers.

The main purpose of the SERSCIS Framework is to support
the use of SLA in consumer interactions with a service,
including the introduction of Service Offers and SLA creation,
and to facilitate coupling between consumer interactions, ser-
vice management and resource management, keeping them all
consistent with the dependability commitments made in the
SLA [12], [13].

The loose couplings represented by dashed arrows in Fig-
ure 2 allow for many possible scenarios. For example, at one
extreme the provider may procure and allocate resources and
deploy the service long before they start to define SLA tem-
plates to specify their dependability commitments. This may
be a common scenario where a service is already operating
and the provider decides to introduce SERSCIS technology to
manage its dependability.

At the other extreme, the provider may acquire the service
implementation (i.e. the software), then create and publish
SLA templates, and wait until they have agreed an SLA
with a consumer before even configuring the service. This
scenario must be followed where service providers are willing
to negotiate over the exact service levels and other speci-

fications with consumers. In such cases, the SLA template
includes service metrics but not agreed levels, and the policies
to regulate services have to be configured after the SLA
is negotiated. In practice, it is difficult and/or costly for a
service provider to manage resources and services against
a large number of potentially different commitments [14].
In SERSCIS we currently consider only the case where the
management policy is defined first, and a limited (discrete)
set of SLA templates are derived from it, which encode non-
negotiable dependability commitments that the management
policy is able to meet.

Finally, although Figure 2 does not explicitly show cardi-
nality, in practice the couplings can be many-to-many. For
example, one SLA may cover several services and one service
may be accessible to different consumers under many different
SLA. Similarly, services may need multiple resources, and
multiple services may share resources, and so on. Keeping
track of these relationships is one of the key requirements for
a dynamic, (semi-)autonomous management architecture.

VII. SERVICE PROVIDER ARCHITECTURE

Given the above model for the lifecycle, it is possible to
define a high-level service provider architecture for SERSCIS
Framework components to manage services (and consumer
interactions), SLA and resources during each phase of their
respective lifecycles, as shown in Figure 3.

The software components include the service interface and
workflow orchestrator, along with SERSCIS governance com-
ponents to support the management of services, resources and
SLA. These components are:

o a security Service Access Control Point, able to restrict
access to the service according to a security policy that
must be dynamically updatable [15];

SERSCIS-assisted (2
S Operator

® _
. Lam

A~

=2

Decision Support

A =

.

700

>

System Models

Management Channel

Consumers

,im,,,H J;L

-

Service Access
Control Point

Fig. 3.

e an SLA Manager that hosts SLA templates and handles
requests from clients for SLA based on them: the SLA
manager grants new SLAs, provides information to the
clients on their status, and may terminate existing SLAs
if required;

e a Service Manager that monitors the Quality of Ser-
vice (QoS) and Quality of Experience (QoE) reports
and analyses them using the service model against the
provider’s service commitments and management policy,
and initiates appropriate management actions;

e a Resource Manager that handles the acquisi-
tion/allocation and removal of resources, and maintains a
registry [16] of these resources in which the orchestrator
can discover resources when it has to execute a service
workflow.

Governance components are deployed at each service
provider that wishes to manage some or all of their ser-
vices. In this way, governance remains distributed and light
weight, without the need for a monolithic governance ‘agent’.
Components within each service provider communicate via an
Enterprise Service Bus (ESB), which allows them to be loosely
coupled. The relationship between these information sources
and the lifecycle models from Figure 2 are as follows:

o the system model and management policy are created
by software developers and system administrators using
SERSCIS ontologies, supported by SERSCIS modelling
and decision support tools;

e service commitments are created or removed when an
SLA is negotiated or terminated, based on an SLA
Template;

« the service access policy is dynamically generated when

Application Channel

System Orchestrator

Providers

\)

~

Application
Services

High-level Service-Provider Architecture

the service is deployed, and updated when an SLA is
negotiated or terminated;

o the QoS event stream is generated by a service interface
(or wrapper to a black-box service [17]) based on what
is provided by or can be measured by the service;

o the QoE event stream is generated by the orchestrator
when using other services based on what is measurable
by or meaningful to the consumer of that service. Note
that while QoS is a measure of what the service provides
to its consumers, QoE is a measure of how its resources
(including other services) have performed; and

e resource registry entries are created or removed when
resources are procured and allocated or de-allocated.

Actions taken by the Service Manager may induce changes
in the available resources, according to the management policy
of the provider. For example, it may ask the Resource Man-
ager to negotiate additional SLAs to provide greater resource
volume or redundancy, or allocate more in-house resources.
Alternatively it may seek to manage demand on the service.
For example, it may simply revoke the SLA template so that no
new SLAs can be granted by the SLA Manager, preventing any
further increase in the level of service commitments. It may go
further, by updating the security access policy to restrict access
if the SLA allows this. It may even ask the SLA Manager to
breach or to terminate the SLA. The service itself may also
support some management actions to influence its behaviour,
and the Service Manager can use these if the management
policy allows it. These actions can in principle be taken au-
tomatically, implementing the ‘automated’ management loop
from Figure 1.

SERSCIS components also provide administration inter-

faces giving operators direct access to the Service Manager,
SLA Manager and Resource Manager, and to the associated
models, policies and monitoring data. In many situations,
the management policy will instruct the Service Manager to
inform an operator that action is needed, leaving a human to
decide whether and if so how to act. The operator can then
implement their action directly on the critical infrastructure,
by accessing SERSCIS components or by changing the models
and policies used to control them. This provides the ‘assisted’
management loop in Figure 1.

Finally, SERSCIS provides decision support facilities to
help operators understand the behaviour of the system, based
on events generated by the components shown in Figure 3. As
noted above, this facility will also be useful prior to operation
of the SERSCIS-enabled ICT infrastructure, allowing an anal-
ysis of risks using the service model during the design phase,
and providing insights into the commitments that can be made
and the management policies needed to meet them. These tools
will also play a role in auditing processes used to analyse and
verify/improve the management of the infrastructure.

A number of application services are managed by a single
governance component, comprising a service manager, SLA
manager and resource manager. The orchestration component
coordinates workflows involving ‘local’ resources as well as
resources encapsulated in services from other organisations.
A SERSCIS-assisted operator has an overview of all the
services within a given organisational/operational domain.
The operator’s situational awareness is supplemented by a
decision support component, which uses a model of the whole
system. The ‘whole system’ may include details of concepts
outside of the operator’s immediate control, i.e. involving
the repercussions that local actions will have on the wider
system of systems. These system models may be shared across
organisational boundaries.

VIII. LAYERED APPROACH

Figure 4 shows three concentric dependability management
loops that arise from the SERSCIS architecture. Similar to
Kramer and Magee’s model for autonomic systems [18], this
allows runtime information to propagate up to system decision
makers and governance actions to flow down to control service
execution. System modelling and decision support components
are closely linked and may run synchronously; however,
with respect to governance and workflow components, the
execution is entirely asynchronous.

The inner runtime loop runs at the speed of the applica-
tion services, selecting the most appropriate resources and
executing the workflow. The governance loop monitors and
manages resources against SLA commitments, at a slower rate.
This loop has to be asynchronous with respect to application
responses because it is often infeasible for the orchestrator to
wait while a new SLA is negotiated and approved. Finally, the
outer loop runs even more slowly so SERSCIS-assisted human
operators can be involved, making changes to autonomic
governance policies in response to changes in key performance
indicators (KPI).

Model-based Reasoning /
Decision Support Loop

Policy
updates

Measurements
against KPI

Governance Loop

Runtime Execution
Loop

Fig. 4. Concentric Dependability Management Feedback Loops

It is this separation of decisions, which simplifies the work
that each set of components must do, that is the guiding prin-
ciple of SERSCIS. Such a layered approach to the architecture
was taken in recognition of real-world business practices and
performance.

IX. A-CDM TEST CASE

Airport Collaborative Decision Making (A-CDM) brings
together the main airport partners — Air Traffic Control
(ATC), Airport Operators, Airlines, Ground Handlers, and
Europe’s Control Flow Management Unit (CFMU) — to share
operational data. Such information sharing is fundamental to
achieving a common situational awareness, which improves
decision making [19]. The SERSCIS proof of concept test
case focuses on the process of ‘turning round’ an aircraft from
moment it arrives ‘in block’ to when it taxis out for take-off.

Figure 5 shows the services involved in the proof of concept
test case and how SERSCIS components are deployed. Ovals
represent the organisational/operational boundaries and thus
represent a service provider. The CDM owner is a service
provider and an Information Sharing Platform (ISP) service.
SERSCIS system models, decision support, governance and
orchestration components are installed at the CDM owner.
SERSCIS components at the CDM owner can only directly ac-
cess local services and resources. Access to external resources
is via service requests.

The Ground Handler is another service provider, which is
also SERSCIS-enabled. This allows us to explore the inter-
domain aspects of SERSCIS in this case study. Other service
providers (Airline, Fuel and Catering companies) may or may
not have SERSCIS. Figure 5 does not show all the SERSCIS
features at all these providers where they may be used.

The fuel service in the test case is assumed to be one of
many available in the service registry. The exact one that is
used is chosen at runtime based on availability, price or any
other QoS criteria specified in the SLA. The relationship with
the catering company is managed by a long-term contract and
hence is likely to be the only resource in the service registry
from which the workflow composer can choose.

System Model

Decision Support

CDM Owner

A-CDM
Information
Sharing Platform

| Aircraft arrival and estimates
(AIBT, EIBT)

SERSCIS
Components

Airline Board / Deboard

Aircraft
Crew

: __Clean™|
Orchestration

Fuel Cofnpany

Key:

Service
request >

Ground Handler
rrrrrrr Event/Monitor—-
SERSCIS-
assisted
Operator

rrrrrrr Monitor -
Mgmt policy -

Policy update—

Service
mgmt
action

Service

‘ . G
Redcap 2
| Tumaround /| .
) y ervice
* cose /| Baggage provide
i Tumaround | Handling Svc
H // o
'/ Load/ offioad Cleaning
Service

i “(\:alen"
Refuel .
| < Catering Company

“a

v Catering

Service

Fuelling
Service

Fig. 5.

If the other service providers in Figure 5 (Airline, Fuel
company, Catering company) are also SERSCIS enabled, their
services will have their own governance and orchestration
components, which provide automated management, and their
own SERSCIS-assisted operator, who provides human and
assisted management (the latter supported by SERSCIS deci-
sion support tools). Without SERSCIS components, SLA and
resource management (including maintaining a repository of
available resources) and workflow orchestration are a manual
process, which may not even be consistent between organisa-
tions. With SERSCIS, not only are these processes computer-
assisted, but they can be made mutually consistent between
service providers by sharing aspects of the overall system
model and ontology.

A. Turnround Scenario

The following steps represent one possible sequence of
events describing the process of turning round an aircraft:

1) CDM owner defines a service ‘Information Sharing
Platform’ with a method ‘turnaround’

CDM owner uses workflow editor (orchestration compo-
nent) to create an abstract workflow that represents the
steps to prepare an aircraft for pushback (e.g. deboard
passengers, offload bags, clean aircraft, refuel etc.)
CDM owner defines (a set of) SLA templates offering
specified QoS on the service (e.g. turnaround in less than
90 minutes).

SERSCIS-assisted operator sets management policies on
governance components for service management (re-
source and SLA management)

Resource manager (governance component) acquires
SLAs to use externally provided resources (e.g. refu-
elling, baggage handling) and stores them in the service

2)

3)

4)

5)

SERSCIS Components and Services in the A-CDM Test Case

registry

Local ATC signals the arrival of an aircraft, whereupon
the ground handler invokes the ‘turnaround’ service. The
service access control point (governance component)
determines whether access should be allowed under the
provided SLA.

If access is allowed, the workflow composer (orchestra-
tion component) selects the appropriate abstract work-
flow and concretises it using resources available in the
service registry

The workflow executor (orchestration component) ex-
ecutes the concrete workflow, invoking the services
(offload, deboard, clean, refuel, etc.) and records QoE
Events from the SLA manager, resource manager and
orchestration components are monitored by the service
manager (governance component) and appropriate man-
agement actions are taken

Events are also elevated to the decision support compo-
nent and processed/aggregated to inform the SERSCIS-
assisted operator of system performance with respect to
key performance indicators

The SERSCIS-assisted operator takes assisted manage-
ment action on the SERSCIS components (e.g. updating
management policies so as to prevent further SLA of-
fers) or directly on the service components (e.g. stopping
the baggage handling service)

6)

7

8)

9)

10)

1)

B. Service Disruption Example

To elaborate the steps to recover from a disruptive event,
consider the event of a passenger ‘no-show’ at the airport. A
‘no-show’ occurs when a passenger has checked in but does
not arrive at the gate when boarding commences. Boarding
begins but cannot complete. After a certain tolerance, the

passenger’s baggage may need to be unloaded in order for
the aircraft to make its allocated take-off slot.

In the above situation SERSCIS can help in the orchestra-
tion of the resources needed to unload the baggage. This may
require the workflow to adapt to the situation. The system
composer may also have to dynamically select a new baggage
handling agent to unload the baggage if the current service
is unavailable (e.g. if it needs to service another aircraft).
The SERSCIS Framework manages the available ICT in the
following sequence of events:

o The disruption begins with a prolonged boarding time,
while the aircraft crew wait for the missing passenger

o After a given time, the crew informs the ground handler
that the passenger has not boarded

o The system orchestrator executes the exception path in the
ground handling workflow and calls the baggage service
to unload the passenger’s bags

o The original baggage service is unavailable at such short
notice, so the system orchestrator uses an alternative
service provider with which the resource manager has
previously negotiated an SLA. The SLA guarantees re-
sponsive service delivery with no pre-scheduling required

SERSCIS will allow designers and operators to analyse how
well their (interconnected) ICT systems cope with disruptions
such as the above scenario in design, deployment and opera-
tion as well as during operational auditing. This will lead to
ICT systems that can exploit connections while maintaining an
acceptable level of resilience by managing interdependencies.

Prototypes of all components described in this paper have
been implemented in order to demonstrate the proof of concept
outlined above. A full validation of the concepts based on an
enlarged application scenario will be carried out in the next
stage of the project.

X. CONCLUSION

A high-level service architecture has been introduced for a
SERSCIS Framework to support and manage critical infras-
tructure ICT services. This allows risks in operating critical
infrastructure to be managed by augmenting current ‘slow’
human-initiated management with automated and assisted
management of ICT components and services. The service
architecture maps to the lifecycle of an SLA: the definition
of a service, the description of SLA templates, the negotiation
of SLA, and the selection and invocation of services as part
of a workflow (including renegotiation/revocation of SLA).
To create and execute such a workflow comprising distributed
services, while maintaining an overall level of dependability,
requires models of information regarding performance char-
acteristics, threats and countermeasures. The SERSCIS archi-
tecture takes a layered approach to help solve the conceptual
integration, while the use of common components (a resource
registry and ESB) addresses the pragmatics of integration and
allows for loose coupling between the components.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme under grant agreement n° 225336, SERSCIS.

REFERENCES

[1] 1. Sommerville, T. Storer, and R. Lock, “Responsibility modelling for
contingency planning,” in Proceedings of the Workshop on Understand-
ing Why Systems Fail, June 2007.

[2] P. Verissimo, Y. Deswarte, A. Bondavalli, N. F. Neves, A. A. El Kalam,
A. Daidone, and M. Correia, “The CRUTIAL architecture for critical in-
formation infrastructures,” Architecting Dependable Systems, vol. 5135,
pp- 1-27, 2008.

[3] C. Balducelli, A. Di Pietro, L. Lavalle, and G. Vicoli, “A middleware
improved technology (MIT) to mitigate interdependencies between crit-
ical infrastructures,” Architecting Dependable Systems, vol. 5135, pp.
28-51, 2008.

[4] M. Hovestadt, “Fault tolerance mechanisms for SLA-aware resource
management,” in Proceedings of 11th International Conference on
Farallel and Distributed Systems, vol. 2, 2005, pp. 458—462.

[51 S. Nagqvi, S. Mouton, P. Massonet, G. Silaghi, D. Battre, M. Hovestadt,
and K. Djemame, From Grids to Service and Pervasive Computing.
Springer, 2008, ch. Using SLA Based Approach to Handle Sabotage
Tolerance in The Grid, pp. 153-162.

[6] L. Froihofer, K. M. Goeschka, and J. Osrael, “Middleware support for
adaptive dependability,” in Proceedings of 8th International Middleware
Conference, ser. LNCS, vol. 4834. Springer, 2007, pp. 308-327.

[7]1 S. Benkner and G. Engelbrecht, “A generic QoS infrastructure for grid
web services,” in Proceedings of International Conference on Internet
and Web Applications and Services/Advanced International Conference
on Telecommunications, 2006, p. 141.

[8] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska, “Experiences
with GRIA — industrial applications on a web services grid,” in First
International Conference on e-Science and Grid Computing, 2005, pp.
98-105.

[9] P. Hasselmeyer, H. Mersch, B. Koller, H. N. Quyen, L. Schubert,
and P. Wieder, “Implementing an SLA negotiation framework,” in
Proceedings of the eChallenges Conference (e-2007), 2007, pp. 24-26.

[10] M. Boniface, S. Phillips, A. Sanchez-Macian, and M. Surridge, “Dy-
namic service provisioning using GRIA SLAs,” in Service-Oriented
Computing — ICSOC 2007 International Workshops, Revised Selected
Papers, ser. LNCS, vol. 4907. Springer, 2009, pp. 56-67.

[11] M. J. Boniface, S. C. Phillips, and M. Surridge, “Grid-based business
partnerships using service level agreements,” in Proceedings of Cracow
Grid Workshop, 2006.

[12] M. Hovestadt, “Service level agreement aware resource management,”
Ph.D. dissertation, University of Paderborn, Germany, October 2006.

[13] P. Hasselmeyer, B. Koller, L. Schubert, and P. Wieder, “Towards SLA-
supported resource management,” in Proceedings of 2nd International
High Performance Computing and Communications Conference, ser.
Lecture Notes in Computer Science, vol. 4208. Munich, Germany:
Springer, September 2006, pp. 743-752.

[14] P. McKee, S. J. Taylor, M. Surridge, R. Lowe, and C. Ragusa, “Strategies
for the service market place,” in Proceedings of GECON 2007, “Grid
Economics and Business Models”, ser. LNCS, vol. 4685, 2007, pp. 58—
70.

[15] M. J. Boniface, T. A. Leonard, M. Surridge, S. J. Taylor, L. Finlay, and
D. McCorry, “Accessing patient records in virtual healthcare organisa-
tions,” in Proceedings of eChallenges, Ljubljana, Slovenia, 2005.

[16] U. Radetzki, M. Boniface, and M. Surridge, “Contextualized B2B reg-
istries,” in Proceedings of Service-Oriented Computing (ICSOC 2007),
ser. LNCS, vol. 4749. Springer, 2007, p. 506.

[17] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Advanced
event processing and notifications in service runtime environments,” in
Proceedings of 2nd International Conference on Distributed Event-based
Systems. ACM, 2008, pp. 115-125.

[18] J. Kramer and J. Magee, “A rigorous architectural approach to adaptive
software engineering,” Journal of Computer Science and Technology,
vol. 24, no. 2, pp. 183-188, 2009.

[19] Airport CDM Guide, EUROCONTROL, March 2009.

