
Efficient, Superstabilizing Decentralised Optimisation for
Dynamic Task Allocation Environments

Kathryn S. Macarthur, Alessandro Farinelli*
Sarvapali D. Ramchurn and Nicholas R. Jennings

School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK
*Department of Computer Science, University of Verona, 15 I-37134, Italy
{ksm08r, sdr, nrj}@ecs.soton.ac.uk, *alessandro.farinelli@univr.it

ABSTRACT
Decentralised optimisation is a key issue for multi-agent sys-
tems, and while many solution techniques have been devel-
oped, few provide support for dynamic environments, which
change over time, such as disaster management. Given this,
in this paper, we present Bounded Fast Max Sum (BFMS):
a novel, dynamic, superstabilizing algorithm which provides
a bounded approximate solution to certain classes of dis-
tributed constraint optimisation problems. We achieve this
by eliminating dependencies in the constraint functions, ac-
cording to how much impact they have on the overall solu-
tion value. In more detail, we propose iGHS, which com-
putes a maximum spanning tree on subsections of the con-
straint graph, in order to reduce communication and com-
putation overheads. Given this, we empirically evaluate
BFMS, which shows that BFMS reduces communication and
computation done by Bounded Max Sum by up to 99%,
while obtaining 60–88% of the optimal utility.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; G.2.2 [Discrete Mathe-
matics]: Graph Theory

General Terms
Algorithms, Experimentation, Theory

Keywords
Distributed constraint optimization, disaster management

1. INTRODUCTION
Multi-agent systems have been advocated as a key solution
technology for coordinating the activities of rescue forces for
disaster management. Specifically, coordination in such do-
mains can be conveniently framed as a distributed constraint
optimisation problem [13]. Many solution techniques, such
as ADOPT (Asynchronous Distributed OPTimisation) [10],
DPOP (Distributed Pseudotree Optimization Procedure) [11]
and Bounded Max Sum (BMS) [6] have been proposed to
solve such optimisation problems. Now, while complete al-
gorithms such as ADOPT and DPOP guarantee optimal
solutions, they use a lot of communication and computa-
tion. On the other hand, approximate algorithms like BMS
tend to incur a lower coordination overhead, and can provide
bounds on the quality of the approximation they give [6].

However, very few algorithms exist that reduce redundant
communication and computation when used in dynamic en-
vironments. Nonetheless, dynamism is a key issue for search

and rescue in disaster management: the environment evolves
over time, and new information becomes available as time
progresses. For example, information about civilians to res-
cue from buildings may change, and new rescue agencies can
arrive, at any time, to help with the rescue effort. In such
applications, optimal solutions are most desirable, but may
not be achievable within the available time. Thus, good
quality approximate algorithms can be used, due to their
smaller overheads, but only if they are able to produce good
quality solutions. Now, it is also important that an algo-
rithm can always recover from environmental change grace-
fully, so as not to enter an unsafe state during recovery.
This is formally known as superstabilization [4]. In more de-
tail, in order for an algorithm to be superstabilizing, it must
be super-stabilizing [3], and a pre-defined passage predicate
must hold at all times. More specifically, a self-stabilizing al-
gorithm must be distributed across a number of agents, and
must be able to return those agents to some legitimate state
after a change in the environment. This legitimate state
is defined with a legitimacy predicate, which, when invali-
dated, forces the algorithm to return the agents to a state
where the predicate holds in a finite amount of time. More
generally speaking, in a superstabilizing algorithm, the pas-
sage predicate must hold at all times, including whenever
the legitimacy predicate does not.

To date, few algorithms are suited for use in dynamic en-
vironments, and instead would need to be re-run, incurring
unneeded overheads without superstabilization guarantees.
Exceptions to this include SDPOP (Superstabilizing DPOP)
[12], which is superstabilizing, but requires a prohibitive
amount of communication and computation on large scale
scenarios. Another algorithm that partially fits our require-
ments is the Fast Max Sum (FMS) algorithm [13], which
reduces the communicational and computational impact of
a change in the environment. However, FMS is only proven
to converge to an optimal solution on specific1 problem in-
stances, and is therefore not general enough to be applied to
more realistic arbitrary disaster management environments.

Against this background, in this paper, we propose a novel
algorithm for performing superstabilizing distributed con-
straint optimisation in dynamic environments. In more de-
tail, our algorithm provides approximate solutions with qual-
ity guarantees for constraint graphs with arbitrary topolo-
gies2, while reducing communication and computation. In
particular, this paper advances the state of the art in the

1Where the underlying constraint graph contains no cycles.
2Even those in which the underlying graph contains cycles

following ways: first, we present iGHS, an iterative variant
of the GHS algorithm (named after the authors Gallager,
Humblet and Spira) [7], which computes a maximum span-
ning tree of the constraint graph in BMS. Second, we present
Bounded Fast Max Sum (BFMS): an efficient, superstabiliz-
ing constraint optimisation algorithm, which combines iGHS
with principles from FMS and BMS.

The rest of this paper is structured as follows. In Section 2
we discuss the relevant background for our work. Next, we
formulate our problem in Section 3, and present our iGHS
algorithm in Section 4. We present BFMS in Section 5, and
empirically evaluate it in Section 6. We discuss work related
to iGHS in Section 7, and, in Section 8, we conclude.

2. BACKGROUND
Here, we present the necessary background for our work.
We begin with a discussion of Max Sum and two partic-
ular variants that are useful in applying Max Sum to ar-
bitrary dynamic environments: first, Fast Max Sum, used
to reduce overheads caused by recomputation in dynamic
environments, and second, Bounded Max Sum, which uses
approximation to allow application of Max Sum to arbitrary
environments. Finally, we discuss GHS, which is a key el-
ement of Bounded Max Sum, used to preprocess the con-
straint graph.

2.1 Max Sum
The Max Sum algorithm belongs to the GDL (Generalised
Distributive Law) framework [1], and has been shown to be a
very useful technique for distributed constraint optimisation
[5]. In more detail, Max Sum provides good quality approx-
imate solutions to DCOPs (Distributed Constraint Optimi-
sation Problems) requiring very low computation and com-
munication. This is achieved by using message passing over
a factor graph representation (see [8]) of the dependencies
between agents’ utilities in the global utility function. More
specifically, a factor graph is a bipartite, undirected graph
consisting of variable nodes and function nodes, where func-
tion nodes are connected to variable nodes they depend on.

However, while Max Sum has been proven to converge to
an optimal solution on tree-structured factor graphs, it uses
redundant computation in dynamic environments, and lacks
optimality guarantees on cyclic graphs [14]. In the former
case, Max Sum would have to be re-run after every change
in the environment, and in the latter, very limited theoreti-
cal results relative to convergence and solution quality exist.
As such, Fast Max Sum (FMS) [13] and Bounded Max Sum
(BMS) [6] were presented in order to combat these problems:
FMS reduces overheads incurred after a change in the envi-
ronment, and BMS gives solutions with quality guarantees
on cyclic graphs. Given this, we elaborate further on FMS
and BMS in the rest of this section.

2.1.1 Fast Max Sum
Fast Max Sum (FMS) [13] provides two main improvements
to Max Sum: (i) a reduction of message size, and (ii) a re-
duction of redundant communication and computation after
a change in the graph. These improvements can be gained in
certain scenarios, such as rescue scenarios, where each vari-
able represents an agent, and each factor a target to rescue.
In such cases, a variable’s domain is the set of tasks that it
must choose between, and each task’s dependencies are the
variables whose domain contains them.

Next, we explain how FMS reduces unneeded communica-
tion and computation after a change in the underlying graph:
be it addition or removal of a function, or a variable. Put
simply, a variable in FMS will only send a message in re-
sponse to a received message if the values given in the re-
ceived message are different to those it previously received
from that factor. In order to do this, FMS adds storage
requirements to Max Sum, requiring each variable to store
their previous value, as well as the last message they re-
ceived on each of their edges, compare to it, and update it,
when messages are received. Then, a variable will only send
a new message to a function if and only if its previous values
for that node have changed. For a more detailed example of
the execution of FMS, we refer the reader to [13].

Nevertheless, FMS can only produce provably optimal solu-
tions in certain cases,3 and is therefore not general enough
for use in all environments. As such, we look at Bounded
Max Sum, which provides approximate solutions but guar-
antees convergence and solution quality.

2.1.2 Bounded Max Sum
Bounded Max Sum (BMS) [6] produces bounded approxi-
mate solutions by eliminating cycles in the factor graph (see
Section 3). More specifically, low-impact dependencies are
found and removed by constructing a maximum spanning
tree of the factor graph using the GHS algorithm [7] and
then Max Sum is run on the resulting tree. Each node in the
tree keeps track of which dependencies have been removed
and, by using this information, can compute an approxima-
tion ratio of the optimal solution.

While BMS is not explicitly superstabilizing, we could make
it so by introducing storage at each factor, in order to main-
tain information on the system state during recovery from
a change in the environment. Despite this, however, BMS
could still incur redundant computation and communication
after such a change in the environment, as the GHS algo-
rithm and Max Sum algorithms would need to be re-run.
Now, as explained above, FMS would reduce overheads in
the latter part of the algorithm, but not the former. As
such, next, we detail the GHS algorithm.

2.2 GHS
The GHS algorithm [7] is a distributed technique to find
the minimum spanning tree (MST) of any given weighted
undirected graph, using only local communication and low
computation at each node.

The basic premise of the GHS algorithm is that the nodes of
a graph are formed into a number of graph fragments, which
gradually join on their minimum-weight edges, in order to
eventually form one large graph fragment, containing the
MST of the graph. This is done through localised message
passing. For a more detailed discussion of the operation of
the algorithm, please refer to [7].

While the GHS algorithm is adequate for static problems,
such as those BMS was designed for, when a change is made
to the graph, the algorithm must be completely re-run. To
avoid this, it is important to operate such an algorithm over
a defined subset of the graph whenever a change occurs.
To this end, we have developed a novel algorithm which we

3As with Max Sum, where the constraint graph contains no
cycles.

present in Section 4. In order to do this, we formulate our
problem in the next section.

3. PROBLEM FORMULATION
In this section, we formally describe the decentralised coor-
dination problem that we address in this paper. We focus on
a task allocation problem: specifically, an environment con-
taining a number of agents, A = {a1, . . . , a|A|}, who must
complete a number of tasks, T = {t1, . . . , t|T |}. The set
of tasks which an agent a ∈ A can potentially complete is
denoted Ta ⊆ T. Similarly, the set of agents which can
complete a task t ∈ T is denoted At ⊆ A.

This problem can be conveniently represented with a factor
graph (see [8]), which is a bipartite, undirected graph FG =
{N , E}, where N is the set of nodes, such that N = VN ∪
FN , where VN is a set of variable nodes, and FN is a set
of function nodes. In addition, E is a set of edges, where
each edge e ∈ E joins exactly one node in VN to exactly one
node in FN . An example factor graph formulation of our
scenario is given in Figure 1.

1

2

3

1 2

Figure 1: An example scenario containing 2 rescue
agents (black stars) and 3 tasks (white triangles),
formulated as a factor graph, with agents as vari-
ables (circles), and tasks as factors (squares).

In our problem, we have a set of variables, x = {x1, . . . , xm},
controlled by the set of agents A. Each agent owns precisely
one variable,4 so we denote the variable belonging to agent
a ∈ A as xa. This variable represents the target of the
agent: that is, the task that the agent must complete, and
as such the domain of xa is Ta.

Next, we define a set of functions, F = {F1, . . . , Fn}, each
representing a task t ∈ T. A function Ft(xt) is dependent
on the set of variables which can potentially take the value
t, or more formally, xt = {xa|a ∈ At}. Thus, Ft(xt) denotes
the value for each possible assignment of the variables in xt.

Given this, we aim to find the state of each variable in x
which maximises the sum of all functions in the environment
(known as social welfare):

x∗ = arg max
x

X
t∈T

Ft(xt) (1)

Specifically, the factor graph consists of a function node
FN ∈ FN for each F ∈ F and a variable node V N ∈ VN
for each x ∈ x. We assume that each agent a ∈ A only has
control over, and knowledge of, its own local variable xa, and
thus one variable node in the factor graph. The decision as
to which agent computes for shared functions has no impact
on the correctness of our approach, and as such any policy
can be used to decide this (e.g. the agent with the lowest

4This is not a limitation of our solution approach, but a
feature of our reference domain.

ID computes for shared functions).5 Thus, we assume that
each agent may compute any number of functions in F, but
that each function F ∈ F is computed by one agent a ∈ A
only. Now, as mentioned earlier, each function F ∈ F repre-
sents one task in the task space, t ∈ T. Hence, each function
node in the factor graph represents one task, and so, each
function node Ft(xt) will be connected to the variable nodes
representing the variables xt.

4. IGHS
As previously mentioned, it is not ideal to completely re-
calculate the MST of an environment whenever the environ-
ment changes, as this is expensive in terms of communication
and computation. Hence, to avoid such issues, upon certain
types of graph change, we only find the spanning tree of a
small part of the graph at a time. This allows us to reduce
communication and computation overheads.

4.1 The Algorithm
The general idea of iGHS (iterative GHS) is to run GHS
only on subgraphs of the whole problem. Specifically, given
a spanning tree, the whole factor graph, and a node to add,
we take a subgraph of the graph and run GHS on that in or-
der to find a MST of this subgraph. We choose the subgraph
by using a variable k, which defines the depth of nodes in
the graph we consider, measured from the node to be added.
This is illustrated in Figure 2, where part (a) shows the orig-
inal spanning tree, with node x to be added, and parts (b)
and (c) highlight the nodes which are included in subgraphs
with k = 1, and k = 2, respectively.

x

a b c

d e f

g h i

(a) Original
Spanning Tree.

a b c

d e f

g h i

x

(b) k = 1

x

a b c

d e f

g h i

(c) k = 2

Figure 2: The effect of k on the size of the subgraph.
Thick lines are spanning tree branches, thin lines are
edges in the graph but not the spanning tree.

Finding the MST of the subgraph in order for the rest of the
graph to remain an MST is a challenge. In more detail, if two
or more nodes in the subgraph have spanning tree branches
to nodes not in the subgraph (we call these frontier nodes:
they are shown in Figure 2 as nodes with double outlines),
then joining these two frontier nodes in the MST could cause
a cycle in the spanning tree as a whole, thus invalidating the
tree. We can see how this would occur by considering nodes
d and e in Figure 2(c): both nodes have a spanning tree
branch in the remainder of the graph, so making a spanning
tree branch either on edge (a, d) or edge (d, e) would connect
d and e, thus creating a cycle in the rest of the graph. In
order to combat this, we identify the frontier nodes, and
ensure that we only connect to one of these nodes, on one
edge. We can then guarantee we have not introduced a cycle.

iGHS operates in two phases: (1) a flooding phase which
determines which nodes and edges are in the subgraph to be
5An allocation that balances the computational load among
agents might be desirable, but is beyond the scope of the
current paper.

Algorithm 1 Phase 1 of the iGHS algorithm, at a node n.

Require: possEdges = adj(n), lastCount = −∞,
inEdges, exEdges = ∅

1: At starting node, given k:
2: lastCount = k;
3: Send Flood(k − 1) to all n′ ∈ possEdges
4: On receipt of Flood(d) on edge j:
5: if d > lastCount then
6: lastCount = d; inEdges = inEdges ∪ j;
7: possEdges = possEdges \ j; exEdges = exEdges \ j;
8: if d < 0 then // Node is not in the subgraph
9: Send External on edge j, then halt.

10: else // Node is in the subgraph
11: Send Flood(d− 1) on all e ∈ {possEdges \ j}
12: if possEdges = ∅ then Send FloodAck on edge j, then halt.
13: else Put message on end of queue.
14: On receipt of External on edge j
15: exEdges = exEdges ∪ j; possEdges = possEdges \ j
16: On receipt of FloodAck on edge j
17: inEdges = inEdges ∪ j; exEdges = exEdges \ j; possEdges =

possEdges \ j;

considered, and (2) a phase based on GHS, which establishes
the MST, and adds the minimum weight frontier edge (i.e.,
edge joining to a frontier node) to the MST.

4.2 Phase 1
Algorithm 1 gives pseudocode for the flooding phase of our
algorithm. In this phase, each node identifies which of its ad-
jacent edges in the graph are within the subgraph (inEdges),
and which are not (exEdges). This is done by initially
adding all of a node’s adjacent edges, adj(n), into possEdges,
which denotes that they could belong to the subgraph.

In more detail, the flooding phase begins with the node to
be added informing its neighbours of the value of k. More
specifically, this node sends Flood(k−1) messages to all of its
neighbours (line 3). Now, when a node n receives a Flood(d)
message, it will propagate further Flood(d − 1) messages
along edges it is unsure of the status of (line 11), unless it
receives a Flood message on edge j containing a value less
than 0. If this happens, the node sends an External message
on edge j (line 9), informing the node at the other end that
j is in exEdges (line 15).

Now, in order for a node to classify an edge into inEdges,
the node must have received either a Flood message (line 6)
or a FloodAck message on that edge (line 16). FloodAck
messages are sent when a node has classified all of its edges
into inEdges or exEdges (line 12), and so, we can see that
they are sent from the nodes that are furthest away from the
new node, back toward the node to be added. The algorithm
stops when the node to be added has received a FloodAck
message from each of its neighbours. Thus, when the node
to be added has received FloodAck messages on each of its
edges, we know that every node in the subgraph is aware of
which of its edges are in the subgraph, and which are not,
and phase 1 of the algorithm is complete.

4.3 Phase 2
We give the pseudocode for phase 2 of iGHS in Algorithm
2. For brevity, we omit the sections (lines 3, 9, 14, 20, 35)
of the algorithm that are repeated from GHS and focus only
on the areas in which we have made changes.

Now, we can classify nodes into frontier nodes and non-
frontier nodes: if, for a node n, exEdges 6= ∅ and the
previous status of at least one of the edges in exEdges is
BRANCH (i.e., it was a branch in the spanning tree pre-
dating this computation), then n is a frontier node.

Algorithm 2 Phase 2 of the iGHS algorithm, at a node n.
Require: inEdges, exEdges, frontier
1: Procedure wakeup()
2: bestFrontierEdge = nil; bestFrontierWeight =∞
3: if frontier = false then Proceed as GHS wakeup()
4: On receipt of Connect(L) or Test(L, F) on edge j
5: if frontier = true then // j is a frontier edge.
6: SE(j) = REJECTED
7: Send Frontier on j
8: else // j is an edge in the subgraph.
9: Proceed as GHS Connect(L) or Test(L, F)

10: On receipt of InstConnect(L) on edge j
11: SE(j) = BRANCH
12: Procedure test()
13: if there are adjacent edges in state BASIC and not in exEdges

or frontierEdges then
14: Proceed as GHS test() procedure.
15: On receipt of Frontier on edge j
16: SE(j) = REJECTED;
17: frontierEdges = frontierEdges ∪ j
18: bestFrontierEdge = mine∈frontierEdges w(e)

19: bestFrontierWt = weight of bestFrontierEdge
20: if FN = nil then Proceed as last received GHS Connect
21: else test()
22: Procedure report()
23: if findCount = 0 and testEdge = nil then
24: SN = FOUND
25: Send Report(bestWt, bestFrontierWt) on inBranch
26: On receipt of Report(w, fw) on edge j
27: if j 6= inBranch then
28: findCount = findCount− 1
29: if w < bestWt then bestWt = w; bestEdge = j;
30: if fw < bestFrontierWt then bestFrontierWt =

fw; bestFrontierEdge = j;
31: report()
32: else if fw > bestFrontierWt and w =∞ then
33: ChangeFrontierRoot()
34: else
35: Proceed as GHS Report(w)
36: ChangeFrontierRoot()
37: if SE(bestFrontierEdge) = BRANCH then
38: Send ChangeFrontierRoot on bestFrontierEdge
39: else
40: SE(bestFrontierEdge) = BRANCH
41: Send InstConnect(L) on bestFrontierEdge

Given this, we now go into more detail on Algorithm 2.
When a node’s status is SLEEPING, and it receives a mes-
sage, it runs the wakeup() procedure (lines 1–3), initialising
its variables, and tries to connect to one of its neighbours,
if it is not a frontier node. When a node receives a con-
nection attempt from its neighbour on edge j (line 4), the
algorithm will proceed in one of two ways: if the node is a
frontier node, then it marks j as not in the spanning tree
and sends a Frontier message along j (lines 5–7), and if the
node is not a frontier node, then it proceeds as it would in
GHS (line 8). When a node receives a Frontier message
along j (line 15), it marks j as not in the spanning tree (line
16), adds j to its list of frontier edges (line 17), and updates
its best frontier edge and weight values (lines 18–19), before
carrying on as if edge j did not exist (lines 20–21).

Now, when a node has connected on its minimum-weight
edge, it tries to connect on each of its other edges, in order
of weight (see lines 12–14). However, if a node has no more
unclassified edges left, then it runs the procedure report()
(line 22), and informs its parent in the tree of the lowest
weight frontier edge it has (lines 23–25). When the parent
receives this report (line 26), it decides which of its neigh-
bours has the lowest-weight frontier edge, and informs its
own parent (lines 27–31). However, if the report message
is received by the root of the graph (line 32), then the re-
ceiving node can be sure that its best frontier edge leads to
the spanning tree’s best frontier edge. As such, the receiv-
ing node sends instruction to connect along the best frontier
edge (line 33). Finally, if a node receives an instruction to

join on its best frontier edge (line 36), it determines whether
its best frontier edge points further down the tree (line 37),
or is the edge to connect on (line 39), and either passes the
message on (line 38), or connects on the best frontier edge
(lines 41, 10–11).

4.4 Properties of iGHS
Having presented our algorithm, we now show that it is cor-
rect, and superstabilizing.

Correct. In order to prove the correctness of iGHS, we
must show first, that it cannot create a cycle in the overall
spanning tree of the graph, and second, that it will make a
minimum spanning tree in the subgraph.

First, given that GHS is correct [7], and cannot create cycles,
we know that iGHS will not make a cycle in the subgraph it
runs on. Thus, it is sufficient for us to show that, in joining
our MST to the spanning tree of the rest of the graph, we
cannot create a cycle. This is because if a node is connected
to a tree-structured graph on a single edge, then it is im-
possible for that node to have created a cycle in the overall
graph. Now, as we are sure that we make a spanning tree
across all edges but those that connect to frontier nodes, and
we connect that tree to the rest of the graph on a single edge,
we can guarantee that our algorithm can, indeed, not make a
cycle in the graph overall. Second, we can guarantee that the
spanning tree produced by running iGHS on the subgraph
is minimum due to the properties of the GHS algorithm.

Superstabilizing. In order to show that iGHS is super-
stabilizing, we define the following predicates: legitimacy :
when the algorithm is complete, the spanning tree produced
contains no cycles, passage: at no time during recovery from
a perturbation, are any cycles inadvertently formed. We can
say that iGHS is superstabilizing with respect to these pred-
icates: first, because GHS does not form any cycles in its
operation, and second, because iGHS is correct.

Now that we have ascertained these properties, we present
Bounded Fast Max Sum, which combines iGHS and Fast
Max Sum in order to solve distributed constraint optimisa-
tion problems on arbitrary graphs.

5. BOUNDED FAST MAX SUM
Here, we introduce the Bounded Fast Max Sum algorithm,
which consists of three main procedures running sequentially
after a node is added to the graph:

1. Efficient, superstabilizing spanning tree gener-
ation: using iGHS (Section 4) to re-calculate the max-
imum spanning tree around the added node.

2. Fast Max Sum, to calculate the optimal assignment
of variables in the spanning tree. Only the nodes who’s
utility changes as a result of the addition need resend
their Max Sum messages through the tree: if their
change in utility does not change, then the decision
rules in Fast Max Sum will ensure messages are not
transmitted unnecessarily.

3. WSUM and SOLUTION propagation, in order
to calculate the quality of the solution found.

Now, while adding a node to the graph is always handled in
the same manner, this is not the case for removing nodes.
In more detail, we must consider both circumstances under
which a (function or variable) node can be removed from the
graph: first, physical disconnection, such as when a rescue
agent is malfunctioning or disappears, and second, when a
task has been completed. To support the first case, we in-
troduce contingency plans. Each time a node n is certain of
the status of each of its incident edges (i.e. when they have
all been marked BRANCH or REJECTED), it chooses its
lowest weighted, and hence, most important, BRANCH edge
and informs the node at the other end (n2) that n2 is n’s
contingency. Then, if node n is removed from the graph, n2

will instigate the iGHS algorithm, and maximise the span-
ning tree around itself. The second case (a task being com-
pleted) is slightly different, in that the factor node for that
task will not be physically removed from the graph. Instead,
the factor node acts as a ‘handler’ for iGHS, by setting the
weight of each of its incident edges to 0 (as their utility
would be 0 anyway), and instigating execution of iGHS.

In terms of how many nodes can be added and/or removed
simultaneously, the iGHS algorithm imposes a restriction
on both. More specifically, as iGHS has a set of values at
each node which are used in the spanning tree formation, we
must ensure that no one node is involved in more than one
instance of iGHS at a time, so that these values are not being
overwritten by multiple iGHS instances. Hence, we can say
that if two or more nodes are to be added to and/or removed
from the graph simultaneously, they must be of distance at
least 2k+ 1 away from each other, to avoid overlap in iGHS
instances. We next detail the execution of BFMS.

5.1 The Algorithm
As in BMS, each dependency link eij in the factor graph FG
is weighted as below:

wij = max
xi\j

»
max

xj

Fi(xi)−min
xj

Fi(xi)

–
(2)

This weight represents the maximum impact that variable
xi can have over function Fj . Thus, by not including link
eij in the spanning tree, we say that the distance between
our solution and the optimal is at most wij .

Now, once each link has been weighted, our iGHS algorithm
is started (see Section 4 for more details). The outcome of
the convergence of this algorithm is, initially, a maximum
spanning tree.6 Following this, after every addition to the
graph, the spanning tree around the change is maximised,
thus iteratively improving a section of the graph.

Next, we run Fast Max Sum on the resulting spanning tree,
beginning at the leaves, and propagating up the tree, with
each node waiting to receive messages from all of its chil-
dren before calculating and sending its next message. These
messages then propagate back down the tree from the root
to the leaves in a similar manner, at which point the algo-
rithm converges, and a variable assignment x̃ can be com-
puted. Functions with removed dependencies are evaluated
by minimising over the removed dependencies, as in BMS.

Finally, the algorithm enters the WSUM and SOLUTION
propagation phase, which is the same as that of BMS. More

6The maximum spanning tree can be obtained by using
iGHS and negating edge weights

specifically, once the leaves have received the Fast Max Sum
messages, they can compose new WSUM and SOLUTION
messages. If the leaf node is a function, WSUM is the sum
of the weights of its removed dependencies, and SOLUTION
is Ft(x̃t). If the leaf is a variable, the WSUM and SOLU-
TION messages are empty. When a node receives WSUM
and SOLUTION from all its children, it can process them
according to whether it is a function node or a variable node.
If the node is a variable node, these messages are the sum of
messages from its children. If the node is a function node,
the messages are the sum of messages from its children, plus
its own values for the removed edge weights (for WSUM)
and Fi(x̃i) (for SOLUTION). Once these messages reach
the root, the root propagates them back down, so every node
is aware of the total weight removed, W , and the solution
value, Ṽ =

P
t∈T Ft(x̃t).

Now the agents have all information to compute the approxi-
mation ratio, as follows: ρ(FG) = 1+(Ṽ m+W−Ṽ)/Ṽ where

FG is the factor graph the algorithm has been run on, Ṽ m is
the approximate solution value, and Ṽ is the actual solution
value.Now, as the approximation ratio tends to 1, this in-
dicates improvement in the solution quality guarantees, be-
cause this indicates that the total weight of removed edges is
small. Thus, in order to help this, we wish to keep the value
of W as low as possible, by only removing low-weight edges
(i.e., edges that have low bearing on the overall solution).
We can see that the value of k given to iGHS has a bearing
on the approximation ratio, too — higher values of k opti-
mise larger sections of the graph. This means iGHS is more
likely to remove the lowest weight combination of edges.

5.2 Properties of BFMS
In order to verify that that BFMS is superstabilizing, we
must first show that FMS is superstabilizing. We do this
subject to the following predicates: legitimacy : U(x) =
maxx

P
t∈T Ft(xt), where U(x) is the total utility of assign-

ment x, and passage: the previous assignment of variables
is maintained until a new solution has been computed.

Proposition 1. Fast Max Sum is superstabilizing on tree
structured graphs, because it is self-stabilizing on tree struc-
tured graphs, and, during stabilization after a change in the
graph, the previous assignment of variables is maintained
until a new solution has been computed.

Proof. First, FMS is an extension to Max Sum, which is
proven to converge to an optimal solution on tree structured
graphs. Second, when a change occurs in the graph, FMS is
run again, and therefore, provided the change did not intro-
duce a cycle into the graph, FMS is guaranteed to converge
to the optimal again, reaching a legitimate state within a
finite amount of time. This is because FMS does not change
the messages sent, it just stops duplicate messages being
sent when values at some nodes have not changed as a re-
sult of the graph change. FMS is superstabilizing because it
has storage at each variable node in order to maintain a pre-
vious assignment during recalculation, and so, the passage
predicate always holds.

Given this, BFMS is also superstabilizing, because FMS and
iGHS (see Section 4) are. As BFMS combines these two al-
gorithms, we can deduce that BFMS is superstabilizing.

Next, we empirically evaluate BFMS, and compare it to
BMS, in order to show the improvements BFMS gives.

6. EMPIRICAL EVALUATION
In order to empirically evaluate Bounded Fast Max Sum,
we ran two types of experiment, intended to measure our
performance in terms of approximation quality, robustness
and utility gained. We compare Bounded Fast Max Sum to
Bounded Max Sum (BMS), and a greedy version of Bounded
Fast Max Sum (G-BFMS), in which an added node will con-
nect to the rest of the spanning tree on its best-weight edge.

The first experiment intends to show that our algorithm is
robust to changes in the graph. In more detail, we com-
pared BFMS with k = 2, k = 3 and k = 4 to BMS, and G-
BFMS. More specifically, we ran these algorithms on a series
of 50 randomly generated graphs, where, initially, |A| = 5
and |T | = 5. In addition, we compared results found on
graphs with task nodes of degree δt = 3, to those with agent
nodes of degree δa = 3. We used a random look-up table,
drawn from a uniform distribution, as the utility function of
each task in order to evaluate our algorithm in a general set-
ting. Given this, we ran experiments where we added agents,
high-weighted tasks (where, for all values, ut(a) ∈ [0.5, 1]),
and low-weighted tasks (where ut(a) ∈ [0, 0.5]) in order to
demonstrate the impact that k has on the quality of the ap-
proximation in these situations. Now, for each experiment,
we first ran one of the algorithms, and alternated adding
new agents and tasks, one at a time,7 to the environment.
We repeated this process 10 times, recording a number of
values after each algorithm run, and calculating the mean of
each value at each step, with 95% confidence intervals (which
we have plotted on our graphs). In addition, we ran experi-
ments where we added only agents to the environment, to see
if adding only one type of node would show a different trend
to alternating types. During these experiments, we recorded
a number of values.8 Firstly, we recorded two values from
the preprocessing phase of the algorithms: namely, the mean
total size of preprocessing messages sent (PTNS), and mean
total preprocessing storage used (TSU). The smaller these
values are, the better. In addition, we recorded some values
from the message passing phase of the algorithms: mean
computation units used at each node (MCU), mean total
size of messages sent, in bytes (TSS), and the mean approx-
imation ratio obtained (AR). The values of MCU and TSS
should, preferably, be small, and the AR should be as close
to 1 as is possible.

Given that FMS has been shown to outperform Max Sum
in terms of MCU, TNS and TSS [13], we hypothesise:

Hypothesis: Bounded Fast Max Sum has lower MCU, and
TSS than Bounded Max Sum. In addition, Bounded Fast
Max Sum has lower PTNS than Bounded Max Sum.

We found from our experiments that varying the degree of
tasks and agents had no real effect on the performance of our
algorithm. In addition, we found that using high or low util-
ity values of added tasks made little difference to the results
either, and for this reason, we present here the results for
high-valued utility functions, and δa = 3. We can see from
Figure 3(a) that alternating adding agents and tasks leads
to faster deterioration in the approximation ratio when tasks

7As mentioned in Section 5, iGHS is only guaranteed to work
if simultaneously added nodes are at least 2k+1 nodes apart.
The evaluation with multiple nodes is beyond the scope of
this paper.
8Some of these are typical measures used in the DCOP com-
munity [10], approximation ratio comes from BMS [6].

(a) Mean Approximation Ratio: al-
ternating.

(b) Mean Approximation Ratio:
adding only agents.

(c) Mean preprocessing messages
sent.

(d) Mean computation units used. (e) Mean total size of messages sent. (f) Mean total storage used.

Figure 3: Experiment 1 results.

are added. This is because functions have more impact on
the approximation ratio than extra variables, and thus will
degrade it further when added. Given this, when we only
add agents (Figure 3(b)), we see a plateau in BFMS for both
values of k, after adding around 5 tasks, where G-BFMS’s
approximation ratio continues to degrade. Figures 3(a), (b)
and (c) show the effect that the value of k has on preprocess-
ing messages sent and approximation quality: whilst k = 2
requires 28–53% fewer preprocessing messages than BMS, it
produces approximation ratios within 81–94% of BMS. In-
creasing k to 3 gains approximation ratios within 88–100%
of BMS, but reduces the saving in preprocessing messages
sent to only 1–7% of BMS. Hence, it can be seen that higher
values of k do achieve better approximation ratios, but at
the expense of sending more preprocessing messages. Now,
Figure 3(d) and (e) show the marked reduction in compu-
tation and message size gained by the use of FMS: up to a
maximum of 99% over BMS. Finally, Figure 3(f) shows the
extra storage at each node needed by iGHS, which, whilst
linear in nature, is higher than that of BMS.

It can be seen in Figures 3(c) and (f) that G-BFMS uses
very little additional storage and preprocessing messages af-
ter a change in the graph. This is because the decision made
is entirely local to the node to be added, and, as such, no
storage is needed, and only 1 message needs to be sent to
confirm the chosen edge forming part of the spanning tree.

Next, our second experiment intends to evaluate the per-
formance of our algorithm in a real scenario, and, as such,
we used our own flooding simulator (based on that used in
[13]) to compare utility gleaned by BFMS (using k = 2 and
k = 3), G-BFMS and BMS in comparison to using BMS with
complete information about all tasks to appear (denoted
BMS-OPT). To do this, we set A such that |A| = 10 and var-

ied the starting set of tasks to be completed, T , in increments
of 5, such that |T | ∈ {0, 5 · · · , 30}. Each task was given a
deadline dt, and a workload wt, which indicate when the task
will expire, and how long it will take to complete, respec-
tively. We also generated a list of 10 tasks which were added
to the environment, one at a time, every |T | timesteps: thus,
when we say BMS-OPT had full information, we mean that
BMS-OPT was given the set T and the complete set of tasks
that would be added over time at the start of the simulation.
We randomly generated 50 instances of agent and task posi-
tions for each amount of tasks, drew the deadline of each task
from a uniform distribution dt ∈ U(0, 10×|T |) and drew the

workload from a uniform distribution as wt ∈ U(0, 10×|T |
2

).
We ran the three algorithms on each of the 50 instances, over
10×|T | time steps, running each algorithm at each time step.
We show the mean total number of tasks completed by each
algorithm in Figure 4, along with 95% confidence intervals.

Figure 4: Mean total tasks completed.

We can see from Figure 4 that BFMS with k = 2 and k = 3
completes within 96–100% of the tasks as BMS, and that

performance of BFMS with k = 3 is very similar to that of
BMS. In addition, we found that BFMS took a much smaller
amount of time to converge to a solution at every time step,
compared to BMS and OPTBMS which took far longer.

7. RELATED WORK
Using the GHS algorithm [7] as a starting point, we looked
into work similar to iGHS in order to locally optimise a span-
ning tree, without affecting the whole graph. We found some
work into distributed dynamic MST algorithms: for exam-
ple, Cheng et al.’s Dynamic MST protocol [2], which finds
the MST of the entire graph. However, these algorithms do
not suit our purpose, for we wish to reduce computation and
communication done by the algorithm overall, and hence,
the amount of spanning tree changed must be limited.

Given this, some work closer to ours is that of localised
spanning tree calculation, which is of particular interest in
wireless ad-hoc networks [9]. In such domains, low power
consumption and memory limit the scope of potential algo-
rithms to those that are localised and power-efficient. In
addition, localised minimum spanning tree algorithms such
as that of [9] are often constrained by bounds on node de-
gree (i.e., the number of outgoing links from each node), and
minimising the length of each links between nodes, in order
to conserve precious resources. Fortunately, our domain is
not so limited in terms of node degree (in fact, large node de-
grees would help to increase solution quality), or link length:
we can assume that, if links are present in the graph of the
scenario, then they are available to be chosen in the MST.

The work of Li et al. is similar to ours, in that their Incident
MST and RNG Graph (IMRNG)9 method finds the MST
of nodes within two ‘hops’ from each node in the graph.
However, the mechanism is, in a sense, locally centralised,
in that each node finds out the weights of its neighbouring
links through message passing, before calculating the MST
locally, and informing its neighbours of the result. Our al-
gorithm is not centralised in this way, as iGHS and FMS are
both entirely distributed, in that removing a node will not
cause either algorithm to collapse. In addition, the mecha-
nism is heavily constrained in order to be compatible with
ad-hoc networks, forcing node degree to be at most 6, and
fixing the hop count to 2, whereas we allow k (our measure
of hop count) and node degree to take any value.

8. CONCLUSIONS AND FUTURE WORK
We have presented an efficient, dynamic, superstabilizing
algorithm for distributed constraint optimisation, which is
able to provide approximate solutions with quality guaran-
tees, whilst reducing redundant computation and commu-
nication in dynamic environments. Our main directions for
future work are to consider how the algorithm could adapt
to areas of varying communication, and to enable any num-
ber of nodes to be added and/or removed simultaneously.
More specifically, we are interested to find out if dynami-
cally varying the value of k in response to varied available
bandwidth could optimise our solution quality in environ-
ments where communication capabilities can vary. Second,
our algorithm is constrained in the number of nodes that
can be added or removed at any one time, not allowing at
simultaneous addition and/or removal of nodes which are
less than 2k + 1 from each other. Thus, we will endeavour
to reduce, or possibly remove, this limit.

9RNG: Relative Neighbourhood Graph

Acknowledgements
This research was undertaken as part of the ALADDIN (Au-
tonomous Learning Agents for Decentralised Data and In-
formation Systems) Project and is jointly funded by a BAE
Systems and EPSRC (Engineering and Physical Research
Council) strategic partnership (EP/C 548051/1).

References
[1] S. M. Aji and R. J. McEliece. The generalized distribu-

tive law. IEEE Transactions on Information Theory,
46(2):325–343, 2000.

[2] C. Cheng, I. Cimet, and S. Kumar. A protocol to main-
tain a minimum spanning tree in a dynamic topology.
SIGCOMM Computer Communication Review, 18(4):
330–337, 1988.

[3] E W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM, 17(11):
643–644, 1974.

[4] S Dolev and T Herman. Superstabilizing protocols for
dynamic distributed systems. Chicago Journal of The-
oretical Computer Science, 1997(4):1–40, 1997.

[5] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded de-
vices using the max-sum algorithm. In Proc. AAMAS-
08, pages 639–646, 2008.

[6] A. Farinelli, A. Rogers, and N. Jennings. Bounded ap-
proximate decentralised coordination using the max-
sum algorithm. In DCR Workshop, IJCAI-09, pages
46–59, July 2009.

[7] R. G. Gallager, P. A. Humblet, and P. M. Spira. A dis-
tributed algorithm for minimum-weight spanning trees.
ACM Trans. TOPLAS, 5(1):66–77, 1983.

[8] F. R. Kschischang, B. J. Frey, and H. A. Loeliger.
Factor graphs and the sum-product algorithm. IEEE
Transactions on information theory, 47(2):498–519,
2001.

[9] X. Li, Y. Weng, P. Wan, W. Song, and O. Frieder. Lo-
calized low-weight graph and its applications in wireless
ad hoc networks. In INFOCOM-04, volume 1, pages
431–442, March 2004.

[10] P. J. Modi, W. S. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint opti-
mization with quality guarantees. Artificial Intelli-
gence, 161(1-2):149–180, 2006.

[11] A. Petcu and B. Faltings. A scalable method for multi-
agent constraint optimization. In Proc. IJCAI-05, vol-
ume 19, pages 266–271. AAAI Press, 2005.

[12] A. Petcu and B. Faltings. S-DPOP: Superstabilizing,
Fault-containing Multiagent Combinatorial Optimiza-
tion. In Proc. AAAI-05, pages 449–454, 2005.

[13] S. D. Ramchurn, A. Farinelli, K. S. Macarthur,
M. Polukarov, and N Jennings. Decentralised Coordi-
nation in RobocupRescue. (to appear) The Computer
Journal, 2010.

[14] Y. Weiss and W. T. Freeman. On the optimality of solu-
tions of the max-product belief propagation algorithm
in arbitrary graphs. IEEE Transactions on Information
Theory, 47(2):723–735, 2001.

