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ABSTRACT

The availability of a large, freely redistributable set of high-
quality annotated images is critical to allowing researchers
in the area of automatic annotation, generic object recogni-
tion and concept detection to compare results. The recent
introduction of the MIR Flickr dataset allows researchers
such access. A dataset by itself is not enough, and a set
of repeatable guidelines for performing evaluations that are
comparable is required. In many cases it also is useful to
compare the machine-learning components of different au-
tomatic annotation techniques using a common set of image
features.

This paper seeks to provide a solid, repeatable method-
ology and protocol for performing evaluations of automatic
annotation software using the MIR Flickr dataset together
with freely available tools for measuring performance in a
controlled manner. This protocol is demonstrated through
a set of experiments using a“semantic space”auto-annotator
previously developed by the authors, in combination with a
set of visual term features for the images that has been made
publicly available for download. The paper also discusses
how much training data is required to train the semantic
space annotator with the MIR Flickr dataset. It is the hope
of the authors that researchers will adopt this methodology
and produce results from their own annotators that can be
directly compared to those presented in this work.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance Evaluation; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval;
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.4.9 [Artificial Intelligence]: Ap-
plications
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1. INTRODUCTION
In the past, it has been difficult to accurately compare the

results of automatic annotation and semantic retrieval tech-
niques from different research groups because there has been
no standard, freely available dataset with which to experi-
ment. Many authors chose to use the Corel Stock Photogra-
phy collection [19], following its first use for annotation [4].
The Corel dataset has been criticised in the past as both be-
ing “too easy” and too small for proper retrieval evaluation
[25, 19]. The Corel dataset also had many other deficien-
cies, such as the lack of control over which images were used
(Duygulu et al [4] used 5000 images, but other authors have
used both more and less images), and issues of image qual-
ity (the original images were relatively high resolution, but
most researchers have only been able to obtain much smaller
versions with less than 200 pixels on the longest side). The
issue of image quality is particularly important with modern
image feature representations, which often fail to work with
very small images; for example, attempts to use difference-
of-Gaussian based SIFT features with the small Corel im-
ages have inevitably failed due to the sparsity of extracted
interest regions.

A second problem in comparing automatic annotation sys-
tems is that they tend to be highly sensitive to the particular
image features that have been selected. In many situations,
it would be insightful to be able to compare the performance
of the machine-learning component of different automatic
annotation systems. However, for this to happen in practice,
the machine-learning components need to be tested with the
same training data.

The release of the MIR Flickr dataset in 2008 now affords
researchers access to a collection of 25000 high quality anno-
tated photographic images which are freely available for the
comparative evaluation of automatic annotation, semantic
retrieval and relevance feedback systems. This paper seeks
to explore the use of the MIR Flickr dataset in the automatic
annotation context through a number of contributions. In
Section 2, we describe an experimental protocol that extends
the protocol described in the original MIR Flickr work [8] by



considering different sized training sets and evaluation met-
rics. Together with the experimental protocol, we provide
information on software tools that can be used for evaluat-
ing results. In Section 4, in addition to briefly describing
our auto-annotation technique, we describe the creation a
set of visual-term features which we have made available for
download from our website1 and have provided links to the
tools that were used to create these features. In Section 4,
we apply the experimental protocol to our existing Seman-
tic Space auto-annotator and describe the results attained.
Finally, in Section 5, we provide some concluding discussion
of the results of our experiments in the form prescribed by
our experimental protocol.

It is our hope that other researchers will be able to use the
protocol, data and tools that we describe in order to produce
results that can be objectively compared to our own in the
future.

2. EXPERIMENTAL PROTOCOL
In the original MIR Flickr paper [8], a standardised “Vi-

sual Concept/Topic Recognition” task was proposed. The
task proposed splitting the dataset into 15000 training im-
ages and reserving the remaining 10000 for testing, and eval-
uating using precision-recall measures. We propose that the
task is extended in the following way:

• Create three training sets of 5000, 10000 and 15000
images, and a test set of 10000 images. To avoid bias,
the data sets should be created by dividing every five
images of the dataset and assigning the first image to
the 5000 image training set, the first and second to the
10000 image training set, the first, second and third to
the 15000 image training set, and the forth and 5th to
the 10000 image test set.

• Train the automatic annotator system using images
from each of the three training sets, together with the
relevant (“REL”) labels alone, the potential (“POT”)
labels alone, and the relevant and potential labels com-
bined (here-after referred to as “ALL”). Researchers
are free to choose their own subsets of training data
for cross-validation and optimisation.

• Evaluate the system on the test set, and present results
using the following measures:

– Interpolated precision-recall graphs from a hypo-
thetical retrieval experiment carried out by re-
trieving ranked lists of images for each of the an-
notation terms.

– Average precision per annotation term from the
above hypothetical retrieval experiment.

– Graphs of precision versus number of documents
retrieved (from 1 to 1000 documents) from the
above hypothetical retrieval experiment.

– Equal Error Rate (EER) and Area Under Curve
(AUC) values calculated from the ROC curve for
each annotation term and averaged over all terms,
as per the ImageCLEF 2008 and 2009 visual con-
cept detection tasks [3, 21].

1http://users.ecs.soton.ac.uk/jsh2/mirflickr/

In addition, when researchers present their results, we
suggest that it is good practice to describe how computa-
tionally efficient their technique is (for example; how long
feature extraction takes, how long training takes and how
long it takes to annotate a new unannotated image). Also
implementation details should be described (for example;
programming languages or tools used and whether the code
is single threaded, multithreaded, or runs on a cluster).

Training and test set word statistics.
It is important that the proportions of each annotation

word in the three training sets and the test set are approxi-
mately the same as each other to avoid bias. Figure 1 illus-
trates the number of occurrences of each annotation in the
four sets. The plot shows that the four sets have roughly
equivalent distributions of annotations, so first order bias is
not a problem. Potential higher-order bias between sets of
multiple terms (i.e. pairs of co-occurring words) is unlikely
to be an issue as most current auto-annotation systems as-
sume term independence or weak dependence. However, this
factor should be considered in future work.

2.1 Tools and Settings
In order to generate the results (precision/recall and ROC

statistics), we propose that a standard set of tools and set-
tings should be used. The standard tool for generating
retrieval statistics is the trec_eval tool2, which originally
arose from the TREC text retrieval conferences. trec_eval
takes two files as input; a set of ground-truth relevances for
a set of queries (known as a QRELS [Query Relevance] file),
and results lists of retrieved documents for each of those
queries. The output of the trec_eval tool is a detailed re-
port of retrieval statistics for each query, and the average of
these statistics over all queries. For evaluating MIR Flickr
annotations, we suggest using the tool with only the -q op-
tion (this produces statistics for each query in addition to the
summary). This usage differs slightly from standard TREC
usage, which also specifies -M 1000 and limits the evaluation
to the top 1000 documents; in evaluating automatic annota-
tion we believe that this is undesirable, and that all images
should be considered. Pre-made QRELS files for the dataset
are available for download from our website, together with
a tool for creating QRELS for any subset of images.

In order to generate the ROC curve statistics, we propose
that the eval_tool script3 created for the ImageCLEF con-
cept detection task is used. This script is implemented in
GNU octave, but should also work in matlab. The script
requires a ground-truth input in the form of a binary array,
a list of classes (annotation terms), and a results file which
contains a matrix of confidences for each image/annotation
pair. More information can be found on our website.

3. AUTOMATIC ANNOTATION
As with many auto-annotation approaches, the method-

ology we have applied to demonstrate the protocol involves
extracting feature vectors for each of the images, and then
feeding the features of a training set, together with annota-
tions to a machine learning system. Our machine learning
system attempts to learn low-level relationships between all

2http://trec.nist.gov/trec_eval/
3http://www.imageclef.org/system/files/evaltool.
tgz
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Figure 1: Plot illustrating the number of occurrences of each annotation in each of the proposed subsets of
the MIR Flickr dataset.

of the features and annotations. Once the training phase is
complete, features from unannotated images can be fed into
the system to use the learnt relations to get predictions of
annotations.

3.1 Image Features
Recently, it has become popular to transform image fea-

tures into discrete elements or terms. These so-called “visual
terms” are elegant because they enable image content to be
described in much the same way as a text document. Typi-
cally, an image is represented by a histogram of the number
of occurrences of each distinct visual term [23]. This kind of
approach is often called a “bag of words” (or “bag of visual
terms”) model, as the terms are treated completely indepen-
dently of each other, regardless of their relative or absolute
positioning in the image.

In order to extract visual terms for the images in the
dataset we propose to use the idea of detecting salient inter-
est regions within the images from which descriptors can be
calculated in order to create terms. We chose two feature
morphologies and two region detectors for the task. These
are described briefly below.

Region detectors.
Lowe [13, 12] showed that by searching a difference-of-

Gaussian pyramid for local peaks, both spatially and across
scale, it is possible to select points robust to a range of pro-
jective transformations. The difference-of-Gaussian closely
approximates the scale-normalised Laplacian-of-Gaussian [15,
13], σ2

∇
2G. Mikolajczyk [17] showed that the minima and

maxima of σ2
∇

2G produced the most stable interest points
when compared to a range of other operators.

The Maximally Stable Extremal Region (MSER) detec-
tor [16] finds arbitrarily shaped regions in the form of con-
nected components of an appropriately thresholded image.
The regions are extremal because all of the surround pixels
have either higher or lower intensity than the pixels within
the region. The regions are maximally stable because of the
optimal threshold selection process. The stability is mea-
sured as a function of how stable the local binarisation of
the pixels is over a range of thresholds. As the threshold
changes, the number of pixels within a connected region will
likely change as well; if the number of pixels is fairly con-
stant, then the region is stable. This definition of region
stability based on relative area change is affine-invariant.

SIFT and Colour SIFT.
There are a large number of different types of feature de-

scriptors that have been suggested for describing the local
image content within a salient region; for example colour mo-
ments and Gabor texture descriptors [22, 24, 14]. However,
many of these descriptors are not robust to poor imaging
conditions. It was shown in [18] that the Scale Invariant Fea-
ture Transform (SIFT) descriptor [13], was superior to other
descriptors found in the literature, such as the response of
steerable filters or orthogonal filters. The performance of
the SIFT descriptor is enhanced because it was designed to
be invariant to small shifts in the position of the sampling
region, as might happen in the presence of imaging noise.

The SIFT descriptor is a three-dimensional histogram of
gradient location and orientation. Lowe suggested that gra-
dient location be quantised into a 4 × 4 location grid, and
gradient angle be quantised into 8 orientation bins [13]. The
resulting descriptor has 128 dimensions. Illumination invari-
ance is obtained by normalising the descriptor by the square
root of the sum of the squared components.

Recently the SIFT descriptor has been extended to work
with colour gradients [1, 27]. The colour SIFT descriptor
contains three vectors of 128 dimensions; the first is like
regular SIFT and contains intensity gradient information,
and the other two are colour based.

3.1.1 MIR Flickr Features

For our experiments with the MIR Flickr dataset, visual-
terms were created by finding interest points within the im-
ages, extracting local feature descriptors, and then quantis-
ing to a pre-determined codebook of visual terms. We used a
combination of multiscale difference-of-Gaussian interest re-
gions with SIFT features [13], MSER regions [16] with SIFT
features, and MSER regions with colour-SIFT features [1].

Each of the three region/feature combinations had its
own 3125 term codebook created by applying hierarchical
k-means [20] (5 levels with 5 clusters per node). The code-
book size was not optimised in any way, and was chosen
based on a best guess basis from previous experience with
these feature morphologies and the machine learning tech-
nique described in the next subsection. The final image rep-
resentation was created by appending the term-occurrence
vectors from each of the region/feature representations to
create a vector with 9375 dimensions.

Over the entire collection of 25000 images, there were over
20 million occurrences of visual terms from the difference-
of-Gaussian detector, and over 5 million from each of the



MSER detector based features. The difference reflects the
coverage attained with the two salient region detectors; the
MSER detector picks large regions with stable characteris-
tics (i.e. regions with little intensity gradient), whilst the
difference-of-Gaussian technique locks on to regions with
large, rapidly changing intensity gradients. The occurrences
of visual terms across the entire dataset exhibit a ubiquitous
characteristic seen in natural languages — that of Zipf’s
Law. Zipf’s law states that the frequency of any term is
approximately inversely proportional to its rank in a sorted
frequency table. Figure 2 illustrates the Zipfian nature of
the three visual vocabularies. The plot shows that the three
vocabularies have approximately the same distribution (al-
though the difference-of-Gaussian curve has higher values
because there are about four times as many occurrences).
In this work, we do not try and exploit the Zipfian nature
of the visual data, however, it is possible to use the distri-
bution to filter terms that occur very frequently (and hence
are non-descriptive) [23, 5].
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Figure 2: Frequency of visual terms from all 25000
images plotted against their rank sorted by decreas-
ing frequency. The curves are approximately Zipfian
with the few dominant terms on the left and long tail
towards the right.

Implementation.
The difference-of-Gaussian SIFT features were extracted

using David Lowe’s keypoints executable4. The MSER re-
gions were detected using Jiri Matas’s detector5. The SIFT
features for the MSER regions was extracted using Krys-
tian Mikolajczyk’s compute_features executable6. The cho-
sen Colour SIFT feature is a chromatic descriptor called
“InvC” (see [1]), and was extracted using the MSER re-
gions with Jan-Mark Geusebroek’s modified version of the
compute_features program7.

The codebooks and visual terms were created using our
ClusterQuantiser software which uses the Hierarchical In-
teger K-Means implementation from the open-source VLFeat
library8 as the underlying computational engine.

4http://people.cs.ubc.ca/~lowe/keypoints/
5http://www.robots.ox.ac.uk/~vgg/research/affine/
detectors.html#binaries
6http://www.robots.ox.ac.uk/~vgg/research/affine/
descriptors.html#binaries
7http://staff.science.uva.nl/~mark/downloads.html#
colorsift
8http://vlfeat.org/

The extracted features, visual-terms and word-occurrence
information for each of the 25000 images, together with the
ClusterQuantiser software are available for download from
our website9.

3.2 Semantic Spaces for Annotation
In this work we re-apply an existing automatic-annotation

and semantic-retrieval technique, called a linear-algebraic
semantic space, that we developed in previous work [6, 7].
The approach is based on the idea of creating a high dimen-
sional vector space in which annotations are placed along
with unannotated images. The placement of images in the
space is such that they lie near to the words that describe
them. In our case, we also place each visual term used for
indexing the images into the space. Similar images and/or
terms in this semantic-space share similar positions within
the space. In order to build the space, we developed an
approach that generalises a text indexing technique called
Cross-Language Latent Semantic Indexing [10], which itself
extends a technique known as Latent Semantic Analysis [2].
In the training stage, images, their respective annotations
and visual term counts are used to learn a basis for the space
that maps related items to similar locations. Once learned,
the basis can be used to project unannotated images into
the space using their respective visual term counts.

Once the unannotated images have been projected into
the space, semantic retrieval and automatic annotation are
straightforward. For retrieval, the query term is located in
the space, and the images are ranked based on decreasing
cosine similarity between their respective position, the origin
and the query term’s position. For annotation the process is
reversed, and potential annotation terms are ranked based
on their respective cosine similarity with the image vector.
It should be emphasised that this process won’t actually give
you the exact annotations for the images, but rather a list
of all the annotation terms in order of decreasing likelihood
of them applying to the image in question.

4. DISCUSSION OF EXPERIMENTAL

RESULTS
Using the automatic annotator and image features de-

scribed in Section 3, we have performed the experimental
workflow described in Section 2. In this section we describe
the results attained.

4.1 Semantic space parameter setting
The semantic space auto-annotation technique has a sin-

gle parameter, the dimensionality of the space, that needs to
be optimised before annotation can proceed. Following the
methodology used in previous work, we removed a number
of images from each of the training sets to create valida-
tion sets. A space was then created for each of the reduced
training sets, and the validation sets were projected in. We
then calculated the optimal dimensionality by choosing the
number of dimensions that gave the highest mean average
precision. Figure 3 illustrates how the MAP changes as the
number of dimensions increases. Once the optimal dimen-
sionality had been determined, new spaces were created us-
ing the complete sets of training data (i.e. including the
respective validation sets). The selected dimensionality for
each of the nine spaces being evaluated is shown in Table 1.

9http://users.ecs.soton.ac.uk/jsh2/mirflickr/
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Figure 3: Variation in performance (measured by
mean average precision) as the number of dimen-
sions of the semantic space changes when using the
validation data sets.

4.2 Retrieval Experiments
Table 2 shows the mean average precision for each of the

different training sets and annotation sets. Figure 4 shows
the results of using the REL annotations over the different
training set sizes in the form of interpolated precision-recall
curves. The table and graph show a number of interesting
features. Most notable is the lack of effect from increasing
the training set size; the larger training sets do produce a
very slight increase in precision, but it would be difficult to
justify this increase given the extra work involved in process-
ing more images. It would be very interesting to see whether
this effect only applies to our particular annotation technol-
ogy, or whether other machine learning techniques also ex-
hibit the same behaviour with the same training data. One
possible hypothesis for this effect is that our semantic space
is particularly good at learning course-grained relationships
in the data, but is less good at learning finer-granularity re-
lationships that have relatively little data support. These
fine-granularity relationships would potentially be lost as
noise in the dimensionality reduction stage of the technique.
Adding more data would not help much because in addition
to bolstering the finer-grained relationships, the signals from
the course relationships would also get bolstered, cancelling
out the potential improvement.

Table 2 also shows that the potential “POT” annotations
were learned better than the relevant “REL” annotations.
The combined “ALL” annotations exhibit a tradeoff in pre-
cision between the potential and relevant annotations. It
is not clear (although it currently seems unlikely) that the
slightly higher precision of the “POT” annotations would be
enough to aid in the filtering of of images to reduce the work-

Table 1: Selected number of dimensions for each of
the semantic space annotators

Annotation Training set size
Set 5000 10000 15000
ALL 344 458 358
POT 348 458 352
REL 344 452 362

Table 2: Mean average precision of all queries, sep-
arated by training set size and annotation set.

Annotation Set
Training set size ALL POT REL

5000 0.276 0.313 0.216
10000 0.287 0.324 0.237
15000 0.292 0.327 0.240
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Figure 4: Interpolated precision-recall curves for
each training set size using the REL annotations.

load of a human annotator marking relevant images in the
same way the potential annotations were originally used to
create the relevant annotations [8].

The precision-recall curves in Figure 4 display a distinct
shape. The curves suggest that the first few (in terms of
percentage recall) retrieved documents are on average about
80% relevant, but there is then a large drop such that af-
ter the first 10% of relevant retrieved documents, the pre-
cision is only around 40%. Between 10% and 100% recall
the precision drops almost linearly. Figure 5 shows interpo-
lated precision-recall curves for a selection of queries from
the REL annotation set (training used 15000 images). These
curves indicate that not all concepts are able to be learned
equally; this is an expected result seen in all annotation
systems. In particular, the graph shows that the “river r1”
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Figure 5: Interpolated precision-recall curves for se-
lected REL annotations using the 15000 image train-
ing set.



term is not learnt particularly well, whereas the “people r1”
concept was learned much more successfully. The “bird r1”
concept is an interesting case; the graph indicates that con-
cept was learnt partially — there were a few good results at
the beginning of the ranked search results list, but the re-
mainder were spread out (the graph doesn’t tell us anything
about the number of images you would have to look at to
get a given recall, but looking at the trec_eval statistics we
can see that after 1000 images had been retrieved, only 58 of
the 196 relevant “bird r1”images had been seen). There are
a number of reasons for this, but there are two major ones.
Firstly the visual feature representation may be insufficient
to accurately model the concept; for example, it would be
difficult to learn the concept of a particular colour using in-
tensity gradient features alone. Secondly, the concept may
be visually diverse or biased and not accurately captured
by the training data. An example of this would be if the
training data contained a number of images of birds, most
of which are flying in a against a clear blue sky. In this case,
the annotator is more likely to associate birds with a “blue
sky” visual feature, and would probably fail at annotating
images of birds sitting in their nests.

Figure 6 illustrates the precision of our annotator in a
different way — the figure shows plots of precision against
the number of retrieved documents. The curves for the dif-
ferent annotations are all quite different, although three of
them (“sea r1”, “people r1” and “portrait r1”) show an ini-
tial increase in precision as more documents are retrieved,
followed by a peak and gradual decrease. The“dog r1”curve
shows a fairly constant drop in precision as more images are
retrieved.

Figure 7 graphically shows the top five retrieved images
for three different REL queries (corresponding to a range
of average precision), using both the 15000 image and 5000
image training sets. Whilst the order of retrieved images
changes with the different training set sizes, the overall av-
erage precision per term is about the same. Figure 8 shows
the relative R-Precision histogram between results from the
15000 and 5000 image training sets with the REL anno-
tations. The histogram shows that with the exception of
the “baby r1” annotation, all the annotations get a minor
precision improvement with the increased training set size,
although the improvement is not equally spread across the
annotations.

4.3 Annotation (ROC) Experiments
The averaged Equal Error Rate (EER) and Area Under

Curve (AUC) results extracted from the analysis of the an-
notator using ROC curves are shown in Table 3. These
results mirror the MAP results presented in Table 2 in that
increased training set size gives a slight performance boost
(increased AUC, decreased EER). However, they suggest
that using the REL annotations outperforms the POT an-
notations (with the combined ALL annotations in between
the two). This is a complete reversal of the results from
analysing the MAP!

4.3.1 Comparing EER, AUC and MAP

We have already seen that the EER and MAP measures
do not necessarily concur with each other. This is empha-
sised by Figure 9. This graph shows the EER, AUC and
AP values for the REL and POT annotations estimated us-
ing a semantic space trained on the 15000 image set. The
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Figure 8: Relative R-Precision of semantic spaces
trained using 5000 and 15000 images and the REL
annotations. The fact that all the bars are positive
indicates that increasing the size of the training set
only increases precision in this case.

Table 3: EER and AUC of all queries, separated by
training set size and annotation set.

Training Annotation Set
set ALL POT REL
size EER AUC EER AUC EER AUC
5000 0.319 0.742 0.331 0.727 0.296 0.772
10000 0.315 0.748 0.326 0.733 0.283 0.789
15000 0.303 0.761 0.318 0.743 0.272 0.797
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Figure 7: The five top ranked images for three different queries from semantic spaces trained with the 5000
and 15000 image training sets and the REL annotations.



annotations have been sorted into order of increasing EER.
The graph clearly indicates the relationship between EER
and AUC (increasing EER is coupled with decreasing AUC),
however, it is the lack of any relationship between EER and
MAP that warrants further discussion.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-.
/
/
0
.$
"

1
23
4
-0
.$
"

56
7
8
9
:0
.$
"

:/
;
0
.$
"

5;
.0
.$
"

<
7
=
/
.0
.$
"

9
7
3
0
.$
"

.2
>
/
.0
.$
"

?
7
.-
.;
2-
0
.$
"

@
;
@
A
0
.$
"

@
2.
9
0
.$
"

B/
C
;
6/
0
.$
"

?
/
7
?
6/
0
.$
"

C
;
6/
0
.$
"

D117-;E71"F/.C"

GGH"

DIJ"

DK"

(a)

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-
./
0
1"

23
4
"

54
63
"

75
8
9
:
2"

29
-
23
1"

;8
8
:
"

<
8
=1
=4
.1
"

1=
3
3
"

=.
>
3
="

74
="

?
4
13
="

26
@
"

:
8
/
"

.-
:
8
8
="

A
4
A
@
"

B
8
?
3
="

1=
4
-
2<
8
=1
"

<
54
-
1C
5.
;3
"

<
3
8
<
53
"

21
=9
71
9
=3
2"

4
-
.D

4
52
"

;3
D
4
53
"

D
4
53
"

A
.=
:
"

E--814F8-"G3=D"

HHI"

EJK"

EL"

(b)

Figure 9: Relationship between EER, AUC and AP
statistics per annotation. Data from the REL (a)
and POT (b) semantic space annotators trained with
15000 training image instances.

Equal Error Rate and Average Precision measure rather
different things. The Average Precision is a measure that
rewards a system’s ability to retrieve relevant documents
quickly (i.e. highly ranked). If in the list of ranked images,
all the relevant images come first, then the Average Precision
will be 1. The Equal Error Rate on the other hand describes
the rate at which accept and reject errors are equal given a
binary classifier created by thresholding the confidence val-
ues calculated by the annotation system. Taking the term
“people r1” which has an EER of 0.335 (15000 training im-
ages, REL annotations) as an example, this EER implies
that for a given threshold a binary classifier can be created
such that 33.5% of the images containing the “people r1”
would and labelled as not containing the annotation, and
33.5% of the images not containing “people r1” would be
labelled as containing the “people r1” annotation. In the
10000 image MIR Flickr test set, this means that the anno-
tator would misclassify 1060 of the 1364 “people r1” images
as not containing people and misclassify 2290 of the remain-
ing images as containing people. Whilst the “people r1” an-

notation has a relatively poor EER score, it has the best
score in terms of Average Precision, which implies that the
annotator does a reasonable job of ranking relevant images
near the beginning of the list. The precision of the “peo-
ple r1” annotation after 1000 images have been retrieved is
0.652, implying that 652 of the first thousand images were
relevant, but those relevant images must have been spread
out amongst those 1000 images.

Whilst it is possible to have a (relatively) poor EER score
with a (relatively) good AP score, the reverse is not true;
As the average precision approaches 1, the EER must ap-
proach 0 because the confidences will be ranked such that a
threshold exists that separates them into the correct classes.

It is not clear which of the evaluation metrics is the best;
it really depends on the task for which the automatic anno-
tations are required. In a ranked retrieval scenario, where
a human is going to look at the first few images, it makes
sense to try and maximise Average Precision so that more
relevant images appear in the results. The ROC curve, and
EER measure on the other hand gives useful information
about how to set a threshold on the confidence values in or-
der to build a completely automated binary classifier with
a given performance. Therefore, maximising the EER may
improve completely automated scenarios but its usage for a
retrieval scenario will not necessarily give the human looking
at the images satisfactory results. Conversely, maximising
average precision simultaneously improves the user experi-
ence and EER.

4.4 Comparison to the photo annotation task
in ImageCLEF 2009

The 2009 ImageCLEF photo annotation task [21] used
a subset of the MIR Flickr dataset for the evaluation (a
training set of 5000 images and a test set of 13000 images).
Rather than using the MIR Flickr annotations, a different
set of 53 visual concepts was provided. In our entry to the
task, we used exactly the same feature representation and
annotation system as described in this work. We also ex-
perimented with the use of the EXIF data, but were unable
to get any satisfactory results using it. Overall, in the Im-
ageCLEF evaluation, our annotator performed better than
average compared to all the submitted runs, however, our
EER/AUC scores were still a way off from the best runs.
The best runs (by AUC/EER) came from the ISLA group at
the University of Amsterdam. The ISLA approach combined
multiple Colour SIFT sampling strategies and quantisers to
created visual terms, and then applied Support Vector Ma-
chines (one per concept) using a χ2-kernel for classification
[26]. It would be interesting to explore how well the ISLA
SVM approach would work with the features we provide
with this work.

4.5 Computational Performance and
Annotator Implementation Details

The feature extraction phase was performed in parallel
(4 images being processed at once) on a quad core machine
(Intel Core 2 Quad @ 2.66Ghz, 8G ram, Redhat Enterprise
5.3). The time taken for image processing varied depending
on both the size of the image, and the image content. Tim-
ings for a typical image from the training set are shown in
Table 4.

Training a semantic space with a maximum of 500 dimen-
sions takes about 5 minutes using the 5000 image training



Table 4: Approximate timings for feature extraction on a typical image from the training set.
Feature Time

Difference-of-Gaussian detection + SIFT extraction ≈ 1.8s/image
MSER detection ≈ 0.1s/image

SIFT extraction on MSER ≈ 2.7s/image
Colour-SIFT extraction on MSER ≈ 1.0s/image

Vector quantisation <0.1s per set of extracted features

Estimated total ≈ 5.9s/image

set, less than 8 minutes for the 10000 image set, and just
over 10 minutes for the 15000 image set on a dual quad core
2.8GHz Xeon workstation running Mac OS X (the semantic
space code is single threaded, so only uses a single core).
We would estimate that no more than 1G of ram was used
during the semantic space training phase. Projecting all the
test image in bulk takes under 2 minutes, and it takes about
5 minutes to generate annotations or retrieve all the 10000
test images; so, in general, it take less than .05s to get from a
list of visual terms to the suggested annotations for a single
image.

Implementation.
The semantic-space software is written in C and makes use

of Doug Rohde’s SVDLIBC10 for efficiently performing the
large sparse SVD. The feature detector and descriptor soft-
ware is written in C and C++. The image processing com-
ponents were driven by standard UNIX make files11, which
enabled easy parallelisation using the make command’s -j

argument.

5. CONCLUSIONS AND FUTURE WORK
This paper has presented a methodology for performing

automatic annotation, and visual concept detection tasks
using the MIR Flickr dataset. The methodology emphasises
the idea of making results from different systems compara-
ble, and suggests freely available software tools for gener-
ating results. The second part of the paper was concerned
with applying the methodology to our own annotation sys-
tem, and presenting the results. For the evaluation we used
quantised SIFT and Colour SIFT visual term features, which
we have made available publicly. The results of our evalu-
ation highlight two interesting features. Firstly, at least for
our automatic annotator, the effect of changing the amount
of training data between 5000 and 15000 images was sur-
prisingly small. Secondly, the evaluation of automatic an-
notators using a retrieval-based framework as opposed to a
classification-based framework (using ROC curves) can lead
to remarkably different results.

There are a number of interesting avenues for further ex-
ploration of this work. Firstly, it would be interesting to
see how far we can reduce the training set size before the
annotator begins to break. Secondly, it would be interesting
to further explore the effect of different visual features; in
particular we are interested in the use of densely sampled
SIFT features [27, 9], and spatial pyramids [11]. The in-
corporation of more traditional global features would also
be interesting to study. Thirdly, we know from previous

10http://tedlab.mit.edu/~dr/SVDLIBC/
11See http://users.ecs.soton.ac.uk/jsh2/mirflickr/

evaluations such as ImageCLEF, that our annotation tech-
nique is not the most powerful currently available (although
this is difficult to quantify as the other annotation systems
have been trained on differing feature morphologies); we are
currently exploring alternative approaches such as the use
of multiple Support Vector Machine annotators (e.g. [28]).
Finally, the MIR Flickr dataset is provided with a number
of user-generated “tags”. The use of these tags for training
annotators is another area open to exploration.
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