The University of Southampton
University of Southampton Institutional Repository

Discrete states of synaptic strength in a stochastic model of spike-timing-dependent plasticity

Discrete states of synaptic strength in a stochastic model of spike-timing-dependent plasticity
Discrete states of synaptic strength in a stochastic model of spike-timing-dependent plasticity
A stochastic model of spike-timing-dependent plasticity (STDP) postulates that single synapses presented with a single spike pair exhibit all-or-none quantal jumps in synaptic strength. The amplitudes of the jumps are independent of spiking timing, but their probabilities do depend on spiking timing. By making the amplitudes of both upward and downward transitions equal, synapses then occupy only a discrete set of states of synaptic strength. We explore the impact of a finite, discrete set of strength states on our model, finding three principal results. First, a finite set of strength states limits the capacity of a single synapse to express the standard, exponential STDP curve. We derive the expression for the expected change in synaptic strength in response to a standard, experimental spike pair protocol, finding a deviation from exponential behavior. We fit our prediction to recent data from single dendritic spine heads, finding results that are somewhat better than exponential fits. Second, we show that the fixed-point dynamics of our model regulate the upward and downward transition probabilities so that these are on average equal, leading to a uniform distribution of synaptic strength states. However, third, under long-term potentiation (LTP) and long-term depression (LTD) protocols, these probabilities are unequal, skewing the distribution away from uniformity. If the number of states of strength is at least of order 10, then we find that three effective states of synaptic strength appear, consistent with some experimental data on ternary-strength synapses. On this view, LTP and LTD protocols may therefore be saturating protocols.
244-272
Elliott, Terry
b4262f0d-c295-4ea4-b5d8-3931470952f9
Elliott, Terry
b4262f0d-c295-4ea4-b5d8-3931470952f9

Elliott, Terry (2010) Discrete states of synaptic strength in a stochastic model of spike-timing-dependent plasticity. Neural Computation, 22 (1), 244-272. (doi:10.1162/neco.2009.07-08-814). (PMID:19764870)

Record type: Article

Abstract

A stochastic model of spike-timing-dependent plasticity (STDP) postulates that single synapses presented with a single spike pair exhibit all-or-none quantal jumps in synaptic strength. The amplitudes of the jumps are independent of spiking timing, but their probabilities do depend on spiking timing. By making the amplitudes of both upward and downward transitions equal, synapses then occupy only a discrete set of states of synaptic strength. We explore the impact of a finite, discrete set of strength states on our model, finding three principal results. First, a finite set of strength states limits the capacity of a single synapse to express the standard, exponential STDP curve. We derive the expression for the expected change in synaptic strength in response to a standard, experimental spike pair protocol, finding a deviation from exponential behavior. We fit our prediction to recent data from single dendritic spine heads, finding results that are somewhat better than exponential fits. Second, we show that the fixed-point dynamics of our model regulate the upward and downward transition probabilities so that these are on average equal, leading to a uniform distribution of synaptic strength states. However, third, under long-term potentiation (LTP) and long-term depression (LTD) protocols, these probabilities are unequal, skewing the distribution away from uniformity. If the number of states of strength is at least of order 10, then we find that three effective states of synaptic strength appear, consistent with some experimental data on ternary-strength synapses. On this view, LTP and LTD protocols may therefore be saturating protocols.

This record has no associated files available for download.

More information

e-pub ahead of print date: 11 December 2009
Published date: January 2010
Additional Information: Imported from ISI Web of Science
Organisations: Web & Internet Science

Identifiers

Local EPrints ID: 270715
URI: http://eprints.soton.ac.uk/id/eprint/270715
PURE UUID: bd019256-97ca-4476-8a37-41caaab138c2

Catalogue record

Date deposited: 21 Apr 2010 07:45
Last modified: 14 Mar 2024 09:16

Export record

Altmetrics

Contributors

Author: Terry Elliott

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×