Modeling SWCNT bandgap and effective mass variation using a Monte Carlo approach


El Shabrawy, K., Maharatna, K., Bagnall, D. and Al-Hashimi, B.M. (2010) Modeling SWCNT bandgap and effective mass variation using a Monte Carlo approach. IEEE Transactions on Nanotechnology, 9, (2), 184-93. (doi:10.1109/TNANO.2009.2028343).

Download

Full text not available from this repository.

Description/Abstract

Synthesizing single-walled carbon nanotubes (SWCNTs) with accurate structural control has been widely acknowledged as an exceedingly complex task culminating in the realization of CNT devices with uncertain electronic behavior. In this paper, we apply a statistical approach in predicting the SWCNT bandgap and effective mass variation for typical uncertainties associated with the geometrical structure. This is first carried out by proposing a simulation-efficient analytical model that evaluates the bandgap (Eg) of an isolated SWCNT with a specified diameter (d) and chirality ( thetas ). Similarly, we develop an SWCNT effective mass model, which is applicable to CNTs of any chirality and diameters >1 nm. A Monte Carlo method is later adopted to simulate the bandgap and effective mass variation for a selection of structural parameter distributions. As a result, we establish analytical expressions that separately specify the bandgap and effective mass variability (Eg/sub sigma /, m/sub sigma //sup */) with respect to the CNT mean diameter (d/sub mu /) and standard deviation (d/sub sigma /). These expressions offer insight from a theoretical perspective on the optimization of diameter-related process parameters with the aim of suppressing bandgap and effective mass variation

Item Type: Article
ISSNs: 1536-125X (print)
1941-0085 (electronic)
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Electronic & Software Systems
Faculty of Physical Sciences and Engineering > Electronics and Computer Science > NANO
ePrint ID: 270800
Date Deposited: 21 Apr 2010 07:45
Last Modified: 27 Mar 2014 20:15
Further Information:Google Scholar
ISI Citation Count:6
URI: http://eprints.soton.ac.uk/id/eprint/270800

Actions (login required)

View Item View Item