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Abstract— We introduce a four-variable polynomial matrix
equation which plays an essential role in the stability analysis
of discrete 2-D systems and in the computation of Lyapunov
functions for such systems; we call this the 2-D polynomial
Lyapunov equation (2-D PLE). We also give necessary and suf-
ficient conditions for the stability of “square” 2-D systems based
on solutions of the 2-D PLE satisfying additional properties.

I. PROBLEM STATEMENT

The central object of interest in this paper is the following
four-variable polynomial matrix equation:

(1− ζ1η1)Ψ1(ζ1, ζ2, η1, η2)
+(1− ζ2η2)Ψ2(ζ1, ζ2, η1, η2)
= −∆(ζ1, ζ2, η1, η2) + Y (η1, η2, ζ1, ζ2)>R(η1, η2)
+R(ζ1, ζ2)>Y (ζ1, ζ2, η1, η2) , (1)

where ∆ and R are given square polynomial matrices respec-
tively in the four indeterminates ζ1, ζ2, η1, η2 and in the two
variables ξ1, ξ2; and Ψi, i = 1, 2 and Y are unknown square
polynomial matrices in the four indeterminates ζ1, ζ2, η1, η2.
For reasons which are made apparent later on in the paper,
we call (1) the (discrete) 2-D polynomial Lyapunov equation,
often abbreviated as 2-D PLE in the following. The purpose
of this paper is to show how the 2-D PLE arises in the context
of stability analysis of discrete 2-D systems, and to discuss its
role in the computation of Lyapunov functions for discrete 2-
D systems. The setting for our investigation is the behavioral
approach to 2-D systems pioneered in [14] and successively
studied by several other authors; moreover, we use the notion
of stability for discrete 2-D systems introduced in [15].
In order to make the paper as self-contained as possible,
we will summarize the essential background concepts and
definitions in section II. In section III we state the main
result of this paper, a characterization of 2-D stability in
terms of solutions Ψ1,Ψ2 to the equation (1) satisfying some
additional properties. The paper ends with some concluding
remarks, contained in section IV.

Notation: We denote with Rr×w[ξ1, ξ2] (respectively,
Rr×w[ξ1, ξ2, ξ−1

1 , ξ−1
2 ]) the set of all r × w matrices with
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entries in the ring R[ξ1, ξ2] of polynomials in 2 inde-
terminates, with real coefficients (respectively in the ring
R[ξ1, ξ2, ξ−1

1 , ξ−1
2 ] of Laurent polynomials in 2 indetermi-

nates with real coefficients). Given a nonzero Laurent pol-
ynomial p(ξ1, ξ2) =

∑
`,m p`,mξ

`
1ξ
m
2 ∈ R[ξ1, ξ2, ξ−1

1 , ξ−1
2 ],

the Laurent variety of p is defined as

VL(p) := {(α, β) ∈ C× C | αβ 6= 0, p(α, β) = 0}

This definition extends to sets I of Laurent polynomials, with
V(I) being the intersection of the Laurent varieties of all
polynomials in the set. Let R ∈ Rr×w[ξ1, ξ2, ξ−1

1 , ξ−1
2 ] have

full column rank (as a rational matrix); then its characteristic
ideal is the ideal of R[ξ1, ξ2] generated by the determinants
of all w×w minors of R, and its characteristic variety is the
set of roots common to all polynomials in the ideal. Further
properties and definitions, such as the concept of right factor-
prime two-variable polynomial matrix used in the following,
can be found in [2].

A set K ⊂ R × R is called a cone if αK ⊂ K for
all α ≥ 0. A cone is solid if it contains an open ball
in R × R, and pointed if K ∩ −K = {(0, 0)}. A cone is
proper if it is closed, pointed, solid, and convex. It is easy
to see that a proper cone is uniquely identified as the set of
nonnegative linear combinations of two linearly independent
vectors v1, v2 ∈ R2, called the generating vectors of the
cone. In the following we will often consider the intersection
of a cone K with Z×Z; whenever it will be clear from the
context, we will be denoting this set with K instead of with
K ∩ Z× Z.

We denote with P1 the closed unit polydisk:

P1 := {(α, β) ∈ C× C | |α| ≤ 1, |β| ≤ 1}

Given a set S ⊂ Z × Z, its (discrete) convex hull is the
intersection of the convex hull of S (seen as a subset of
R × R) and of Z × Z. In the following we will also refer
to the (discrete) convex hull associated with an element p ∈
R[ξ1, ξ2, ξ−1

1 , ξ−1
2 ], meaning the (discrete) convex hull of the

support of p, i.e. the set

supp(p) := {(h, k) ∈ Z× Z | the coefficient of ξh1 ξ
k
2

in p(ξ1, ξ2, ξ−1
1 , ξ−1

2 ) is 6= 0}

We denote with WT the set consisting of all trajectories
from T to W. We denote with σ1, σ2 the shift operators
defined as

σi : (Rw)Z×Z → (Rw)Z×Z
i = 1, 2

(σ1w)(x1, x2) := w(x1 − 1, x2)
(σ2w)(x1, x2) := w(x1, x2 − 1)
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II. BACKGROUND MATERIAL

A. 2-D behaviors

We call B a linear discrete-time complete 2-D behavior if
it is the solution set of a system of linear, constant-coefficient
difference equations with two independent variables; more
precisely, if B is the subset of (Rw)Z×Z consisting of all
solutions to

R(σ1, σ2)w = 0 (2)

where R ∈ Rr×w[ξ1, ξ2, ξ−1
1 , ξ−1

2 ]. We call (2) a kernel
representation of B. We denote the set consisting of all
linear discrete-time complete 2-D behaviors with w external
variables with Lw2.

B ∈ Lw2 is autonomous if there exists a proper cone K ⊂
R× R such that[
w1, w2 ∈ B and w1|K∩Z×Z = w2|K∩Z×Z

]
=⇒ [w1 = w2]

Such a cone K∩Z×Z will be called a proper characteristic
cone for B. Intuitively, we can look at the characteristic cone
K as the “past”; then a behavior is autonomous if any two
trajectories whose values in the past coincide, are equal. Note
that this implies that the behavior has no “inputs”, see [14].

Proper characteristic cones play an important role in the
definition of stability of a 2-D system according to Valcher,
and we now proceed to characterize them algebraically,
following closely the original source [15]. The following
result holds.

Theorem 1: Let B ∈ Lw2 be autonomous, and let B =
ker R(σ1, σ2) for some R ∈ Rr×w[ξ1, ξ2, ξ−1

1 , ξ−1
2 ]. Assume

there exist H ∈ Rr×w[ξ1, ξ2, ξ−1
1 , ξ−1

2 ] right factor prime, and
S ∈ Rw×w[ξ1, ξ2, ξ−1

1 , ξ−1
2 ] nonsingular, such that R = H ·S.

Moreover, denote δ := det(S) ∈ R[ξ1, ξ2, ξ−1
1 , ξ−1

2 ]. The
following statements are equivalent:

1) The proper cone K is characteristic for B;
2) The proper cone K is characteristic for ker S(σ1, σ2);
3) The proper cone K is characteristic for ker δ(σ1, σ2);
4) The discrete convex hullHδ of δ satisfies the following

two conditions:
4a. −Hδ ⊂ K;
4.b. −Hδ ⊂ K intersects the generating lines of

K only in (0, 0).
If B is autonomous, and B = ker R(σ1, σ2) for some

square nonsingular Laurent matrix R, then B is called a
square autonomous behavior; this is the class of behaviors
we will be considering in this paper.

Intuitively, stability of an autonomous behavior corre-
sponds to the trajectories dying out in some “future cone”,
given arbitrary initial conditions in the “past characteristic
cone”; note also that given a characteristic cone K, it is
natural to consider as “future cone” the cone −K. However,
in the square autonomous case the set of points in which a
trajectory can be freely assigned is infinite, and consequently
it may happen that particular choices of the “initial condi-
tions” correspond to trajectories of the behavior which do
not die out within a proper characteristic cone K: a sharper
definition is in order. To state it, we need to introduce the

following notation: given a proper cone K, we denote with
δ(−K) the boundary of −K, i.e. the generating lines of
−K. Moreover, we denote with (δ(−K))n the set consisting
of the points of Z × Z whose distance from δ(−K) is less
than n:

(δ(−K))n := {(i, j) ∈ Z× Z |
min{|i− h|+ |j − k| with (h, k) ∈ δ(−K)} ≤ n}

The definition of K-stable square autonomous behavior is as
follows.

Definition 2: Let K be a proper characteristic cone such
that −K is characteristic for a square autonomous behavior
B ∈ Lw2. B is K-stable if there exists some positive integer
n such that

[w ∈ B, w bounded in (δ(−K))n]

=⇒

[
lim

(i, j) ∈ K
|i| + |j| → +∞

‖w(i, j)‖ = 0

]
The following is an algebraic characterization of K-stability
; in order to avoid cumbersome details, in the following we
often emulate [15], and only consider proper cones generated
by unimodular integer matrices, which are then isomorphic
to the first orthant of Z × Z, in the sense that there exists
a nonsingular square matrix T : Z × Z → Z × Z such that
T (K) is the first orthant.

Theorem 3: Let B = ker S(σ1, σ2) be a square au-
tonomous behavior, and let K be a proper characteristic cone
for B which is T -isomorphic to the first orthant. Denote
δ := det(S), and assume w.l.o.g. that Hδ ⊂ K and that
Hδ ∩ δK = {(0, 0)}. Denote with (t1(`,m), t2(`,m)) the
image of (`,m) ∈ Z× Z under T . Define

ST (ξ1, ξ2) :=
∑
`,m

S`,mξ
t1(`,m)
1 ξ

t2(`,m)
2

Then the following two statements are equivalent:
1) B is K-stable;
2) The Laurent variety of det ST does not intersect the

closed unit polydisk P1.
Proof: See Theorem 3.6 of [15].

B. Bilinear- and quadratic difference forms for 2-D systems

In the pioneering paper [16], it has been shown that
bilinear- and quadratic functionals of 1-D continuous-time
system variables and their derivatives can be efficiently
represented by two-variable polynomial matrices; this has
been extended to the 1-D discrete-time case in [7]. In order to
represent bilinear- and quadratic functionals of the variables
of continuous-time 2-D-systems, 4-variable polynomial ma-
trices are used, see [13]. We now examine the extension of
quadratic difference forms to the 2-D discrete setting; some
preliminary results in this sense have been obtained in [8].

In order to simplify the notation, define the multi-indices
k := (k1, k2), l := (l1, l2), and the notation ζ := (ζ1, ζ2)
and η := (η1, η2), and define ζkηl := ζk11 ζk22 ηl11 η

l2
2 .

Let Rw1×w2 [ζ, η] denote the set of real w1×w2 polynomial
matrices in the four indeterminates ζi and ηi, i = 1, 2; that
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is, an element of Rw1×w2 [ζ, η] is of the form

Φ(ζ, η) =
∑
k,l

Φk,lζ
kηl

where Φk,l ∈ Rw1×w2 ; the sum ranges over the nonnegative
multi-indices k and l, and is assumed to be finite. Such ma-
trix induces a bilinear difference form (BDF in the following)
LΦ

LΦ : (Rw1)Z×Z × (Rw2)Z×Z −→ (R)Z×Z

LΦ(v, w) :=
∑
k,l

(σkv)>Φk,l(σlw)

where the k-th shift operator σk is defined as σk := σk11 σk22 ,
and analogously for σl.

A 4-variable polynomial matrix Φ(ζ1, ζ2, η1, η2) ∈
Rw×w[ζ, η] is called symmetric if Φ(ζ1, ζ2, η1, η2) =
Φ(η1, η2, ζ1, ζ2)>, concisely written as Φ(ζ, η) = Φ(η, ζ)>.
In this case, Φ induces also a quadratic functional

QΦ : (Rw)Z×Z −→ (R)Z×Z

QΦ(w) := LΦ(w,w)

We will call QΦ the quadratic difference form (in the
following abbreviated with QDF) associated with the four-
variable polynomial matrix Φ.

In this paper we also consider “vectors” of 4-variable
polynomial matrices Ψ ∈ (Rw1×w2 [ζ, η])2, i.e.

Ψ(ζ, η) =
[

Ψ1(ζ, η)
Ψ2(ζ, η)

]
=: col(Ψi(ζ, η))i=1,2

with Ψi ∈ Rw1×w2 [ζ, η]. Ψ induces a vector bilinear differ-
ence form (abbreviated VBDF), defined as

LΨ : (Rw1)Z×Z × (Rw2)Z×Z −→ (R2)Z×Z

LΨ(v, w) :=
[
LΨ1(v, w)
LΨ2(v, w)

]
= col(LΨi(v, w))i=1,2 .

Finally, we introduce the notion of (discrete) divergence
of a VBDF. Given a VBDF LΨ = col(LΨ1 , LΨ2), we define
its divergence as the BDF defined by

(∇LΨ)(w1, w2) := (LΨ1(w1, w2)− σ1(LΨ1(w1, w2)))
+ (LΨ2(w1, w2)− σ2(LΨ2(w1, w2))) (3)

for all w1, w2. If LΦ is the divergence of LΨ =
col(LΨ1 , LΨ2), it is straightforward to verify that in terms
of the 4-variable polynomial matrices associated with the
BDF’s, their relationship is

Φ(ζ1, ζ2, η1, η2) =(1− ζ1η1)Ψ1(ζ1, ζ2, η1, η2)
+(1− ζ2η2)Ψ2(ζ1, ζ2, η1, η2) ,

written concisely as Φ = div col(Ψ1,Ψ2).
The definition and properties described above can be

adapted to a vector quadratic difference form (VQDF) in
a obvious manner.

We now introduce the notion of positivity of a QDF.
We define a QDF Q∆ induced by a four-variable poly-
nomial matrix ∆ ∈ Rw×w[ζ1, ζ2, η1, η2] to be nonnegative

if Q∆(w(x1, x2)) ≥ 0 for all (x1, x2) ∈ Z × Z and for
all w ∈ (Rw)Z×Z. This will be denoted with Q∆ ≥ 0 or
∆(ζ, η) ≥ 0. We call Q∆ positive, denoted Q∆ > 0 or
∆(ζ, η) > 0, if Q∆ ≥ 0 and Q∆(w(x1, x2)) = 0 for
all (x1, x2) implies w = 0. Often in the following we
will also consider QDFs induced by matrices of the form
∆(e−iω, ζ2, eiω, η2), i.e. matrices in the indeterminates ζ2, η2

with coefficients being polynomials in eiω for some ω ∈ R.
The definition of nonnegativity and positivity in this case is
readily adapted from the above definition.

Finally, we define the equivalence of QDFs along a
behavior. Let B ∈ Lw2 and Φi ∈ Rw×w[ζ1, ζ2, η1, η2], i =
1, 2. Then QΦ1 is equivalent modulo B to QΦ2 , denoted
QΦ1

B= QΦ2 , if QΦ1(w) = QΦ2(w) for all w ∈ B. Now let
B = ker R(σ1, σ2); then it can be shown that QΦ1

B= QΦ2

if and only if there exists X ∈ R•×w[ζ1, ζ2, η1, η2] such that

Φ1(ζ1, ζ2, η1, η2) = Φ2(ζ1, ζ2, η1, η2)

+R>(ζ1, ζ2)X(ζ1, ζ2, η1, η2)

+X>(η1, η2, ζ1, ζ2)R(η1, η2)

(see Proposition 10 in [8]). In this case we also write

Φ1(ζ1, ζ2, η1, η2) = Φ2(ζ1, ζ2, η1, η2) mod R ,

or Φ1(ζ1, ζ2, η1, η2)− Φ2(ζ1, ζ2, η1, η2) = 0 mod R.

III. THE 2-D POLYNOMIAL LYAPUNOV
EQUATION

Having introduced the definition of 2-D stability in section
II-A and 2-D bilinear- and quadratic difference forms in
section II-B, in this section we show how the 2-D Lyapunov
equation allows to give a necessary and sufficient condition
for an autonomous square behavior B ∈ Lw2 to be asymp-
totically stable. In this section we use the result of Theorem
3, and we deal only with stability with respect to the proper
cone consisting of the first orthant of Z × Z, denoted with
K0 in the following.

We begin this section with a straightforward but important
refinement of Proposition 3.5 of [15].

Proposition 4: Let B ∈ Lw2 be square and autonomous,
and let B = ker S(σ1, σ2) with S ∈ Rw×w[ξ1, ξ2] nonsingu-
lar. Assume that δ := det S is such that Hδ is a subset of
K0, the first orthant of Z× Z, that intersects the coordinate
axes only in the origin. Then the following statements are
equivalent:

1) B is K0-stable;
2) For all ω ∈ R, the polynomial δ(ejω, ξ2) has all its

roots outside of the closed unit disk {z2 ∈ C | |z2| ≥
1}, and the polynomial δ(ξ1, ejω) has all its roots
outside of the closed unit disk {z1 ∈ C | |z1| ≥ 1}.

Proof: The proof follows from Theorem 3 and from
the equivalence of statements i) and iv) in Proposition 3.1
of [6].

Proposition 4 shows that the stability of a square au-
tonomous behavior can be checked by ascertaining the
stability of two families of complex polynomials depending
on the parameter ω ∈ R. In the scalar case, Geronimo and
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Woerdeman in [6] use an ω-dependent complex Hermitian
polynomial analogous to the Bézoutian used in the case of
univariate polynomials (see Chapter 8 of [3]) in order to
do this. We now generalize their result to the multivariable
case, and state an equivalent condition in terms of a pair of
quadratic difference forms satisfying the 2-D PLE.

In order to do this, we need to introduce yet some more
notation; in the following we denote with Per2 ⊂ (Rw)Z×Z

the set consisting of all trajectories v ∈ (Rw)Z×Z such that
the restriction of v to the lines {(i, j) | j ∈ Z} is periodic
for all i ∈ Z, i.e.

Per2 :=
{
v ∈ (Rw)Z×Z | v(i, ·) ∈ (Rw)R is periodic
for all i ∈ Z}

and analogously we define

Per1 :=
{
v ∈ (Rw)Z×Z | v(·, j) ∈ (Rw)R is periodic
for all j ∈ Z} .

The following is the main result of this paper, and shows how
the 2-D PLE arises naturally in the study of the stability of
2-D square autonomous behaviors.

Theorem 5: Let B be a 2-D square autonomous linear
behavior, and let B = ker R(σ1, σ2). Then the following
statements are equivalent:

1) B is asymptotically stable.
2) There exists a VQDF QΦ = col(QΦ1 , QΦ2) and a QDF

Q∆ such that

(2a) ∇QΦ
B= −Q∆;

(2b) QΦ1(w), Q∆(w) > 0 for all w ∈ B ∩ Per2,
and QΦ2(w), Q∆(w) > 0 for all w ∈ B ∩
Per1.

3) There exist Φ = col(Φ1,Φ2) and ∆, with Φ1,Φ2, Y ∈
Rw×w[ζ1, ζ2, η1, η2], ∆ ∈ Rw×w

s [ζ1, ζ2, η1, η2] such that
(3a) (1− ζ1η1)Φ1(ζ1, ζ2, η1, η2)

+(1− ζ2η2)Φ2(ζ1, ζ2, η1, η2)
= −∆(ζ1, ζ2, η1, η2)
+R(ζ1, ζ2)>Y (ζ1, ζ2, η1, η2)
+Y (η1, η2, ζ1, ζ2)>R(η1, η2);

(3b) Φ1(ζ1, ζ2, η1, η2)
B∩Per2
> 0,

Φ2(ζ1, ζ2, η1, η2)
B∩Per1
> 0,

∆(ζ1, ζ2, η1, η2)
B∩Peri
> 0, i = 1, 2.

Proof: The equivalence of statements (2) and (3)
follows by standard arguments of the calculus of QDFs;
consequently we only prove the equivalence of (3) and (1)
in the following.

In order to show that (3) =⇒ (1), we proceed as follows.
First, note that in the following we consider behaviors
B whose trajectories take values in Cw, obtained e.g. by
complexification of real behaviors B′:

[w ∈ B] ⇐⇒ [the real and the imaginary part of w
belong to B′] .

Now let (λ, µ) ∈ C2 be in the characteristic variety of
R, which we denote with C(R) in the following. Since

C(R) = C(R′) for any polynomial matrix R′ inducing a
kernel representation of B, in the following we will also
speak without confusion about the characteristic variety of
the behavior B, denoted with C(B). Since (λ, µ) ∈ C(B),
there exists a vector v ∈ Cw (which depends on λ and µ)
such that the trajectory w defined by w(x1, x2) := v λx1 µx2

belongs to B. It is easy to see that v is such that R(λ, µ)v =
0, i.e. v ∈ ker R(λ, µ).

We now prove that if µ lies on the unit circle, i.e. µ = eiω

for some ω ∈ R, then | λ |> 1. Once this will have been
established, statement (1) follows from Proposition 4.

Let ζ1 = λ, η1 = λ, ζ2 = µ = e−iω , η2 = µ = eiω

in (3a), and multiply the resulting expression on the left
by v> and on the right by v. It follows from the fact that
v ∈ ker R(λ, µ) that

(1− λλ) v>Φ1(λ, e−iω, λ, eiω)v = −v>∆(λ, e−iω, λ, eiω)v

The right-hand side of this equation is strictly negative; on
the left-hand side it holds that v>Φ1(λ, e−iω, λ, eiω)v > 0,
and consequently it follows that 1− λλ < 0. An analogous
argument is used when w(t1, t2) = v eiωt1µt2 . This proves
the claim.

The proof of (1) =⇒ (3) will be achieved by showing
the existence of matrices Φi ∈ Rw×w

S [ζ1, ζ2, η1, η2], i = 1, 2,
and ∆ ∈ Rw×w

S [ζ1, ζ2, η1, η2] such that (3a) − (3b) hold. In
this way we will also produce a solution of the 2-D PLE,
equation (3a).

The two-variable polynomial matrix R can be seen as
a polynomial matrix in one of the two variables, with
coefficients being polynomial matrices in the other one; that
is, R(ξ1, ξ2) =

∑L1
i=0Ri(ξ2)ξL1

1 =
∑L2
i=0R

′
i(ξ1)ξL2

2 , where
Li is the highest power of ξi in R, i = 1, 2. Now define the
four-variable polynomial matrix

Γ(ζ1, ζ2, η1, η2) := R(ζ1, ζ2)>R(η1, η2) (4)
− ζL1

1 ζL2
2 ηL1

1 ηL2
2 R(η−1

1 , η−1
2 )>R(ζ−1

1 , ζ−1
2 ) ,

the two-variable polynomial matrix Y (ξ1, ξ2) := 1
2R(ξ1, ξ2)

and the four-variable one ∆(ζ1, ζ2, η1, η2) :=
ζL1
1 ηL1

1 ζL2
2 ηL2

2 R(η−1
1 , η−1

2 )>R(ζ−1
1 , ζ−1

2 ). It is a matter of
straightforward verification to see that

Γ(ζ1, ζ2, η1, η2) = −∆(ζ1, ζ2, η1, η2)
+Y (ζ1, ζ2)>R(η1, η2) +R(ζ1, ζ2)>Y (η1, η2) .

From (4) it follows that ∂Γ = 0, where the “del” operator ∂
is defined as

∂ : Rw1×w2 [ζ1, ζ2, η1, η2] −→ Rw1×w2 [ξ1, ξ2, ξ−1
1 , ξ−1

2 ]
∂Φ(ξ1, ξ2) := Φ(ξ−1

1 , ξ−1
2 , ξ1, ξ2) .

We now prove the following Lemma, which allows us to
conclude that Γ is the divergence of some VQDF.

Lemma 6: A BDF LΦ is the divergence of some VBDF
LΨ if and only if ∂Φ(ξ1, ξ2) = 0.

Proof: That the condition ∂Φ(ξ1, ξ2) = 0 is nec-
essary follows immediately from the definition of discrete
divergence, and its expression in terms of four-variable
polynomial matrices. We now prove sufficiency. Observe first
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that the polynomials 1− ζ1η1 and 1− ζ2η2 form a Gröbner
basis for the ideal generated by them (see [1] for a thorough
introduction to Gröbner bases). Now let p ∈ R[ζ1, ζ2, η1, η2],
and consider that the normal form of p modulo 1 − ζ1η1

and 1− ζ2η2 only involves linear combinations of the terms
ζk, ηk, k = 1, 2, and ζiηk, for i, k = 1, 2 with i 6= k.
Observe that the image under ∂ of this normal form is
zero if and only if the coefficients of the linear combination
are all zero. Conclude that if p ∈ R[ζ1, ζ2, η1, η2] is such
that ∂p = 0, then necessarily its normal form modulo
1 − ζ1η1 and 1 − ζ2η2 is zero, i.e. there exist polynomials
ϕi ∈ R[ζ1, ζ2, η1, η2], i = 1, 2, such that p(ζ1, ζ2, η1, η2) =
(1−ζ1η1)ϕ1(ζ1, ζ2, η1, η2)+(1−ζ2η2)ϕ2(ζ1, ζ2, η1, η2). This
argument can be extended entrywise to polynomial matrices.
This concludes the proof.

We resume the proof of the implication (1) =⇒ (3)
of Theorem 5. Conclude from Lemma 6 that there ex-
ists Φ = col(Φ1,Φ2) ∈ R2w×w[ζ1, ζ2, η1, η2] such that
div Φ(ζ1, ζ2, η1, η2) = Γ(ζ1, ζ2, η1, η2). This proves (3a).

In order to prove (3b) we proceed as follows. First, note
that

(1− ζ1η1)Φ1(ζ1, e−iω, η1, e
iω) = −∆(ζ1, e−iω, η1, e

iω)
+R(ζ1, e−iω)>Y (η1, e

iω) + Y (ζ1, e−iω)R(η1, e
iω).(5)

Following [9], [10] (see equation (4) of [10]) we call (5) a ω-
dependent 1-D two-variable polynomial Lyapunov equation.

Now from Proposition 4 it follows that since B is K0-
stable, for all ω ∈ R the polynomial det R(ξ1, eiω) is
anti-Schur, i.e. all its roots have modulus greater than one.
Consequently, from the fact that

∆(ζ1, e−iω, η1, e
iω) = ζL1

1 ηL1
1 R(η−1

1 , eiω)>R(ζ−1
1 , e−iω)

is a “square” it follows that ∆(ζ1, e−iω, η1, e
iω) ≥ 0

for all ω ∈ R. Use the fact that det ξL1
1 R(ξ−1

1 , eiω) is

Schur in order to conclude that ∆(ζ1, e−iω, η1, e
iω)

B∩Per2
>

0. Now apply Theorem 1 of [9] to conclude that

Φ1(ζ1, e−iω, η1, e
iω)

B∩Per2
≥ 0. In order to prove that

Φ1(ζ1, e−iω, η1, e
iω)

B∩Per2
> 0, assume by contradiction that

there exists a trajectory in B ∩ Per2 along which the QDF
induced by Φ1(ζ1, e−iω, η1, e

iω) is zero; then from (5) it
follows that also the QDF induced by ∆(ζ1, e−iω, η1, e

iω)
is zero along the same trajectory, a contradiction with the

result ∆(ζ1, e−iω, η1, e
iω)

B∩Per2
> 0 established previously.

This proves half of the claim (3b). The other half is proved
following a similar argument. This concludes the proof of
the claim.

The VQDF Φ = col(Φ1,Φ2) and the QDF ∆ given in the
proof of Theorem 5 can be considered as an ω-parametrized
2-D discrete-time version of the multivariable Bézoutian

R(ζ)>R(η)−R(−η)>R(−ζ)
ζ + η

used in analyzing stability of 1-D continuous-time systems,
see [4]. In the single-variable (i.e. w = 1) case, stability

conditions based on the positivity of the coefficient matrix of
an ω-dependent Bézoutian have been obtained by Geronimo
and Woerdeman in [5], [6]; in order to see that the result of
Theorem 5 is more than just a generalization of those results
to the multivariable case, consider the following example.

Example 7: Consider the system described in kernel form
by the polynomial

p(ζ1, ζ2, η1, η2) := 1 +
1
2
ξ1 +

1
2
ξ2 +

1
2
ξ1ξ2

The Bézoutian B(ζ1, ζ2, η1, η2) can be shown to be the
divergence of the VQDF induced by the two polynomials

Φ1(ζ1, ζ2, η1, η2) :=
1
2

(η2 + ζ2 + 3η2ζ2)

Φ2(ζ1, ζ2, η1, η2) :=
1
4

(3 + η1 + ζ1) .

It is easy to see that

Φ1(ζ1, e−iω, η1, e
iω) =

1
2

(3 + 2 cos(ω))

=Φ2(e−iω, ζ2, eiω, η2) > 0

for all ω ∈ R: the system is stable.
We now compute another Lyapunov functional for

ker p(σ1, σ2). Define first the two-variable polynomial

∆′(ζ1, ζ2, η1, η2) := 1 +
1
4

(ζ1 + η1 + ζ2 + η2 + ζ1η1 + ζ2η2) .

Since ∆′(ζ1, ζ2, η1, η2) can be rewritten as

∆′(ζ1, ζ2, η1, η2) =
1
2

+
1
4

(1+ζ1)(1+η1)+
1
4

(1+ζ2)(1+η2),

we have

∆′(ζ1, e−iω, η1, e
iω) > 0 and ∆′(e−iω, ζ2, eiω, η2) > 0

for all ω ∈ R. Now define

Φ′1(ζ1, ζ2, η1, η2) :=
1
4

(1 + ζ2)(1 + η2) +
1
4

Φ′2(ζ1, ζ2, η1, η2) :=
1
4

(1 + ζ1)(1 + η1) +
1
4

and observe that

Φ′1(ζ1, e−iω, η1, e
iω) =

1
4
| 1 + eiω |2 +

1
4

=Φ′2(e−iω, ζ2, eiω, η2) > 0

for all ω ∈ R. It is a matter of straightforward verification
to check that with these positions,

1
4

[
(1 + ζ2)(1 + η2) + 1
(1 + ζ1)(1 + η1) + 1

]
is a Lyapunov function for B = ker p(σ1, σ2) with diver-
gence equal to −∆′(ζ1, ζ2, η1, η2) along B.

The issue of how to efficiently solve the general 2-D PLE
is a matter of ongoing research. In the 1-D case, an algorithm
to solve the PLE has been presented in [11]; it is a matter
of current investigation whether this procedure can inspire
similar schemes for the solution of the 2-D PLE.
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IV. CONCLUSIONS

The main result of this paper is Theorem 5, which states
necessary and sufficient conditions for the asymptotic stabil-
ity of a “square” 2-D behavior in the sense defined in [15].
In these stability conditions, an essential role is played by
the 2-D polynomial Lyapunov equation (1). Current research
efforts are directed at devising algorithms for solving the 2-D
PLE in an efficient way.
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