Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems — MTNS 2010« 5-9 July, 2010 - Budapest, Hungary

A polynomial-algebraic approach to Lyapunov stability analysis
of higher-order 2-D systems

Paolo Rapisarda, Kiyotsugu Takaba and Chiaki Kojima

Abstract— We introduce a four-variable polynomial matrix
equation which plays an essential role in the stability analysis
of discrete 2-D systems and in the computation of Lyapunov
functions for such systems; we call this the 2-D polynomial
Lyapunov equation (2-D PLE). We also give necessary and suf-
ficient conditions for the stability of “square” 2-D systems based
on solutions of the 2-D PLE satisfying additional properties.

I. PROBLEM STATEMENT

The central object of interest in this paper is the following
four-variable polynomial matrix equation:

(1 —=Cuim)Pi(CryCasmsm2)

+(1 = Cam2) Wa(Cr, G2, 11, m2)

= —A(C1,Coym, ) + Y (11,12, C1, G2) T R(m1,m2)
+ R(C1, )Y (¢ G me) (1)

where A and R are given square polynomial matrices respec-
tively in the four indeterminates (7, (2,71, 72 and in the two
variables &1, £2; and ¥;, 4 = 1,2 and Y are unknown square
polynomial matrices in the four indeterminates (1, (2, 11, 72-
For reasons which are made apparent later on in the paper,
we call (1) the (discrete) 2-D polynomial Lyapunov equation,
often abbreviated as 2-D PLE in the following. The purpose
of this paper is to show how the 2-D PLE arises in the context
of stability analysis of discrete 2-D systems, and to discuss its
role in the computation of Lyapunov functions for discrete 2-
D systems. The setting for our investigation is the behavioral
approach to 2-D systems pioneered in [14] and successively
studied by several other authors; moreover, we use the notion
of stability for discrete 2-D systems introduced in [15].
In order to make the paper as self-contained as possible,
we will summarize the essential background concepts and
definitions in section II. In section III we state the main
result of this paper, a characterization of 2-D stability in
terms of solutions W1, ¥y to the equation (1) satisfying some
additional properties. The paper ends with some concluding
remarks, contained in section IV.

Notation: We denote with R*™*¥[¢,&] (respectively,
R¥¥¥[£), &, 671,657 Y]) the set of all r x w matrices with
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entries in the ring R[¢1,&] of polynomials in 2 inde-
terminates, with real coefficients (respectively in the ring
R[¢1, &, & 1, €51 of Laurent polynomials in 2 indetermi-
nates with real coefficients). Given a nonzero Laurent pol-

ynomial p(&1,82) = Y2, Peméi& € R[&1, 60,670,671,
the Laurent variety of p is defined as

Vi(p) :={(a,8) e Cx C|aB #0,p(a, 3) = 0}

This definition extends to sets Z of Laurent polynomials, with
V(Z) being the intersection of the Laurent varieties of all
polynomials in the set. Let R € R*™¥¥[¢1, &y, 671, €571 have
full column rank (as a rational matrix); then its characteristic
ideal is the ideal of R[{;, o] generated by the determinants
of all w x w minors of R, and its characteristic variety is the
set of roots common to all polynomials in the ideal. Further
properties and definitions, such as the concept of right factor-
prime two-variable polynomial matrix used in the following,
can be found in [2].

A set £ € R x R is called a cone if ol C K for
all @ > 0. A cone is solid if it contains an open ball
in R x R, and pointed if X N —K = {(0,0)}. A cone is
proper if it is closed, pointed, solid, and convex. It is easy
to see that a proper cone is uniquely identified as the set of
nonnegative linear combinations of two linearly independent
vectors v1,vs € R2?, called the generating vectors of the
cone. In the following we will often consider the intersection
of a cone I with Z x Z; whenever it will be clear from the
context, we will be denoting this set with K instead of with
KNZ x Z.

We denote with P; the closed unit polydisk:

Pri={(a.f) €Cx C|lal < 1,|8| < 1)

Given a set S C Z X Z, its (discrete) convex hull is the
intersection of the convex hull of S (seen as a subset of
R x R) and of Z x Z. In the following we will also refer
to the (discrete) convex hull associated with an element p €
R[¢1, &, & 1, €5 1], meaning the (discrete) convex hull of the
support of p, i.e. the set

{(h,k) €Z x Z | the coefficient of gfgg
in p(flv&?agflaggl) is # O}

We denote with W' the set consisting of all trajectories
from T to W. We denote with o1, oo the shift operators
defined as

supp(p) =

it (RY)ZF — (RS i =1,2
(or1w)(x1,x9) := w(xy — 1, 22)
=w

(oqw)(x1,x2) : (x1,29 — 1)



P. Rapisarda et al. - A Polynomial-Algebraic Approach to Lyapunov Stability Analysis of Higher-Order 2-D Systems

II. BACKGROUND MATERIAL
A. 2-D behaviors

We call B a linear discrete-time complete 2-D behavior if
it is the solution set of a system of linear, constant-coefficient
difference equations with two independent variables; more
precisely, if 9B is the subset of (R¥)Z*% consisting of all
solutions to

R(o1,00)w =0 2)

where R € R™¥[¢), &, 671,651 We call (2) a kernel
representation of ‘B. We denote the set consisting of all
linear discrete-time complete 2-D behaviors with w external
variables with £5.

B € L3 is autonomous if there exists a proper cone K C
R x R such that

[wi, wy € B and wy|cnzxz = Waknzxz] = (W1 = wo]

Such a cone KNZ x Z will be called a proper characteristic
cone for ®B. Intuitively, we can look at the characteristic cone
K as the “past”; then a behavior is autonomous if any two
trajectories whose values in the past coincide, are equal. Note
that this implies that the behavior has no “inputs”, see [14].

Proper characteristic cones play an important role in the
definition of stability of a 2-D system according to Valcher,
and we now proceed to characterize them algebraically,
following closely the original source [15]. The following
result holds.

Theorem 1: Let B € LY be autonomous, and let B =
ker R(o1,03) for some R € R¥¥¥[¢y, &y, 671, €571, Assume
there exist H € R¥*¥[¢1, &y, &1, &5 1] right factor prime, and
S € R™¥[¢y, &, &1, & Y] nonsingular, such that R = H - S.

Moreover, denote d := det(S) € R[¢;, &2, &Y, €5 Y. The
following statements are equivalent:

1) The proper cone K is characteristic for ‘B;

2) The proper cone K is characteristic for ker S(o1, 02);

3) The proper cone K is characteristic for ker §(o1,02);

4) The discrete convex hull H; of § satisfies the following

two conditions:
4a. —Hs C K;
4.b. —Hs C K intersects the generating lines of
K only in (0,0).

If % is autonomous, and B = ker R(o1,03) for some
square nonsingular Laurent matrix R, then B is called a
square autonomous behavior; this is the class of behaviors
we will be considering in this paper.

Intuitively, stability of an autonomous behavior corre-
sponds to the trajectories dying out in some “future cone”,
given arbitrary initial conditions in the “past characteristic
cone”; note also that given a characteristic cone /C, it is
natural to consider as “future cone” the cone —K. However,
in the square autonomous case the set of points in which a
trajectory can be freely assigned is infinite, and consequently
it may happen that particular choices of the “initial condi-
tions” correspond to trajectories of the behavior which do
not die out within a proper characteristic cone K: a sharper
definition is in order. To state it, we need to introduce the
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following notation: given a proper cone K, we denote with
d(—K) the boundary of —IK, i.e. the generating lines of
—K. Moreover, we denote with (§(—K))™ the set consisting
of the points of Z x Z whose distance from §(—K) is less
than n:

(O(=K)" :={(i,j) € Z < Z |
min{|i — h| + |j — k| with (h, k) € §(=K)} <n}

The definition of K-stable square autonomous behavior is as
follows.

Definition 2: Let IC be a proper characteristic cone such
that —KC is characteristic for a square autonomous behavior
B € L£5. B is K-stable if there exists some positive integer
n such that

[w € B, w bounded in (§(—K))"]

—
(i,4) € K

lw(@, )| = 0]
lil + 151 — +oo

The following is an algebraic characterization of KC-stability
; in order to avoid cumbersome details, in the following we
often emulate [15], and only consider proper cones generated
by unimodular integer matrices, which are then isomorphic
to the first orthant of Z x 7Z, in the sense that there exists
a nonsingular square matrix 1" : Z X Z — 7Z X 7 such that
T(K) is the first orthant.

Theorem 3: Let B = ker S(o1,02) be a square au-
tonomous behavior, and let /C be a proper characteristic cone
for B which is T-isomorphic to the first orthant. Denote
d = det(5), and assume w.l.o.g. that Hs C K and that
Hs N 0K = {(0,0)}. Denote with (t1(¢,m),t2(¢, m)) the
image of (¢,m) € Z x Z under T'. Define

ST(gla 52) = Z Sf,mfil (evm)£;2(e,m)

lm
Then the following two statements are equivalent:
1) B is K-stable;
2) The Laurent variety of det St does not intersect the
closed unit polydisk P;.

Proof: See Theorem 3.6 of [15]. |

B. Bilinear- and quadratic difference forms for 2-D systems

In the pioneering paper [16], it has been shown that
bilinear- and quadratic functionals of 1-D continuous-time
system variables and their derivatives can be efficiently
represented by two-variable polynomial matrices; this has
been extended to the 1-D discrete-time case in [7]. In order to
represent bilinear- and quadratic functionals of the variables
of continuous-time 2-D-systems, 4-variable polynomial ma-
trices are used, see [13]. We now examine the extension of
quadratic difference forms to the 2-D discrete setting; some
preliminary results in this sense have been obtained in [8].

In order to simplify the notation, define the multi-indices
k := (k1,k2), 1 := (I1,12), and the notation ¢ := ({1, (2)
and 1 := (11,72), and define (*n' := (1 (3 niin.

Let R¥"*¥2[(, 7] denote the set of real w; X wy polynomial
matrices in the four indeterminates (; and 7;, ¢ = 1, 2; that
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is, an element of R¥**"2[(, ] is of the form

(Cn) = Praltn'
k.1

where ®y; € R *¥2; the sum ranges over the nonnegative
multi-indices k and 1, and is assumed to be finite. Such ma-
trix induces a bilinear difference form (BDF in the following)
Ly

Ltb . (Rwl)ZxZ X (RWQ)ZXZ _ (R)ZXZ

Lo (v,w) := Z(ka)—rék,l(alw)
K1

_ k1 _ko
=01 037,

where the k-th shift operator o is defined as o :
and analogously for o!.

A 4-variable polynomial matrix P(¢1,C2,m1,72)
R¥¥[(,n] is called symmetric if ®((1,C2,m,72)
®(n1,m2,C1,C2) ", concisely written as ®(¢,n) = ®(n,¢) .

In this case, ¢ induces also a quadratic functional

Q<I> . (RW)ZXZ SN (R)ZXZ

Qo(w) := Lo (w,w)
We will call Q¢ the quadratic difference form (in the
following abbreviated with QDF) associated with the four-
variable polynomial matrix ®.

In this paper we also consider “vectors” of 4-variable
polynomial matrices ¥ € (R¥1*¥2[¢, n])?, i.e.

\Ill(Cv )
wGm) = { ‘I’z(Caz)

with U; € R">*"2[( n]. ¥ induces a vector bilinear differ-
ence form (abbreviated VBDF), defined as

Ly : (Rwl)ZxZ % (RWQ)ZXZ _ (R2)ZXZ

Lu(w)i= | 720 | = col(La,(0u)icse.

€

} — col (Wi (C, )iz

Finally, we introduce the notion of (discrete) divergence
of a VBDF. Given a VBDF Ly = col(Ly,, Ly, ), we define
its divergence as the BDF defined by

(VLy) (w1, w2) := (L, (w1, w2) — 1 (L, (w1, w2)))
+ (L‘P2 (U)17U)2) - JQ(L‘IJ2 (wla w2))) 3)

for all wi,ws. If Lg is the divergence of Ly
col(Ly,, Ly,), it is straightforward to verify that in terms
of the 4-variable polynomial matrices associated with the
BDF’s, their relationship is

(I)(Ch 42a7717772) :(1 - Clnl)ml(gla C27 7717772)
+(1 - 42772)\:[}2(4-174-2’7717772) 3

written concisely as ® = div col(¥q, Us).

The definition and properties described above can be
adapted to a vector quadratic difference form (VQDF) in
a obvious manner.

We now introduce the notion of positivity of a QDF
We define a QDF Qa induced by a four-variable poly-
nomial matrix A € R"*¥[¢y, (a2, m, 2] to be nonnegative
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if Qa(w(xy,22)) > 0 for all (z1,22) € Z X Z and for
all w € (R¥)Z*Z, This will be denoted with Qo > 0 or
A(¢,nm) > 0. We call Qa positive, denoted Qa > 0 or
A(¢,m) > 0, if Qo > 0 and Qa(w(zy,22)) = 0 for
all (zq1,z2) implies w 0. Often in the following we
will also consider QDFs induced by matrices of the form
A(e™™, (y, €™ ny), i.e. matrices in the indeterminates (o, 72
with coefficients being polynomials in €™ for some w € R.
The definition of nonnegativity and positivity in this case is
readily adapted from the above definition.

Finally, we define the equivalence of QDFs along a
behavior. Let B € L5 and ®; € R ¥[¢y, 2, m, 2], ¢ =
1,2. Then Qg, is equivalent modulo 6 to (Qs,, denoted

Qo, = Qq,. if Qa, (W) = Qg (w) for all w € B. Now let

B = ker R(01,09); then it can be shown that Q4, 2 Qs,
if and only if there exists X € R**¥[(y, (2,71, 72] such that

(Dl(gla <27n1a 772) = (D2(<17 <2a7717n2)
+ R (1, 6) X (G Coomr,y )
=+ XT(7717 72, Cl? CQ)R(nlﬂ 772)

(see Proposition 10 in [8]). In this case we also write

®1(C1, G2, 115 m2) = P2(C1, C2,m1,m2) mod R,
or ®1(C1,C2,m1,m2) — P2(C1,¢2,m1,m2) = 0 mod R.

III. THE 2-D POLYNOMIAL LYAPUNOV
EQUATION

Having introduced the definition of 2-D stability in section
II-A and 2-D bilinear- and quadratic difference forms in
section II-B, in this section we show how the 2-D Lyapunov
equation allows to give a necessary and sufficient condition
for an autonomous square behavior ‘B € Lj to be asymp-
totically stable. In this section we use the result of Theorem
3, and we deal only with stability with respect to the proper
cone consisting of the first orthant of Z x Z, denoted with
Ko in the following.

We begin this section with a straightforward but important
refinement of Proposition 3.5 of [15].

Proposition 4: Let ‘B € L be square and autonomous,
and let B = ker S(o1,02) with S € R"*¥[¢;, &3] nonsingu-
lar. Assume that § := det S is such that Hs is a subset of
Ko, the first orthant of Z x Z, that intersects the coordinate
axes only in the origin. Then the following statements are
equivalent:

1) B is Ky-stable;

2) For all w € R, the polynomial §(e“,&5) has all its

roots outside of the closed unit disk {z3 € C | |22] >

1}, and the polynomial §(£1,e/“) has all its roots
outside of the closed unit disk {z; € C | |21] > 1}.

Proof: The proof follows from Theorem 3 and from

the equivalence of statements ¢) and 4v) in Proposition 3.1

of [6]. |

Proposition 4 shows that the stability of a square au-
tonomous behavior can be checked by ascertaining the
stability of two families of complex polynomials depending
on the parameter w € R. In the scalar case, Geronimo and



P. Rapisarda et al. - A Polynomial-Algebraic Approach to Lyapunov Stability Analysis of Higher-Order 2-D Systems

Woerdeman in [6] use an w-dependent complex Hermitian
polynomial analogous to the Bézoutian used in the case of
univariate polynomials (see Chapter 8 of [3]) in order to
do this. We now generalize their result to the multivariable
case, and state an equivalent condition in terms of a pair of
quadratic difference forms satisfying the 2-D PLE.

In order to do this, we need to introduce yet some more
notation; in the following we denote with Pery C (R¥)Z*Z
the set consisting of all trajectories v € (R¥)Z*% such that
the restriction of v to the lines {(i,7) | j € Z} is periodic
for all s € Z, i.e.

Pery :={v € (R")"*” | v(4,-) € (R")¥ is periodic
for all i € Z}

and analogously we define

Per; :={v € (RMYZXZ | (-, j) € (R¥)® is periodic
forall j € Z} .

The following is the main result of this paper, and shows how
the 2-D PLE arises naturally in the study of the stability of
2-D square autonomous behaviors.

Theorem 5: Let B be a 2-D square autonomous linear
behavior, and let B = ker R(o1,03). Then the following
statements are equivalent:

1) B is asymptotically stable.

2) There exists a VQDF Q¢ = col(Qs,, Qs,) and a QDF

QA such that
(20) VQa = —Qa;
(20) Qa,(w),Qa(w) > 0 for all w € B N Pery,
and Qa,(w),Qa(w) > 0 for all w € BN
Perl.

3) There exist ® = col(®1, Do) and A, with &1, P, Y €

waw[cl, <27 m, ’172}, A € R:Xw[cl’ CQ, m, 7’]2] such that

(3a) (1 —Cim)®1(Ca,s G211, m2)
+(1 = Gan2)P2(C, G2, M1, 12)
= _A(CL C27 m, 772)
+R(C1,¢2) Y (¢, Caymr,y m2)
+Y (1,12, 1, C2);§)(771,772);

(30)  ®1(Cr,Comi,m2) > O,

B NPery

®o(C1,C2,mym2) > 0,

A(Cla<25n1v772) ® >e 0,i= 1,2
Proof: The equivalence of statements (2) and (3)
follows by standard arguments of the calculus of QDFs;
consequently we only prove the equivalence of (3) and (1)
in the following.

In order to show that (3) = (1), we proceed as follows.
First, note that in the following we consider behaviors
B whose trajectories take values in C¥, obtained e.g. by
complexification of real behaviors B’:

[w e B] <= [the real and the imaginary part of w
belong to B'] .

Now let (A, ) € C? be in the characteristic variety of
R, which we denote with C(R) in the following. Since
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C(R) = C(R') for any polynomial matrix R’ inducing a
kernel representation of B, in the following we will also
speak without confusion about the characteristic variety of
the behavior B, denoted with C(*B). Since (A, ) € C(B),
there exists a vector v € C" (which depends on A and pu)
such that the trajectory w defined by w(x1,x2) := v A¥* p*2
belongs to B. It is easy to see that v is such that R(\, u)v =
0, ie. v € ker R(A, p).

We now prove that if y lies on the unit circle, i.e. u = ™
for some w € R, then | A |[> 1. Once this will have been
established, statement (1) follows from Proposition 4.

Let (G = A m=\NG=nn=e" 1 =u=ev
in (3a), and multiply the resulting expression on the left
by v" and on the right by v. It follows from the fact that
v € ker R(A, pt) that

1=\ v d (N, e @ N e“)w=—v AN, e N, e

The right-hand side of this equation is strictly negative; on
the left-hand side it holds that v @1 (X, e™™ ), e™)v > 0,
and consequently it follows that 1 — A\ < 0. An analogous
argument is used when w(ty,t2) = v €™ put2. This proves
the claim.

The proof of (1) = (3) will be achieved by showing
the existence of matrices ®; € RY¥[(1, o, m,7m2], 1 = 1,2,
and A € REY[¢1, (2,1, 7m2) such that (3a) — (3b) hold. In
this way we will also produce a solution of the 2-D PLE,
equation (3a).

The two-variable polynomial matrix R can be seen as
a polynomial matrix in one of the two variables, with
coefficients being polynomial matrices in the other one; that
is, R(&1,&) = Y12 Ri(&)EN = X002 Ri(61)85°, where
L; is the highest power of &; in R, i = 1,2. Now define the
four-variable polynomial matrix

F(Cl,Czﬂh,??z) = R(Cl7C2)TR(171,772)
— OGP g RO e D TR(GT G

the two-variable polynomial matrix Y (¢1, &) := 3 R(&1, &)
and the four-variable one  A((1, 2, m1,72)

UGyt R e D TR(GT, G ). Tt is a matter of
straightforward verification to see that

F(Cla CQ) m, 772) = _A<<17 §27 m, 772)
+Y (C1,G) " R(ni,m2) + R(C1, &) TY (1, m2) -

From (4) it follows that OT" = 0, where the “del” operator 0
is defined as

Ot RMX™2((y, Coom,mo] — R [¢q, 6,671,657
0P (&1,&) = (671,61 6.&)

We now prove the following Lemma, which allows us to
conclude that I" is the divergence of some VQDEF.

Lemma 6: A BDF Lg is the divergence of some VBDF
Ly if and only if 0®(&1,&2) = 0.

Proof: That the condition 9®(&1,&) = 0 is nec-
essary follows immediately from the definition of discrete
divergence, and its expression in terms of four-variable
polynomial matrices. We now prove sufficiency. Observe first

“4)
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that the polynomials 1 — (371 and 1 — (272 form a Grobner
basis for the ideal generated by them (see [1] for a thorough
introduction to Grébner bases). Now let p € R[(1, (a2, 71, 72],
and consider that the normal form of p modulo 1 — (3
and 1 — (272 only involves linear combinations of the terms
Ck» Mk, K = 1,2, and (mg, for i,k = 1,2 with i # k.
Observe that the image under O of this normal form is
zero if and only if the coefficients of the linear combination
are all zero. Conclude that if p € R[(1, (2,m1,792] is such
that dp = 0, then necessarily its normal form modulo
1 —(im and 1 — (279 is zero, i.e. there exist polynomials
vi € R[C1,C2,m, e, @ = 1,2, such that p(C1, C2,m1,7m2) =
(1=Cim) (G, G5 M1, m2)+(1=Cama)2(Cr, G2, 11, 772).- This
argument can be extended entrywise to polynomial matrices.
This concludes the proof. [ ]

We resume the proof of the implication (1) = (3)
of Theorem 5. Conclude from Lemma 6 that there ex-
ists ® = col(®y,Py) € RZ*¥[(y,(a,m1,7m2] such that
div (C1, C2,m,m2) = I'(C1, G2, 11, m2)- This proves (3a).

In order to prove (3b) we proceed as follows. First, note
that

(1= Cm)®1(Croe ™ mr,e™) = —=A(G,e ™™ my,e™)
+ R(Cr, e ™) Y (1, ™) + Y (¢ e ™) R(ny, €).(5)

Following [9], [10] (see equation (4) of [10]) we call (5) a w-
dependent 1-D two-variable polynomial Lyapunov equation.

Now from Proposition 4 it follows that since B is KCo-
stable, for all w € R the polynomial det R(&p,e™) is
anti-Schur, i.e. all its roots have modulus greater than one.
Consequently, from the fact that

Al e ™, e™) =i Riny L e™) TR(GT e™™)

is a “square” it follows that A((y,e™ ™ m,e™) > 0

for all w € R. Use the fact that det &' R(¢71,e™) is
. . BNPer
Schur in order to conclude that A((y,e " ny,e™) >e ’

0. Now apply Theorem 1 of [9] to conclude that
. . BNPers

(I)l(<17672wa,’7176lw) 2
B . BNPery L.

®1(¢r,e ™, m,e™) > 0, assume by contradiction that

there exists a trajectory in B N Pers along which the QDF
induced by ®;((1,e,n1,e™) is zero; then from (5) it
follows that also the QDF induced by A((y,e™ ™ ny,e™)
is zero along the same trajectory, a contradiction with the

_ . mAp
result A(Cy,e "™, m,€e™)

0. In order to prove that

> 0 established previously.
This proves half of the claim (3b). The other half is proved
following a similar argument. This concludes the proof of
the claim.

|

The VQDF @ = col(®y, ®3) and the QDF A given in the
proof of Theorem 5 can be considered as an w-parametrized
2-D discrete-time version of the multivariable Bézoutian

R(¢)"R(n) — R(=n) "R(=()
C+n
used in analyzing stability of 1-D continuous-time systems,
see [4]. In the single-variable (i.e. w = 1) case, stability
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conditions based on the positivity of the coefficient matrix of
an w-dependent Bézoutian have been obtained by Geronimo
and Woerdeman in [5], [6]; in order to see that the result of
Theorem 5 is more than just a generalization of those results
to the multivariable case, consider the following example.

Example 7: Consider the system described in kernel form
by the polynomial

1 1 1
p(C1, G2y, m2) =1+ 551 + 552 + 55152

The Bézoutian B((1,(2,m1,m2) can be shown to be the
divergence of the VQDF induced by the two polynomials

®1(Cr, Gy m2) 1= %(772 + (2 +3m22)
Do (C15 G2, M1, m2) 1= 3(3 +m+G)-
It is easy to see that
(¢, e ™ mp,e™) :%(3 + 2cos(w))
=Py(e™™, (o, ™ 1) > 0

for all w € R: the system is stable.
We now compute another Lyapunov functional for
ker p(o1,02). Define first the two-variable polynomial

1
A(C1,C,m,me) =1+ Z(Cl +m+ G+ n2+Gm + Gene) -

Since A’((y,¢2,m1,72) can be rewritten as

A'(Cr, Gy, 1) = %+i(1+<1)(1+771)+3(1+C2)(1+772)7
we have
A(C, e ny,e™) >0 and A'(e7™ (o, e 1) > 0
for all w € R. Now define
7 (C1s Coyms 12) = i
5 (C1s G2y 12) = 3(1 + ) (1 +m) + i

and observe that

(1+G2)(1+n2) +%

—iw tw 1 iw 1
(I)ll(Che )71, € ):Z|1+€ |2+Z
:(pé(eilwag%ezwﬂh) >0

for all w € R. It is a matter of straightforward verification
to check that with these positions,

LT+ G)(1+mn2)+1
4 1+ G)(1+m)+1

is a Lyapunov function for B = ker p(cq,02) with diver-
gence equal to —A'(¢y, 2, m1,12) along B.

The issue of how to efficiently solve the general 2-D PLE
is a matter of ongoing research. In the 1-D case, an algorithm
to solve the PLE has been presented in [11]; it is a matter
of current investigation whether this procedure can inspire
similar schemes for the solution of the 2-D PLE.
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IV. CONCLUSIONS

The main result of this paper is Theorem 5, which states
necessary and sufficient conditions for the asymptotic stabil-
ity of a “square” 2-D behavior in the sense defined in [15].
In these stability conditions, an essential role is played by
the 2-D polynomial Lyapunov equation (1). Current research
efforts are directed at devising algorithms for solving the 2-D
PLE in an efficient way.
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