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Abstract. Given the significant increase of on-line services that require
personal information from users, the risk that such information is mis-
used has become an important concern. In such a context, information
accountability is desirable since it allows users (and society in general)
to decide, by means of audits, whether information is used appropriately.
To ensure information accountability, information flow should be made
transparent. It has been argued that data provenance can be used as the
mechanism to underpin such a transparency. Under these conditions, an
audit’s quality depends on the quality of the captured provenance in-
formation. Thereby, the integrity of provenance information emerges as
a decisive issue in the quality of a provenance-based audit. The aim of
this paper is to secure provenance-based audits by the inclusion of cryp-
tographic elements in the communication between the involved entities
as well as in the provenance representation. This paper also presents a
formalisation and an automatic verification of a set of security properties
that increase the level of trust in provenance-based audit results.

1 Introduction

In recent years, an increasing number of on-line services have appeared on the
Web, e.g. social networks, governmental sites, on-line selling sites. Most of them
offer personalised services that require private personal information from their
users. By disclosing personal information, users get access to a wide range of
new functionalities, such as recommendations or customisation. But at the same
time, they face the risk that their information is misused.

Within this context, it is desirable to allow users to verify whether their
information was misused or not. In order to achieve this, information usage
should be made transparent so it can be determined later whether the use of such
information is appropriate [1]. In other words, the transparency of information
usage enables information accountability, a property according to which users
can inspect such information usage through a process we refer to as audit.

Weitzner et al. have recognised that provenance, which consists of causal de-
pendencies between data and events explaining what contributed to a result in a
specific state [2], can be used as a mechanism to achieve information accountabil-
ity [1]. Thus, if provenance of data is available, processing becomes transparent



since the provenance of data can be audited to decide whether information was
used in a proper way.

In order to support such a vision, systems should be made provenance-aware
[3] by describing all the steps and data derivations involved in their execution,
in the form of process documentation [4]. Information related to the use of a
specific piece of data can be obtained from process documentation by means of
a provenance query [5], resulting in a provenance graph, which can be analysed
to decide whether information was used appropriately [6].

Against this background, the integrity of the captured process documentation
and the provenance graph derived from it becomes a vital issue in guaranteeing
the quality of a provenance-based audit. Therefore, we address this problem by
developing a framework that secures the communication between the entities
that are part of a provenance-aware system as well as the provenance query re-
sult representation. Specifically, we secure the process documentation created by
entities and the result of provenance queries by including cryptographic elements
in both.

The contributions of this paper are: (i) A secure provenance-aware com-
munication protocol that addresses the integrity of the information exchanged
between entities, (i) A specially designed provenance graph that allows us to
check the integrity of its content and, (i#i) An automatic verification of the
integrity of a Secure Provenance-based Auditing Architecture, which increases
the level of trust in the audit results generated by it.

The remainder of this paper is structured as follows. In Section 2, an overview
of the provenance model this work relies upon is presented. In Section 3, to
address the integrity property in the communication between entities, the secure
communication formalisation, which is related to the Provenance-based Auditing
Architecture [6], is presented. In Section 4, to address the integrity property in a
provenance graph, we presented the Secured Provenance Graph and an algorithm
that checks its integrity. In Section 5, the formal verification of the integrity
property of one protocol related to the Provenance-based Auditing Architecture
is presented and explained. Finally, Section 6 discusses some related work and
Section 7 offers some concluding remarks.

2 Provenance Model Overview

In this section, we present a brief overview of the provenance model and con-
cepts that we use in this paper [7]. We assume that applications capture extra
information describing what occurred during their execution. Such extra infor-
mation is referred to as process documentation, which is recorded in a storage
component called Provenance Store, and queried to obtain the provenance of
some data. Process documentation consists of a set of assertions, created by the
applications’ components. These assertions contain a description of the data ex-
changed by such components and relationships expressing causal dependencies
between them. A provenance graph, which is a view of past execution in which
its nodes are data and its edges are labelled with causal relationships’ names



[8], can be obtained by querying the Provenance Store. If a provenance graph is
later analysed during an audit, it is possible to answer questions regarding past
executions of applications. One important assumption of this model is that all
participants are not malicious and send provenance information faithfully [3].

The information flow of an auditable provenance-aware system consists of
four stages. (1) Recording of process documentation in which components make
assertions related to the actions they perform and record them in a Provenance
Store. (2) Storage of process documentation in which assertions are persistently
stored in a Provenance Store. (3) Querying of process documentation in which
process documentation is queried to obtain a provenance graph. (4) Analysis of
a provenance graph to answer questions regarding the execution of the entities
within the system the result of which is an audit report. Requirements such as
processing of data is compatible with the purpose for which it was captured and
only information to be processed was captured can be checked in the analysis
stage. These requirements are not presented in this paper, however, initial work
related to that analysis can be found in [6]. In order to guarantee a correct
audit report, it is necessary to ensure during all these stages the integrity of the
information in which such an analysis is based.

To do that, we create two mechanisms that guarantee the integrity of as-
sertions. One is used in the recording and storage stages, whereas the other is
used in the querying and analysis stages. The reason for having two separated
mechanisms is to maintain the independence between the creation of distributed
assertions and the querying of them in a centralised repository.

In Section 3, we discuss the mechanism used to secure the recording and stor-
age stages. In Section 4, we explain the mechanism used to secure the querying
and analysis stages.

3 Securing the Recording and Storage Stage

In this section, we discuss how the assertions created by the entities of a prove-
nance-aware system can be secured. The assertions that are recorded during the
recording stage are created from the information exchanged between the partici-
pating entities, i.e. during their communication. If this information is maliciously
altered then, the quality of the audit can be compromised.

In order to address this problem, we need to secure the messages exchanged
between entities and also the assertions that they are sending to the Provenance
Store. To achieve that, we add some cryptographic components to both messages
and assertions.

To exemplify this process, we formalise a secure communication protocol be-
tween the entities that are part of a provenance-based auditing system, specif-
ically we secure the Provenance-based Auditing Architecture presented in [6].
This formalisation process relies on UML sequence diagrams that model a se-
curity protocol enabling the involved entities to apply security functions to the
transferred data and, thus, protect it. To this end, we use the UML extension



UMLsec, which offers a cryptographic notation for secure systems development
[9].

In this formalisation, we assume that entities establish communication by
using the TLS (Transport Layer Security) protocol [10], which allows them to
verify each others’ identities and create a session key used to encrypt/decrypt
exchanged messages. We also assume that entities’ public and private keys are
created and interchanged.

The sequence diagram presented in Section 3.2 models four basic security
characteristics: confidentiality, authentication, non-repudiation and integrity.
Data integrity is the state that exists when computerized data is the same as
that in the source documents and has not been exposed to accidental or malicious
alteration or destruction [11]. If data integrity is not supported by auditable sys-
tems, the quality of an audit report will be affected. Due to the the importance of
this property, we only focus on the verification of it; the remaining characteristics
can be verified using a similar technique.

3.1 Provenance-based Auditing Architecture

The Provenance-based Auditing Architecture, which is presented in [6] and
briefly explained in this section, is depicted in Figure 1. This architecture uses
provenance to audit the correct use of private information to later make ac-
countable the involved entities for any information misuse. The architecture is
inspired by the roles introduced in the Data Protection Act [12], which places
restrictions on how organisations can use personal information that they request
from individuals. It contains the actors Data Controller (DC), who is the indi-
vidual or organisation that decides the purpose for which, and the manner in
which, personal information is to be processed; the Data Subject (DS), who is an
individual whose information is held by DC, and the Data Processor, who is an
individual or organisation that processes personal information on behalf of DC.
In order to make this architecture provenance-aware the Provenance Store (PS)
component is introduced. This component represents a provenance repository
in which provenance information is maintained. Finally, to be able to perform
audits, the Auditor actor is introduced. This actor represents an internal or
external entity that assesses the use of Data Subject’s private information.

Communication’s architecture can be structured in three protocols. The Data
Request protocol represents a request for personal information issued by a Data
Controller to a Data Subject. The Task Request protocol represents a request for
delegating a task issued by a Data Controller to a Data Processor. The Query
Request protocol represents the querying of the assertions stored in the Prove-
nance Store issued by an Auditor to a Provenance Store. The Data Request and
the Task Request protocols model the recording and storage stage. The Query
Request protocol models the querying and analysis stage. As Data Request and
Task Request are similar protocols [6], we focus on the Data Request protocol
in the next section. The query request protocol is introduced in Section 4.



)

=

Query Request
Store.

Auditor _
s ; /Peo%

D= ==

Data Data Data
Subject Controller Processor

Fig. 1. Provenance-based Auditing Architecture

3.2 Data Request Protocol Formalisation

This section presents and explains the Data Request sequence diagram, which
is used in the formalisation of the Data Request protocol.

Data Request Protocol The Data Request protocol represents the process
in which the Data Controller establishes communication with the Data Subject
to request personal information. The process is the following: DC requests some
personal information from DS for a given purpose that indicates the way in which
this personal information can be used, DS authenticates the identity of DC and
after a successful authentication, DS responds with the requested information.
Finally, when DC receives such information, DC acknowledges it reception. At the
same time, both actors (DS and DC) record in the Provenance Store the assertions
related to such a process.

Messages In the Data Request sequence diagram, which is displayed in Figure
2, the messages interchanged between DS and DC are marked with Mi. These
messages use the notation showed in Table 1, Equation (1). To provide confi-
dentiality, non-repudiation and integrity, these messages are symmetrically en-
crypted and signed. These messages also contain a unique identifier id; and a
hash-value h; related to their corresponding assertions, which are used to create
the relationship and the hash-value of the next assertions.

To make this communication protocol provenance-aware, the entities should
record assertions related to the messages they send. Then, the sender of a mes-
sage generates an assertion related to it indicating the relationship with the
previous message. In the sequence diagram, the messages marked with Ai are
assertions recorded by actors in the Provenance Store. These messages use the
notation showed in Table 1, Equation (2) and (3), in which ¢d; is a unique as-
sertion identifier of the cause and id;_; of the effect of an optional relationships
rel in the Provenance Store. These identifiers are created locally by the entities.
d is the data contained in the message to which this assertion is related to. To
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Fig. 2. Data Request UMLsec Sequence Diagram

provide integrity of the information asserted by entities, a hash-value h is in-
troduced. This hash-value is created by the sender to protect the content of the
assertion and its relationship with the previous message. For that reason, this
hash-value includes the hash-value of the previous assertion, which is identified
by the corresponding id. To provide non-repudiation, assertions also contain a
signature, which is computed by the sender. If an assertion related to the first
message of a protocol is created, this assertion does not contain a relationship
and a hash-value then, the Equation (2) is used.

Cryptographic Elements In this protocol, a hash-value h is computed by
a hash function h, and represented as h = h(d). The concatenation operation
is represented by ||. For the signature, the public and private keys of an actor
A are represented by k4 and k:;ll respectively. The signature s is computed
by s = Signk:(h) and the verification of s by Ezt,(s) = h. In this digital
signature scheme, a hash-value of data is signed, so after verifying the signature
the hash-value should be verified too. The encryption of a piece of data d is
computed by = {d}; and the decryption by Decy (x) = d, where k' is a
symmetric key. This symmetric key is created during the execution of the TLS
protocol and it is used to encrypt the information that is considered private.
During the TLS execution the entities also check their identities. Due to space
restriction, messages related to the TLS protocol are not presented. However,
TLS formalisation can be found in [9)].

Guards When this protocol is executed, the guards, which are shown in the
sequence diagram of Figure 2 in rounded rectangles and are identified by the



names guard)s; and guard,;, are used to verify the content of message Mi and
assertion Ai, respectively. The Data Request protocol proceeds by exchanging
six messages between DS, DC and PS. Message M1 contains purpose, which is
symmetrically encrypted using the session key and signed using the private key
of DC. With this message DC requests personal information from DS indicating
the purpose from which this information is captured. When M1 is received, it
is later verified and decrypted, as guardjys; shows. In response, DS sends the
encrypted personal data requested (data) in message M2, which is also signed
by DS. When DC receives M2, the signature is verified and the data is decrypted,
as guard so shows. Then, DC sends an acknowledgement to the reception of the
data to DS in M3, which is also verified and decrypted (even its corresponding
guard is not presented to avoid cluttering the diagram).

Table 1. Auxiliar Functions

secureM sg(d, ids, hi, k', k3') = <{idi||d\|hi}k,,sz‘gnk;1(h(d\|¢di||hi))> (1)

If Mi = secureMsg(d, id;, hi, k', k;l) then
encData(Mi) = {idi||d||hi}r, sign(M1i) = sign, —1 (b(d||id:||h:)), hash(Mi) = h;
A

assertion(ids, d, k3') = <idi, d,(d), sign, 1 (h(id¢|\d))> )
A
If Ai = assertion(id;,d, k") then
cause(Ai) = id;, dataltem(Ai) = d, hash(Ai) = h(d),
sign(Ai) = sign, -1 (h(id:||d)), allData(Ai) = id;||d
A

assertion(id;, d,rel,idi—1, hi, k5 ) = (3)
<idi, d, rel,idi_1,n(d||rel||hs), sign, (h(id¢||d\|rel||idi,1|\hi))>
A

If Ai = assertion(id;,d,rel,id;—1, hi, k;l) then
cause(Ai) = id;, dataltem(Ai) = d, rel(Ai) = rel,
ef fect(Ai) = idi—1, hash(Ai) = h(d||rel||h:),
sign(Ai) = sign, —1 (h(id;||d||rel|lidi—1||h:)), allData(Ai) = id;||d||rel|id;—1]|hi

A

Turning to assertions, Al creates an assertion related to the first message of
the process, then, it does not create a relationship. When A1 is received by PS
the hash-value and the signature contained in it are checked, as guard4; shows.
A2 creates a relationship indicating that data contained in M2 was Acquired
For the purpose contained in M1. Again, when this assertion is received by the
PS, its hash-value and signature are checked according to guardg,. Finally, A3
records a relationship indicating that M3 was sent in acknowledgement to (in Ack
To) M2. Similarly, this assertion is checked according to guard s3. If any of the



guards related to the assertions does not check, it means that the integrity of the
asserted information was compromised. Then, the protocol terminates in a failed
state and the appropriated measures should be carried out. After each guard is
successfully checked, the corresponding assertion is stored in the Provenance
Store.

3.3 Storage Stage

After a successful execution of the protocol, the assertions are stored in the
Provenance Store; we are then able to check the integrity of its complete con-
tent by checking each of the hash-values and signatures of the assertions. That
guarantees that the assertions were not modified during their exchange or during
their storage. This checking can be used to frequently inspect the integrity of the
stored information and take the necessary measures if a problem is found. This
mechanism also prevents internal attacks, such as attacks from the Provenance
Store administrator that can maliciously modify the stored assertions, as the
assertions’ hash-values were created by the architecture entities.

Another important issue is the maliciously insertion of assertions. This can
occur in three different ways: insert a malicious message in the communication
that creates a malicious assertion, an entity creates a malicious assertion to
record it in the Provenance Store, or a malicious assertion is inserted directly
to the Provenance Store. To prevent the first one, we rely on nounce numbers
included in the interchanged messages as part of the TLS protocol [10]. This
technique prevents the insertion of malicious messages, and consequently, the
creation of assertions related to them. To prevent the second one, we assume that
all the entities creating assertions are properly authenticated, so we can trust in
the assertions created by them. In the last one, we assume that the Provenance
Store is properly protected and just entities with the right credentials can record
assertions.

So far, we have secured the assertions created by the entities of our architec-
ture. However, as our architecture can contain various entities that interchange
information at different times, new relationships can be created continuously.
For example, suppose that an entity A produced a result r that is later reused
by an entity B. When A produced r, it was not aware that r would be reused
by another entity. Therefore, A did not create any relationship related to that
reusing process. When B reuses 7, it creates a relationship indicating the way
in which 7 is reused by B. If we obtain the complete provenance graph of r, we
will get two relationships: one created by A, indicating how r was produced, and
one by B, indicating how r was reused. During the querying process, both rela-
tionships are linked by the Provenance Store to the item r. However, as such a
link is created at the querying stage, the mechanism explained in Section 3 does
not secure it. For that reason, we create a different mechanism to protect the
integrity of provenance graphs. This mechanism is presented in the next section.



4 Securing the Querying and Analysis Stage

At this point, we can guarantee that the assertions generated by entities and
stored in the Provenance Store have not been maliciously altered during the
recording and storage stages. Then, they can be queried to obtain provenance
graphs containing the provenance of some data. To maintain the integrity of these
provenance graphs during the querying stage, the Provenance Store includes new
cryptographic components in them. To achieve that, we have developed a Secured
Provenance Graph, which defines a data structure that is included in each node
of a provenance graph and is later used to verify its integrity. By including this
structure, we are protecting the provenance graphs from any malicious alteration
performed by an attacker, including the auditors. In the next section, the Secured
Provenance Graph is presented and explained.

4.1 Secured Provenance Graph

Let us consider a set of node identifiers Id, a set of references to data D, a set of
hash-values H, and a set of relationships’ names R. A Secured Provenance Graph
G = (V, E, Node, Edge) is a directed acyclic graph, where V = 1d, E C Id x Id,
Node : Id — D x H and edges are labelled using the function Edge : E — R.

Let us consider a secured provenance graph G. Each node contains a reference
to a piece of data and a hash-value. Then, given an id € V, we obtain its
corresponding data by the accessor datag(id) and its corresponding hash-value
by the accessor hashg(id). We also obtain the list of ancestors’ identifiers by
the accessor ancestorg(id), which is lexicographically ordered. The hash-value
contained in each node is calculated according to Equation (4).

compHashg(id) = h | datag(id) edge(id, id;) || hashg(id;) [4)

id; Eancestorg (id)

Equation (4) creates a hash-value that is used to verify not only the integrity
of the data and the relationships related to id but also the integrity of the past
of such data. This is achieved by including the hash-values of the id’s ancestor,
which creates an unforgeable reference to the id’s past. The complete Provenance
Secured Graph is protected by the signature of the Provenance Store, so it is not
possible for another entity to reproduce or alter it without being noticed. Then,
after the graph is created, we compute the signature S = Signk;é (@), which is
attached to the corresponding provenance graph.

Figure 3 presents an example of a Secured Provenance Graph, in which nodes
are represented by circles containing references to data d;, the directed edges are
labelled with relationships r; and the hash-values associated with each node are
represented as h;. Note that the Provenance Store does not always have access
to the data that is part of a provenance graph, for that reason the nodes contain
references to data. This way, we also avoid any problems related to the privacy



of this information. Here, we assume that the data itself is protected by access
control techniques implemented in the corresponding data repository.

hs =h(ds) h(» =h(d,) h, =h(d;) hy =h(dy)

h, =h(d,rhyryhirh,)

Fig. 3. Secured Graph Example

It is important to note that the order of the relationships and the hash-values
in each node is a very important issue. In graphs, the outgoing edges of a node
are not ordered. However, if we want to create and later verify the hash-values
contained in such a node, it is necessary to preserve certain order in the checking
process. For example, the hash-value of node ds, which is presented in Figure
3, can be created in two different ways. If we take r5 in first place, we obtain
the hash-value hs = h(dsrshgrehr). But, if we take rg in first place, its hash-
value is hg = h(dsrghrrshe). Both hash-values represent the same node in the
provenance graph. Nevertheless, if we do not know the order in which the hash-
value was created, its checking will be incorrect as h(dsrshgrghy) is different from
h(dsrghrrshg). In our case, the list of ancestors’ identifiers is lexicographically
ordered according to the relationship’s names. Then, the correct hash-value is
hs = h(dsrsherehr). Note that a provenance graph can contain nodes with no
relationships. This does not mean that such nodes do not have a “past”. Instead,
however, it means that the provenance graph does not contain the past of such
nodes because it is not relevant for the analysis stage. If for some reason, a
problem is found in these nodes without explicit past, the auditor can request
to the Provenance Store a provenance graph showing its past. Later, this new
provenance graph can be checked.



4.2 Secured Provenance Graph Integrity Checking

After a provenance graph is received by an auditor, its integrity needs to be
checked. In that way, we can detect any malicious alteration made to it by any
attacker or by the auditor. Hence, in this section, we present the algorithm used
to verify the integrity of a Provenance Secured Graph.

Algorithm 1 Secured Provenance Graph Integrity Checking

1: procedure INTEGRITYCHECK(G :Secured Provenance Graph, kpg : publicKey)
2: id : node identifier € V

3: if Extypg (Signk;é (@)) # h(G) then

4: return 0 > signature does not check
5: end if

6: for all id € G do

7 if hashg(id) # (compHash (id)) then

8: return -1 > integrity is compromised in id
9: end if

10: end for

11: return 1 > Success

12: end procedure

In order to check the integrity of a Secured Provenance Graph, the procedure
INTEGRITYCHECK is introduced in Algorithm 1. Initially, the signature associ-
ated with such a graph is verified using the public key of the Provenance Store,
kps. This signature is used to check that the content of the complete graph was
not altered. If the signature cannot be verified, there is no reason to continue
with the rest of the process, then the algorithm returns O.

If the signature checks, then the algorithm verifies the hash-value of each node
in the graph. This is achieved by visiting each graph’s node to create a new hash-
value by calling the compHashg function, which is presented in Equation (4).
This new hash-value depends on the ancestors’ hash, which in turn depends on
the hash-values of its ancestors. Later, the new hash-value is compared against
the hash-value contained in the node. If they are not the same, the integrity of
this node has been compromised, and the algorithm returns -1. If after visiting all
the nodes no problem is found, the nodes’ integrity is intact, and the algorithm
returns 1.

If the integrity of any of the provenance graph nodes has been compromised,
it will be indicated which one was altered using the corresponding id. Then, the
auditor can access the information related to such id stored in the Provenance
Store to check if it was altered since the recording stage. If none of them were
altered, then an audit process is allowed to begin. In this way, we can guarantee
that the results derived from the analysis of a secured provenance graph are
based on information that has not been maliciously altered.

In our scheme deletion of provenance information is not allowed as, to be
able to perform a successful audit, we need all the assertions that our model



records. Moreover, if one or more assertions are deleted, the presented algorithm
finds an integrity problem, as the hash-values will not check, and not a problem
of deletion of assertions. To avoid that, provenance repositories should imple-
ment appropriate access control techniques. In certain scenarios, deletion is used
to enforce privacy of the information avoiding the identification of a specific
individual through personal data. To support that, instead of deletion we use
anonymisation. This is a technique that uses references to data in provenance
information instead of real data [13]. These references, which are references to
data stored in a database, are solved by accessing such a database. In that way,
we only have access to the anonymised data if we have the right permissions and
credentials.

5 Securing Provenance Based-Audits

In this section, we explain how we check the model of the Provenance-based
Auditing Architecture presented in Section 3.1. The architecture model consist
of three sequence diagrams (Data Request, Task Request and Query Request,
which represents the processes presented in Section 4), which need to be verified
separately. For space restrictions, we only present the verification of the integrity
property in the Data Request sequence diagram presented in Section 3.

To verify that the integrity property is held by the data exchanged in our
sequence diagram, we use UMLsec to create attacks against the modelled pro-
tocol using an adversary model. The adversary model we use here represents a
network attacker that can eavesdrop, modify or insert messages on the commu-
nication channel with malicious intentions, and shows that these attacks fail.
This adversary model relies on an extended Dolev-Yao adversary model [14], in
which an adversary can read messages sent over the communication channel to
include them in its knowledge set to later use them to derive new knowledge. If
the adversary breaks the integrity of the sent messages, then it can modify the
messages without being detected.

The adversary object contains three types of predefined values: secret,
initial knowledge and guard. The values associated with secret describe
the types of data that should be protected from the attacker, in this case they
should hold the integrity property to ensure the integrity of the data. The val-
ues associated with initial knowledge denote the information known by the
attacker beforehand, whereas, guard,, represents the operations to be performed
by the receiver of message n before such a message is received.

Returning to the diagram presented in Section 3, the items purpose, data
and OK are part of the secret type indicating that they need to be protected
during the execution of the process. The initial knowledge set contains the public
keys of the actors in the diagram (kpc and kpg).

In the Data Request sequence diagram, we model the messages exchanged
between entities and the assertions recorded by them in the Provenance Store.
The integrity of the messages is verified by using a digital signatures scheme
(hash) whereas the integrity of assertions is checked by using the included hash-



value and its corresponding checking, which is represented by the guards in the
diagram.

To verify that the integrity property is maintained during the execution of
the protocol modelled in the Data Request sequence diagram, we use the model
checker Viki [15]. Viki is a software that receives as input a UML sequence
diagram and its adversary model to return the possible attacks that can be
performed by the given attacker in the modelled protocol. Viki obtains the secu-
rity requirements from the UMLsec elements and the predefined values used in
sequence diagrams [15]. Then, these requirements are formalised in First-Order
Logic and analysed with automatic theorem provers (e-SETHEO [16] and SPASS
[17]) to find a flaw. If a flaw is found, a Prolog engine can be used to generate
the attack trace of such flaw and solve it. Each modelled sequence diagram and
its corresponding adversary model are executed at the same time to verify if the
defined security properties are held during the whole execution [18]. As in this
context, an attack means that a property is not held [18], we define an integrity
attack as follows.

Definition 1 (Successful Integrity Attack). A sequence of protocol transi-
tions that lead to a piece of data to be modified without being noticed.

Then, the integrity property that Viki checks is the following.

Lemma 1 (Integrity Property). For the Data Request protocol, no successful
integrity attack is possible.

The verification of this lemma relies on the collision resistant nature of the used
cryptographic hash function guaranteeing that an adversary cannot alter the
integrity of a piece of data (messages or assertions) without having a visible
effect in the output. Neither an adversary can insert an entirely new piece of
data without being detected. Then, under the assumption that we use a collision
resistant hash function, we can guarantee the integrity property in the modelled
protocol. After performing the verification using Viki, the outcome is that the
modelled protocol holds the Integrity Property. Therefore, we can guarantee that
the assertions generated by this protocol hold the Integrity Property and can be
used for creating query results.

For each protocol of the Provenance Based-Auditing Architecture four lem-
mas have been derived, which cover the confidentiality, integrity, non-repudiation
and authentication properties. Considering that we model three protocols in our
architecture, then we derived a total of 12 lemmas. Due to the lack of space,
these lemmas are not shown. However, we present the following theorem, which
covers the complete architecture.

Theorem 1 (Secure Provenance Based-Auditing Architecture). A Pro-
venance Based-Auditing Architecture is secure if for the protocols Data Request,
Task Request and Query Request, the Integrity, Confidentiality, Non-Repudiation
and Authentication properties are held.

The verification of this theorem relies on the proofs of each of the property
lemmas derived from each of the protocols of the architecture. If each of the



properties is held by all of the protocols in our architecture, then the theorem
holds.

Since Theorem 1 holds for our architecture, we can conclude that the archi-
tecture is secure and, therefore, the audits performed on it are secure too. Then,
the results derived from these secure audits are based on correct information.
This theorem was verified by using Viki, which concluded that the modelled
architecture is secure.

6 Related Work

Recently, researchers have realised that provenance should be preserved in its
original form while is created, transported, recorded and queried. This way,
we are able to trust in all result derived from its analysis. For that reason,
some researchers [19-24] have focused on presenting and solving the problem of
securing provenance information.

Tan et al. [19] expose and discuss the problem of security provenance in a
SOA-based Provenance System. Here, to ensure accountability, liability and in-
tegrity of assertions, they make use of digital signatures providing non-repudiati-
on and ensuring that assertions are not changed intentionally or accidentally.
Contrary to our work, they discuss basic security issues within provenance sys-
tem and mention some solutions but they do not explain how these solutions can
be implemented in practice. Moreover, this work mostly relies on access control
techniques implemented in the provenance repository.

Hasan et al. [20] present the problem of securing provenance as an issue that
had not been explored but is essential when provenance is used in law, digital
forensic, regulatory compliance and authorships context. They identify integrity,
availability and confidentiality as the main properties that a provenance-aware
system should handle to provide trustworthy provenance. They also base their
analysis in a different provenance model in which provenance is represented by
linear chains. Even the secure provenance problem is introduced and discussed,
a practical approach to implement it is not presented. In another work by Hasan
et al., they present a secure provenance scheme for linear chain provenance rep-
resentation [24]. Such model support confidentiality and integrity of provenance
information. Their scheme is similar to our approach in the sense that they also
include extra cryptographic information to the provenance information to ensure
the mentioned properties. The main difference between their work and ours is
that we protect the complete information flow of a provenance-aware system. We
also are able to protect a non-linear provenance representation (i.e. provenance
graphs as in OPM).

Braun et al. also discuss the securing provenance problem [21]. In this case,
they use a similar provenance model to the one we use, in which provenance
is represented as a causality graph. For that reason, provenance information
differs from traditional data and, therefore, the existing security models used to
protect “traditional information” do not apply to graphs and are not easy to
extend. Thus, new solutions should be developed and specially designed. Their



work focuses on access control and how each of the elements of a causality graph
needs different levels of access control. In this paper, we have developed a new
technique specially designed to protect the integrity of a provenance graph but
focusing on the integrity property and not on access control. However, our work
is compatible with access control techniques.

Chong et al. discuss the problem of confidentiality and privacy of provenance
information from a semantic point of view in a “provenance traces” approach
[23]. They develop semantic definitions and mechanism to enforce these security
properties. They also mention that data and provenance have different security
requirements and, therefore, special mechanism to protect provenance informa-
tion should be designed. Although, in this paper we focus on the integrity of
provenance information, we have also modelled and verified confidentiality and
privacy of provenance information by using cryptographic and anonymisation
techniques, respectively. This work is not presented due to space restrictions but
we expect to publish it later.

Xu et al. present the secure provenance problem from the management point
of view. Here, they present some desirable requirements for secure provenance
management systems and propose a framework that satisfies these requirements
[22]. Integrity is among those requirements for which they adopt a similar ap-
proach to ours: integrity of both data and provenance information is impor-
tant. To ensure that, they propose the creation of a layer in their framework
that maintains the integrity of data and provenance information during stor-
age, transferring and processing. However, unlike us, they do not present any
practical solution to support that property.

Finally, a set of approaches [25-28] used by the database community to sup-
port similar security properties as the ones presented in this paper can comple-
ment our work. Even these approaches were not created to specifically protect
provenance information, the solutions presented to solve security issues (such as
privacy) can be adapted to be implemented in the presented provenance model.

7 Conclusions

Securing provenance is critical for making systems accountable on the Open
Provenance Vision, as described by Moreau [29]. This paper presents a solution
for this. Initially, we have presented a framework that guarantees a set of se-
curity properties in a Provenance-based Auditing Architecture to increase the
level of trust in provenance-based audit results. Due to space restrictions, we
focus on the integrity property and only on one protocol of the architecture,
Data Request. In this protocol, we can guarantee the integrity of the assertions
created by the participant entities as well as the integrity of provenance query
results. We secure them by including cryptographic elements to both that can
later be verified. First, we define a secure communication protocol that ensures
the integrity of the information exchanged between entities and of the assertions
sent to the Provenance Store. This way, we secure the creation and storage of
assertions. Second, to ensure that provenance query results have not been ma-



liciously altered, we design the Secured Provenance Graph, which contains a
specially designed hash-value in its nodes along with the Provenance Store sig-
nature. Later, with the Integrity Checking Algorithm, we can verify the integrity
of this graph.

Finally, we present an automatic verification of the integrity property in
the communication protocol presented in Section 3. This verification allows us
to guarantee the integrity of the information exchanged and the created asser-
tions. Although, just one property and one protocol have been presented, the
complete architecture and more security characteristics have been verified. Our
future work is focused on extending our Secured Provenance Graph to the Open
Provenance Model [8]. We are also working on measuring the overhead generated
by hash-values during the recording of process documentation and the querying
process.
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