An Artificial Experimenter for Enzymatic Response Characterisation


Lovell, Chris, Jones, Gareth, Gunn, Steve and Zauner, Klaus-Peter (2010) An Artificial Experimenter for Enzymatic Response Characterisation. In, 13th International Conference on Discovery Science. , Springer-Verlag, 42-56.

Download

[img] PDF - Published Version
Download (1091Kb)

Description/Abstract

Identifying the characteristics of biological systems through physical experimentation, is restricted by the resources available, which are limited in comparison to the size of the parameter spaces being investigated. New tools are required to assist scientists in the effective characterisation of such behaviours. By combining artificial intelligence techniques for active experiment selection, with a microfluidic experimentation platform that reduces the volumes of reactants required per experiment, a fully autonomous experimentation machine is in development to assist biological response characterisation. Part of this machine, an artificial experimenter, has been designed that automatically proposes hypotheses, then determines experiments to test those hypotheses and explore the parameter space. Using a multiple hypotheses approach that allows for representative models of response behaviours to be produced with few observations, the artificial experimenter has been employed in a laboratory setting, where it selected experiments for a human scientist to perform, to investigate the optical absorbance properties of NADH.

Item Type: Book Section
ISBNs: 9783642161834
Related URLs:
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Electronic & Software Systems
Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Agents, Interactions & Complexity
ePrint ID: 271593
Date Deposited: 24 Sep 2010 15:46
Last Modified: 27 Mar 2014 20:17
Further Information:Google Scholar
ISI Citation Count:1
URI: http://eprints.soton.ac.uk/id/eprint/271593

Actions (login required)

View Item View Item

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics