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In this technical report, we prove two fundamental theorems for an edge detection algorithm 

based on a Bessel filter. 

Theorem 1: The gradient magnitude of the convolved image +→ RRu 2:  calculated by 

ghyxu *),( = is unbounded on the discontinuities of a given piecewise-constant image 

+→Ω Rg :  where Ω and +
R are the image domain and the set of positive real numbers 

respectively. 

Proof: 

Before presenting the proof for this theorem, we briefly explain the structure of the proof. The 

convolution (in Cartesian coordinates) between a modified Bessel function of the second kind 

and zero degree and an input image (a piece-wise constant function) depicted in figure (A) 

(see the end of section A of this document) at the center of coordinate system (point O) is 

evaluated in polar coordinate system. Next, we calculate the directional derivative of this 

convolution (at point O) along a line passing through point O with any given slope between 

( )tan ϑ  and ( )tan ϑ φ+  (see figure (A) in this document). By exploiting the asymptotic 

properties of the Bessel function, we then prove that this directional derivate is infinity 

(unbounded). We immediately conclude that the gradient magnitude of the convolved function 

at point O is also unbounded. To explain the proof in details, let us now consider the piece-

wise constant image shown in figure (A) described in polar coordinates as: 

( )( , ) ( ) ( ) ( )g r aH r H Hθ θ ϑ θ ϑ ϕ= − − − −      (A-1) 

where H(.), a, r, and θ  are the Heaviside step function, a constant representing luminance, 

radial and angular coordinates respectively and [ )πφϑ 2,0, ∈ are constants 



In figure (A), the origin of the coordinate system, point O is placed on the image discontinuity 

forming a sharp corner. We aim to show that the gradient magnitude of u at O (i.e.
O

u∇ ) is 

infinite. If u is the convolved image with the Bessel filter, we evaluate 
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u
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 where 

cos( ) sin( ) n nθ θ= +n i j , ( )φϑϑθ +∈ ,n , and i and j are the unit vectors along x and y axes 

respectively: 
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where h is a Bessel filter defined as: 
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In the above equations, 0K is the modified Bessel function of the second type and zero degree. 

At point O in figure (A) in polar coordinates, we can write: 
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Or 
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On the other hand, 
n∂

∂h
 can be calculated as: 
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Equation (A-4) can then be written as: 
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Therefore: 
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Equation (A-7) can be integrated by using integration by part: 
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Using asymptotic behaviors of )(0 rK
, as 0→= εr and +∞→r  and l’Hopital’s rule for 

indeterminate terms, we can determine the asymptotic behavior of term )(0 µ

rrK  in equation 

(A-8), when 0→= εr and +∞→r , i.e.: 
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Equation (A-8) can therefore be rewritten as: 
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as 0→ε , the integration term in equation (A-9) approaches to infinity.  

Since
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We notice that for πφ =  the wedge shown in figure (A) changes to an edge along a straight 

line on which point O can be regarded as an arbitrary point. In such a case, equation (A-9) is 

reduced to 
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The absolute value of the right hand side of equation (A-10) also approaches infinity as 0→ε , 

hence +∞=∇
O

u . We also note that by considering a regular curve approximated by an 

infinite number of infinitesimal straight line segments and by assuming point O to be on one 

of these infinitesimal straight line segments, we exploit the above argument obtained from (A-

10) to conclude that 
O

u∇ approaches infinity as 0→ε for this case as well. It is also noted 

that for boundaries forming straight lines and/or regular curves the unit vector n is 

conveniently considered to be normal unit vector to the boundary. 

 

 

Fig (A): An original image containing discontinuities forming a sharp corner at the center of coordinates  

Theorem 2: The gradient magnitude of the convolved image +→ RRu
2:  calculated in 

ghyxu *),( = has local maxima on discontinuities of a given piecewise-constant 

image +→Ω Rg : . 

Proof: 

At the beginning, let us briefly explain the structure of the proof. The directional derivative of 

the convolution between the isotropic Bessel function and the input image shown in figure (A) 

along a straight line passing through point O with a slope between ( )tan ϑ  and ( )tan ϑ φ+ (see 

figure (A)) is considered. We initially assume that the local maximum associated to point O is 

located at point 0O  with polar coordinates ( )0 0,r θ . By using the asymptotic properties of the 

Bessel function, we finally prove that point 0O  is located at the center of coordinates, i.e. point 

0O  is the same as point O. To explain the proof in details, let us now consider again g in figure 
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(A). We now aim to prove that u∇  has a maximum at point O, as 0→ε . By 

considering
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where h is the Bessel filter and g is given in equation (A-1). By integrating the above equation 

with respect to θ and integrating by part with respect to r for the first term in the above equation, 

we can write: 
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            (B-1) 

Let us assume that U has a local maximum associated with point O in ),( 00 θr where 0r  

representing the distance between the local maximum and the central point O, is a small 

displacement, 0θ ϑ≠  and 0θ ϑ φ≠ + . We notice that the local maxima with 0 0r ≠ and angle 

0θ ϑ=  or 0θ ϑ φ= + are associated with points on lower and upper discontinuity edges (along 

straight lines) of the wedge and therefore not associated with point O. A Mclaurin’s series can be 

written in the neighbourhood of maximum point, i.e.: 
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n ), re  and θ
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We can then calculate 0r as: 
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The second directional derivatives of U along the unit vectors n and ⊥n can also be calculated as: 
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By using equations (B-1), (B-3) and (B-4), equation (B-2) can be written as: 
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The above term is indeterminate as 0→ε . By using l’Hoptial’s rule for indeterminate terms, we 

can therefore write 0r as: 
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Therefore as 0→ε , the local maximum point for 
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 approaches point O. Therefore u∇  at 

point O has a local maximum. For πφ =
,
the boundary passing through point O is a straight line 

and 0r  is therefore calculated as: 
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Boundaries forming regular curves passing through point O are considered to consist of infinite 

numbers of infinitesimal straight line segments. For any point on such infinitesimal line segments, 



the above argument is applicable. The unit vector n is considered to be normal to boundaries 

forming a straight line and/or a regular curve. 
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