The University of Southampton
University of Southampton Institutional Repository

MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity
MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity
In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts.
421-442
Sugiura, Shinya
4c8665dd-1ad8-4dc0-9298-bf04eded3579
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Sugiura, Shinya
4c8665dd-1ad8-4dc0-9298-bf04eded3579
Chen, Sheng
9310a111-f79a-48b8-98c7-383ca93cbb80
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Sugiura, Shinya, Chen, Sheng and Hanzo, Lajos (2012) MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity. IEEE Communications Surveys & Tutorials, 14 (2), Summer Issue, 421-442. (doi:10.1109/SURV.2011.032511.00136).

Record type: Article

Abstract

In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts.

Text
05742779(Shinya).pdf - Accepted Manuscript
Download (1MB)
Text
ieeeCST-2012-14-2-2.pdf - Version of Record
Download (1MB)

More information

e-pub ahead of print date: 5 April 2011
Published date: 3 May 2012
Organisations: Southampton Wireless Group

Identifiers

Local EPrints ID: 272172
URI: http://eprints.soton.ac.uk/id/eprint/272172
PURE UUID: ce1548ba-bf5f-457c-872c-f9cf978363a2
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 11 Apr 2011 14:39
Last modified: 18 Mar 2024 02:35

Export record

Altmetrics

Contributors

Author: Shinya Sugiura
Author: Sheng Chen
Author: Lajos Hanzo ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×