Filtered Fictitious Play for Perturbed Observation Potential Games and Decentralised POMDPs


Chapman, Archie, Williamson, Simon and Jennings, Nick (2011) Filtered Fictitious Play for Perturbed Observation Potential Games and Decentralised POMDPs. In, 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), Barcelona, Spain, 14 - 17 Jul 2011. , 77-85.

Download

[img] PDF - Published Version
Download (121Kb)

Description/Abstract

Potential games and decentralised partially observable MDPs (Dec–POMDPs) are two commonly used models of multi–agent interaction, for static optimisation and sequential decision-making settings, respectively. In this paper we introduce filtered fictitious play for solving repeated potential games in which each player’s observations of others’ actions are perturbed by random noise, and use this algorithm to construct an online learning method for solving Dec–POMDPs. Specifically, we prove that noise in observations prevents standard fictitious play from converging to Nash equilibrium in potential games, which also makes fictitious play impractical for solving Dec–POMDPs. To combat this, we derive filtered fictitious play, and provide conditions under which it converges to a Nash equilibrium in potential games with noisy observations. We then use filtered fictitious play to construct a solver for Dec–POMDPs, and demonstrate our new algorithm’s performance in a box pushing problem. Our results show that we consistently outperform the state-of-the-art Dec-POMDP solver by an average of 100% across the range of noise in the observation function.

Item Type: Conference or Workshop Item (Paper)
Additional Information: Event Dates: July 14-17, 2011
Divisions: Faculty of Physical Sciences and Engineering > Electronics and Computer Science > Agents, Interactions & Complexity
ePrint ID: 272481
Date Deposited: 16 Jun 2011 21:50
Last Modified: 27 Mar 2014 20:18
Contact Email Address: archie.chapman@zepler.net
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/272481

Actions (login required)

View Item View Item