
On Proving with Event-B that a Pipelined
Processor Model Implements its ISA

Specification

John Colley1, Michael Butler2

1 University of Southampton,
School of Electronics and Computer Science

Southampton, SO17 1BJ, UK
jlc05r@ecs.soton.ac.uk

2 University of Southampton,
School of Electronics and Computer Science

Southampton, SO17 1BJ, UK
mjb@ecs.soton.ac.uk

Abstract. Microprocessor pipelining is a well-established technique that
improves performance and reduces power consumption by overlapping in-
struction execution. Verifying, however, that an implementation meets
this ISA specification is complex and time-consuming. One of the key
verification issues that must be addressed is that of overlapping instruc-
tion execution. This can introduce hazards where, for instance, a new
instruction reads the value from a register which will be written by an
earlier instruction that has not yet completed. Using Event-B’s support
for refinement with automated proof, a method is explored where the ab-
stract machine represents directly an instruction from the ISA that spec-
ifies the effect that the instruction has on the microprocessor register file.
Refinement is then used systematically to derive a concrete, pipelined ex-
ecution of that instruction. Microarchitectural considerations are raised
to the specification level and design choices can be verified much earlier
in the flow. The method proposed therefore has the potential to be in-
tegrated into an existing high-level synthesis methodology, providing an
automated design and verification flow from high-level specification to
hardware.

Keywords. Event-B, Pipeline, ISA

1 Introduction

Microprocessor pipelining is a well-established technique that improves perfor-
mance and reduces power consumption by overlapping instruction execution.
Modern System-on-Chip microprocessors used for mobile applications have very
stringent power consumption requirements and are typically based on the 5-stage
DLX microprocessor [1]. From the Instruction Set Architecture (ISA) specifica-
tion, a pipelined microarchitecture is developed that implements the specifica-
tion. Verifying, however, that an implementation meets this ISA specification is



2 J. Colley, M. Butler

complex and time-consuming. Current verification techniques are predominantly
test based within a Register Transfer Level (RTL) simulation and synthesis flow.

One of the key verification issues that must be addressed is that of overlap-
ping instruction execution. This can introduce hazards where, for instance, a
new instruction reads the value from a register which will be written by an ear-
lier instruction that has not yet completed. These are termed Read-After-Write
(RAW) data hazards [1]. The presence of hazards depends on the instruction mix
presented to the microprocessor and pseudo-random test generation techniques
have been used in an attempt to achieve adequate test coverage of instruction
combinations [2], [3] .

Formal techniques, using both model checking and theorem proving, have
been used in microprocessor verification, but as an adjunct to the simulation-
based flow. These techniques are applied after the design is completed in the hope
of detecting errors not discovered by testing. Higher-level hardware description
languages such as Bluespec [4] and CAL [5], which provide an automatic syn-
thesis route to RTL, can speed up the design process, but it is the verification
costs that dominate in the overall flow and the bulk of the verification must still
be done at the Register Transfer Level.

Event-B [6], [7] is a proof-based modelling language and method that en-
ables the development of specifications using refinement. The Rodin platform
[8] is the Eclipse-based IDE that provides support for Event-B refinement and
mathematical proof. Using Event-B’s support for refinement with automated
proof, a method is explored where the abstract machine represents directly an
instruction from the ISA that specifies the effect that the instruction has on the
microprocessor register file. Refinement is then used systematically to derive a
concrete, pipelined execution of that instruction. At each refinement step the im-
portance is shown of addressing the inherent simultaneity that characterises the
pipelined behaviour and, in particular, the effects that feedback has in pipeline
construction.

To illustrate the method, the register/register arithmetic instruction of a typ-
ical System-on-Chip (SoC) microprocessor is chosen that can exhibit RAW data
hazards with overlapping execution. The technique, termed forwarding, where
intermediate values are fed back to a stage that needs them, is employed in mod-
ern microprocessors to provide a very efficient means of managing RAW hazards
[1]. Debugging the forwarding logic has, however, been found to be difficult and
expensive [9] . With the introduction of appropriate invariants in our approach,
it is shown that the concrete, pipelined refinement will not preserve these invari-
ants unless the RAW hazards are detected and managed appropriately.

The concrete Event-B model implements forwarding in a way that corre-
sponds directly to the techniques used in microprocessor design and is proved,
automatically, in the Rodin environment to be a correct refinement of the ab-
stract ISA specification. Thus, microarchitectural considerations are raised to
the specification level and design choices can be verified much earlier in the flow.
The concrete model also has a direct correspondence to an equivalent hardware
description in the high-level languages Bluespec and CAL, which like Event-B



Event-B Pipelined Processor Proof 3

are based on guarded atomic actions. The method proposed therefore has the
potential to be integrated into an existing high-level synthesis methodology, pro-
viding an automated design and verification flow from high-level specification to
hardware.

2 An Overview of Event-B

In Event-B, an abstract model comprises a machine that specifies the high-
level behaviour and a context, made up of sets, constants and their properties,
that represents the type environment for the high-level machine. The machine
is represented as a set of state variables, v and a set of events, guarded atomic
actions, which modify the state. If more than one action is enabled, then one
is chosen non-deterministically for execution, an observable transition on the
state variables which must preserve an invariant on the variables, I(v). A more
concrete representation of the machine may then be created which refines the
abstract machine, and the abstract context may be extended to support the
types required by the refinement. Gluing invariants are used to verify that the
concrete machine is a correct refinement of the abstract. Gluing invariants give
rise to proof obligations for pairs of abstract and corresponding concrete events.
Events may also have parameters which take, non-deterministically, the values
that will make the guards in which they are referenced true.

An event can be represented by the generalized substitution,

any x where P(x,v) then v := F(x,v) end

where x represents the event parameters and v represents the value of the ma-
chine state variables. Informally, this event can be fired provided that the guard
P(x, v) can be satisfied for some value x. The details are explained in [10] .

3 Modelling the Arithmetic Instruction

3.1 The Abstract ISA Model

The structure of a register/register arithmetic instruction associates the opcode
with a destination register Rr and two source registers Ra and Rb. The Event-B
context, PIPEC, for the arithmetic instruction therefore defines a set of oper-
ations Op, the type Register, the subset of operations that are of type regis-
ter/register arithmetic, ArithRRop, and the relationship between the fields of
the arithmetic instruction and their associated registers. The conventions of [11]
are followed to model operation fields. The context also defines No Operation,
NOP.



4 J. Colley, M. Butler

CONTEXT PIPEC
SETS

Op
CONSTANTS

Register
Rr
Ra
Rb
NOP
ArithRROp

AXIOMS
axm1 : Register ⊆ N
axm2 : Rr ∈ Op→ Register
axm3 : Ra ∈ Op→ Register
axm4 : Rb ∈ Op→ Register
axm5 : ArithRROp ⊆ Op
axm6 : NOP ∈ Op
axm7 : NOP /∈ ArithRROp

END

The abstract machine, PIPEM, defines the register file Regs and a single
event ArithRR that specifies the effect that execution of the instruction has on
the register file. For simplicity, the addition operation is shown, but this can
more generally be represented by an uninterpreted function [12] without affect-
ing the proof approach used. The parameter pop specifies the environment for
the event; given an instruction of type ArithRROp, the state of the register file
will be updated according to that instruction.

MACHINE PIPEM
SEES PIPEC
VARIABLES

Regs
INVARIANTS

inv1 : Regs ∈ Register → Z
EVENTS
Initialisation

begin
act1 : Regs := Register × {0}

end
Event ArithRR =̂

any
pop

where
grd1 : pop ∈ ArithRROp

then
act1 : Regs(Rr(pop)) := Regs(Ra(pop)) + Regs(Rb(pop))

end
END

The microarchitecture of the abstract machine is shown in Figure 1.



Event-B Pipelined Processor Proof 5

ArithRR Regs
pop

Fig. 1. Abstract Machine: Microarchitecture

3.2 The First Refinement: a 2-stage pipeline

A 2-stage pipeline is now introduced which refines the abstract machine. The
second pipeline stage is a concrete representation of the Write Back (WB) stage
while the first stage is still abstract, representing the Fetch/Decode/Execute op-
erations of the pipeline.

MACHINE PIPER1
REFINES PIPEM
SEES PIPEC
VARIABLES

Regs
EXop
ALUout

INVARIANTS
inv1 : EXop ∈ Op
inv2 : ALUout ∈ Z
inv3 : ALUout = Regs(Ra(EXop)) + Regs(Rb(EXop))

EVENTS
Event FDEXWB =̂
refines ArithRR

any
ppop

where
grd1 : EXop ∈ ArithRROp
grd2 : ppop ∈ ArithRROp
grd3 : Rr(EXop) %= Ra(ppop)



6 J. Colley, M. Butler

grd4 : Rr(EXop) %= Rb(ppop)
with

pop : pop = EXop
then

act1 : Regs(Rr(EXop)) := ALUout
act2 : ALUout := Regs(Ra(ppop)) + Regs(Rb(ppop))
act3 : EXop := ppop

end
END

Two new variables, ALUout and EXop are introduced to represent the EXWB
pipeline registers. The parameter pop of the abstract ArithRR event is bound
to the concrete register EXop using an Event-B witness and a new parameter
ppop represents the environment of the refined event, FDEXWB. The FDEXWB
event models the simultaneous execution of both pipeline stages. The microar-
chitecture of the refined machine is shown in Figure 2.

FDEX

A
L

U

o
u
t

EXop

ppop
WB

R

e
g
s

Fig. 2. Refined Machine: Microarchitecture

It is now necessary to introduce the gluing invariant to establish that this
is a correct refinement of the abstract machine. To preserve the meaning of the
abstract specification, the new variable ALUout must always have the value
Regs(Ra(EXop)) + Regs(Rb(EXop)), as represented by the invariant inv3. The
Rodin prover, however, shows that this invariant is not preserved by the refined
machine. The abstract FDEX pipeline stage simultaneously reads the register
file while the WB stage is writing to it. If the location being read is the same as
that being written, a Read After Write (RAW) data hazard will be encountered
and the wrong value will read by the first pipeline stage. This inherent feedback
in the pipelined implementation must be addressed explicitly if it is to meet its
specification.



Event-B Pipelined Processor Proof 7

3.3 Detecting the RAW Hazard

The abstract FDEX pipeline stage may only read from the source registers
Ra and Rb if they do not coincide with the target register Rr of the previous
instruction, represented by Rr(EXop)). Two new guards are introduced into the
refined event to meet this requirement.

grd1 : ...
grd2 : ...
grd3 : Rr(EXop) %= Ra(ppop)
grd4 : Rr(EXop) %= Rb(ppop)

The Rodin prover now shows that the invariant ALUout = Regs(Ra(EXop)) +
Regs(Rb(EXop)) is preserved by the refined machine.

3.4 Dealing Correctly with the RAW Hazard

It is now necessary to deal with the cases where a hazard is encountered on
register Ra alone, on register Rb alone and on both registers Ra and Rb. In
each case, the required value(s) can be read from the ALUout register. This
corresponds directly to the forwarding technique used in microprocessor design.
Three extra events are introduced to deal with each case. For instance, for the
hazard on register Ra, the guards of the event are

grd3 : Rr(EXop) = Ra(ppop)
grd4 : Rr(EXop) %= Rb(ppop)

and the associated action now reads the value of Ra from ALUout.

act2 : ALUout := ALUout + Regs(Rb(ppop))

The Rodin prover shows that, for each case, the invariant is preserved. The
microarchitecture of the modified refined machine is shown in Figure 3.

3.5 Further Refinements

The refinement process can continue, systematically, until all the pipeline stages
are represented in concrete form. At each step, the gluing invariants will ensure
that the refinement implements its predecessor.

In the second refinement, the concrete Execute (EX) stage is introduced
together with the IDEX pipeline registers. The registers A and B store the values
of Ra and Rb respectively. Four events in the abstract Fetch/Decode stage are
needed to deal with the possible data hazard combinations and two new gluing
invariants,

inv1 : A = Regs(Ra(IDop))
inv2 : B = Regs(Rb(IDop))



8 J. Colley, M. Butler

FDEX

A
L

U

o
u
t

EXop

ppop
WB

R

e
g
s

Forwarding

Fig. 3. Refined Machine with forwarding: Microarchitecture

ensure that the data hazards are dealt with correctly. When combined with the
four EXWB events, this gives a total of sixteen events.

In the third refinement, the concrete Instruction Fetch IF and Instruction
Decode ID are established.

To generalise this approach for uninterpreted arithmetic operations, the ac-
tion

act1 : Regs(Rr(p)) := Regs(Ra(p)) + Regs(Rb(p))

can be replaced with

act1 : Regs(Rr(p)) := fop(Regs(Ra(p)) &→ Regs(Rb(p)))

where

grd1 : fop = func(p)

and

axm8 : func ∈ Op→ Register

is a field of the arithmetic instruction. The proofs with arbitrary arithmetic
operations are still automatic.

The final, concrete pipeline is represented by sixteen events and all the proof
obligations generated are discharged automatically by the Rodin tool, as shown
in Table 1.

4 Related Work

Early work in the formal verification of microprocessors was focused on simple,
non-pipelined processors described at the Register Transfer Level (RTL). In [13]



Event-B Pipelined Processor Proof 9

Total no. of Discharged
proof obligations Automatically

Abstract Model 3 3
1st Refinement 33 33
2nd Refinement 192 192
3rd Refinement 115 115

Table 1. Pipeline Proofs

the RTL is represented in the ML programming language and the HOL proof
assistant system [14] used to discharge the proofs.

In [12] and [15] the representation of the processor is raised to the Instruction
Set Architecture (ISA) level and the techniques described focus on the formal
verification of the control logic of first a 3-stage pipelined ALU and then the
full 5-stage DLX processor. ALU operations are represented as uninterpreted
functions. In order to show that the pipelined processor will behave in the same
way as a notional non-pipelined version, the concept of pipeline flushing is intro-
duced. Stall instructions are introduced at the pipeline input to ensure that each
instruction is completed before the next is initiated. The notion of refinement
maps are introduced in [16] and [17] to extend the flushing concepts of Burch
and Dill to more complex 3 and 10-stage pipelines, using the ACL2 functional
programming language and theorem prover [18].

[19] focuses its attention on the formalization of the pipeline hazards that
can occur when multiple instructions are executed at once in the DLX pipeline.
Structural, data and control hazards are represented and checked using the HOL
verification system [14]. Incremental design techniques with refinement are de-
scribed in [20] to show that a notional DLX pipeline that executes one instruction
at a time can be refined to a pipeline that executes 5 instructions at each clock
cycle and manages structural hazards does not encounter a sequence of instruc-
tions that would incur data or control hazards. This pipeline is then further
refined to model the data and control hazards. Abstract State Machines (ASMs)
are used to represent the DLX instructions. In [9], a tool that takes a sequen-
tial model of the DLX pipeline, which is assumed to be correct, and adds the
forwarding logic is described. The tool also provides a proof of correctness for
the generated hardware. Our approach is the only one that starts with an ab-
stract ISA specification and proves, systematically, that the concrete, concurrent
pipeline model derived from the ISA implements that specification.

5 Conclusions

A method has been explored, using the register/register arithmetic instruction
as an example, to show that the ISA specification of the instruction can be re-
fined systematically to a pipelined model that can be proved to implement its
ISA specification. The method ensures, through the introduction of gluing in-
variants at each stage, that microarchitectural considerations are addressed early



10 J. Colley, M. Butler

in the design flow. Different microarchitectures may be explored and verified at
the specification level. Stepwise refinement allows us to manage the multiplicity
of cases caused by pipeline data hazards. The models have been developed us-
ing the Rodin Platform and all the generated proof obligations are discharged
automatically by the tool.

Current work is focused on managing the effect of branch instructions on
correct pipeline execution. The techniques described have been used to prove
that the pipeline program counter is updated correctly according to the branch
instruction ISA specification. Gluing invariants are being developed to ensure
that instructions that have been fetched speculatively are not executed when a
branch is encountered.

A disadvantage of our approach is that we need to specify separate pipeline
stages with a single event. We are exploring a technique that uses refinement and
decomposition to create separate events for each stage once the gluing invariants
have been proved.

In common with Bluespec and CAL, Event-B is based on guarded atomic
actions. The method proposed therefore has the potential to be integrated into
an existing high-level synthesis methodology, providing an automated design and
verification flow from high-level specification to hardware.

References

1. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach.
Morgan Kaufmann (2006)

2. Hollander, Y., Morley, M., Noy, A.: The e language: A fresh separation of concerns.
Proceedings of TOOLS 38 (2001)

3. Haque, F., Michelson, J.: Art of Verification with VERA. Verification Central
(2001)

4. Nikhil, R.: Bluespec System Verilog: efficient, correct RTL from high level spec-
ifications. Formal Methods and Models for Co-Design, 2004. MEMOCODE’04.
Proceedings. Second ACM and IEEE International Conference on (2004) 69–70

5. Bhattacharyya, S.S., Brebner, G., Janneck, J.W., Eker, J., von Platen, C., Mat-
tavelli, M., Raulet, M.: Opendf: a dataflow toolset for reconfigurable hardware and
multicore systems. SIGARCH Comput. Archit. News 36 (2008) 29–35

6. Abrial, J., Mussat, L.: Introducing dynamic constraints in B. B 98 (1998) 83–128
7. Hallerstede, S.: Justifications for the Event-B Modelling Notation. In: B 2007:

Formal Specification and Development in B. (2007)
8. Abrial, J., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environ-

ment for Event-B. In: International Conference on Formal Engineering Methods
(ICFEM). (2006)

9. Kroening, D., Paul, W.: Automated pipeline design. In: Proceedings of the 38th
conference on Design automation, ACM New York, NY, USA (2001) 810–815

10. Abrial, J.: Rigorous Open Development Environment for Complex Systems: event
B language. (2005)

11. Evans, N., Butler, M.: A Proposal for Records in Event-B. FM (2006) 21–27
12. Burch, J., Dill, D.: Automatic verification of Pipelined Microprocessor Control.

Proceedings of the 6th International Conference on Computer Aided Verification
(1994) 68–80



Event-B Pipelined Processor Proof 11

13. Joyce, J., Birtwistle, G., Gordon, M.: Proving a Computer Correct in Higher Order
Logic, Report No. 100. Computer Laboratory, Cambridge University (1986)

14. Gordon, M., Melham, T.: Introduction to HOL: a theorem proving environment
for higher order logic. Cambridge University Press New York, NY, USA (1993)

15. Jones, R., Dill, D., Burch, J.: Efficient validity checking for processor verifica-
tion. In: IEEE International Conference on Computer-Aided Design, San Jose,
California, USA (1995)

16. Manolios, P.: Correctness of pipelined machines. Formal Methods in Computer-
Aided Design–FMCAD 1954 (2000) 161–178

17. Manolios, P., Srinivasan, S.: A computationally efficient method based on commit-
ment refinement maps for verifying pipelined machines models. ACM-IEEE Inter-
national Conference on Formal Methods and Models for Codesign (2005) 189–198

18. Kaufmann, M., Moore, J.: Industrial proofs with acl2. Technical report, University
of Texas (2004)

19. Tahar, S., Kumar, R.: Formal Verification of Pipeline Conflicts in RISC Proces-
sors. Proc. European Design Automation Conference (EURO-DAC94), Grenoble,
France, September (1994) 285–289

20. Borger, E., Mazzanti, S.: A Practical Method for Rigorously Controllable Hard-
ware Design. ZUM’97, the Z Formal Specification Notation: 10th International
Conference of Z Users, Reading, UK, April 3-4, 1997: Proceedings (1997)


