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ABSTRACT
The current increased demand for distributed applications
in domains such as web services and cloud computing has
significantly increased interest in concurrent programming.
This demand in turn has resulted in new testing methodolo-
gies for such systems, which take account of the challenges
necessary to test these applications. This paper presents a
systematic review of the published research related to con-
current testing approaches, bug classification and testing
tools. A systematic review is a process of collection, assess-
ment and interpretation of the published papers related to
a specific search question, designed to provide a background
for further research. The results include information about
the research relationships and research teams that are work-
ing in the different areas of concurrent programs testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Threading, Message Passing

General Terms
Systematic Review, Concurrent Program, Software Testing

Keywords
Concurrent program testing, testing tools, bug classification

1. INTRODUCTION
Concurrent applications are inevitably more complex than

sequential ones. All concurrent software contains features
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such as nondeterminism, synchronization and inter-process
communication which significantly increase the difficulty of
validation and testing. A number of research studies have
been conducted in concurrent program testing, investigat-
ing new test mechanisms and adapting different approaches
from the classical approaches used for sequential program
testing.

This paper presents a mapping of this research, classify-
ing the results into three main contributions: 1) works that
propose a new approach, mechanism or framework for con-
current programs test; 2) works that present a taxonomy,
classification or discussion of concurrent bugs; and 3) works
that present a tool or methodology to support concurrent
program testing. The systematic review process was used to
collect, conduct and analyze the available published papers.
A systematic review is a process of assessment and interpre-
tation of all available studies related to a research question
or subject of specific interest, providing a background for
further investigation [21].

An understanding of the systematic review process and
how to implement it is becoming a key requirement for all
researchers. It is a powerful resource that, if used correctly,
can contribute with new research insights in a particular
area or can provide an initial overview of the research area
for a new researcher.

2. SYSTEMATIC REVIEW: PLANNING
AND CONDUCTING

This systematic review was performed according to the
process defined by Kitchenham and Charters [21]. This pro-
cess is composed of three phases: 1) planning - definition of
a protocol that specifies the plan that the systematic review
will follow, 2) conducting - execution of the protocol planned
and 3) reporting - divulgation of the results. For reasons of
space, the paper only outlines the relevant information to
understand the systematic review process. The full review
is available in [2].

Three research questions were formulated, setting out the
objectives of the systematic review: 1) What testing ap-
proaches have been proposed to test concurrent programs? 2)
What type of bug taxonomy related to concurrent programs
has been identified? 3) What tools have been developed to
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test concurrent programs? Based on these questions, a first
version of the research string was defined. This string was
refined with the aid of a list of already-known primary stud-
ies, established by the authors of this paper. The selection
of primary studies is governed by inclusion and exclusion cri-
teria, specified in the planning phase. The digital libraries
considered in this review were: ACM Digital Library (por-
tal.acm.org), IEEE eXplore (ieeexplore.ieee.org), SCOPUS
(scopus.com) and CITESEER (citeseerx.ist.psu.edu).

Searches were performed in the digital libraries and 1166
studies were obtained. From these studies, two different se-
lections were produced, using different inclusion and exclu-
sion criteria. In the first selection, we read title, keywords,
abstracts and, when necessary, the introduction and conclu-
sion of each study, and we selected 314 studies. In the second
selection, a complete reading of the papers was undertaken
and selected 188 papers, which were classified according to
the key search questions: testing approach (166), bug tax-
onomy or classification (6) and testing tool (50). A paper
can be classified in two or more questions depending on its
contribution.

3. SYSTEMATIC REVIEW: SOME RESULTS
Table 1 shows a summary of the key results from this

systematic review. For each search question, the papers are
classified based on the parallel programming paradigm (mes-
sage passing or multithreaded), the proposed technique and
the programming language. Several contributions are re-
lated to the testing approach definition, which present the
proposition of the different testing techniques (mainly for
multithreaded parallel programs). Most of the testing tools
concentrate on multithreaded Java programs.

Figure 1 shows the relationship between some selected au-
thors, from the systematic review. The diagram contains
frames that represent authors group, according to their dif-
ferent research areas. Frame A presents authors research-
ing into monitoring, scheduling, preemption and model check-
ing. Frame B presents authors that work with in testing
tools development and authors researching into mechanisms
to detect concurrent bugs, in general, using concurrent pro-
grams benchmarks. Frame C presents authors that work
with model-based testing, reachability testing and determin-
istic execution. Frame D presents authors that work with
structural testing criteria and support tools for coverage test
of concurrent programs.

4. CONCLUSION
In this paper we have presented the key results of a sys-

tematic review applied to find relevant works in concurrent
programs testing. This review was developed using the sys-
tematic review process defined by Kitchenham and Char-
ters [21]. The results obtained show different groups of
authors working in important and challenging fields, such
as: nondeterminism, synchronization interleaving, concur-
rent bugs, testing tool and coverage measure. This research
addresses the challenges to testing concurrent programs pre-
sented by Yang [55] in 1999.

Another review result is the construction of a diagram
showing the relationship among authors. This diagram il-
lustrates the subjects of interest for each author, this high-
lighting the collaborative networks. The knowledge of the
key topics that are being researched and the people work-

ing in each area is important for the establishment of new
collaborations.
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