
Research in Concurrent Software Testing:
A Systematic Review

Simone R. S. Souza
ICMC/USP

Universidade de São Paulo
São Carlos, SP, Brazil

srocio@icmc.usp.br

Maria A. S. Brito
ICMC/USP

Universidade de São Paulo
São Carlos, SP, Brazil

masbrit@icmc.usp.br

Rodolfo A. Silva
ICMC/USP

Universidade de São Paulo
São Carlos, SP, Brazil

adamshuk@icmc.usp.br
Paulo S. L. Souza

ICMC/USP
Universidade de São Paulo

São Carlos, SP, Brazil
pssouza@icmc.usp.br

Ed Zaluska
ECS

University of Southampton
Southampton, England

ejz@ecs.soton.ac.uk

ABSTRACT
The current increased demand for distributed applications
in domains such as web services and cloud computing has
significantly increased interest in concurrent programming.
This demand in turn has resulted in new testing methodolo-
gies for such systems, which take account of the challenges
necessary to test these applications. This paper presents a
systematic review of the published research related to con-
current testing approaches, bug classification and testing
tools. A systematic review is a process of collection, assess-
ment and interpretation of the published papers related to
a specific search question, designed to provide a background
for further research. The results include information about
the research relationships and research teams that are work-
ing in the different areas of concurrent programs testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Threading, Message Passing

General Terms
Systematic Review, Concurrent Program, Software Testing

Keywords
Concurrent program testing, testing tools, bug classification

1. INTRODUCTION
Concurrent applications are inevitably more complex than

sequential ones. All concurrent software contains features

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PADTAD ’11, July 17, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0809-0/11/07 ...$10.00.

such as nondeterminism, synchronization and inter-process
communication which significantly increase the difficulty of
validation and testing. A number of research studies have
been conducted in concurrent program testing, investigat-
ing new test mechanisms and adapting different approaches
from the classical approaches used for sequential program
testing.

This paper presents a mapping of this research, classify-
ing the results into three main contributions: 1) works that
propose a new approach, mechanism or framework for con-
current programs test; 2) works that present a taxonomy,
classification or discussion of concurrent bugs; and 3) works
that present a tool or methodology to support concurrent
program testing. The systematic review process was used to
collect, conduct and analyze the available published papers.
A systematic review is a process of assessment and interpre-
tation of all available studies related to a research question
or subject of specific interest, providing a background for
further investigation [21].

An understanding of the systematic review process and
how to implement it is becoming a key requirement for all
researchers. It is a powerful resource that, if used correctly,
can contribute with new research insights in a particular
area or can provide an initial overview of the research area
for a new researcher.

2. SYSTEMATIC REVIEW: PLANNING
AND CONDUCTING

This systematic review was performed according to the
process defined by Kitchenham and Charters [21]. This pro-
cess is composed of three phases: 1) planning - definition of
a protocol that specifies the plan that the systematic review
will follow, 2) conducting - execution of the protocol planned
and 3) reporting - divulgation of the results. For reasons of
space, the paper only outlines the relevant information to
understand the systematic review process. The full review
is available in [2].

Three research questions were formulated, setting out the
objectives of the systematic review: 1) What testing ap-
proaches have been proposed to test concurrent programs? 2)
What type of bug taxonomy related to concurrent programs
has been identified? 3) What tools have been developed to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PADTAD’11, July 17, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0809-0/11/05 ...$10.00

1

test concurrent programs? Based on these questions, a first
version of the research string was defined. This string was
refined with the aid of a list of already-known primary stud-
ies, established by the authors of this paper. The selection
of primary studies is governed by inclusion and exclusion cri-
teria, specified in the planning phase. The digital libraries
considered in this review were: ACM Digital Library (por-
tal.acm.org), IEEE eXplore (ieeexplore.ieee.org), SCOPUS
(scopus.com) and CITESEER (citeseerx.ist.psu.edu).

Searches were performed in the digital libraries and 1166
studies were obtained. From these studies, two different se-
lections were produced, using different inclusion and exclu-
sion criteria. In the first selection, we read title, keywords,
abstracts and, when necessary, the introduction and conclu-
sion of each study, and we selected 314 studies. In the second
selection, a complete reading of the papers was undertaken
and selected 188 papers, which were classified according to
the key search questions: testing approach (166), bug tax-
onomy or classification (6) and testing tool (50). A paper
can be classified in two or more questions depending on its
contribution.

3. SYSTEMATIC REVIEW: SOME RESULTS
Table 1 shows a summary of the key results from this

systematic review. For each search question, the papers are
classified based on the parallel programming paradigm (mes-
sage passing or multithreaded), the proposed technique and
the programming language. Several contributions are re-
lated to the testing approach definition, which present the
proposition of the different testing techniques (mainly for
multithreaded parallel programs). Most of the testing tools
concentrate on multithreaded Java programs.

Figure 1 shows the relationship between some selected au-
thors, from the systematic review. The diagram contains
frames that represent authors group, according to their dif-
ferent research areas. Frame A presents authors research-
ing into monitoring, scheduling, preemption and model check-
ing. Frame B presents authors that work with in testing
tools development and authors researching into mechanisms
to detect concurrent bugs, in general, using concurrent pro-
grams benchmarks. Frame C presents authors that work
with model-based testing, reachability testing and determin-
istic execution. Frame D presents authors that work with
structural testing criteria and support tools for coverage test
of concurrent programs.

4. CONCLUSION
In this paper we have presented the key results of a sys-

tematic review applied to find relevant works in concurrent
programs testing. This review was developed using the sys-
tematic review process defined by Kitchenham and Char-
ters [21]. The results obtained show different groups of
authors working in important and challenging fields, such
as: nondeterminism, synchronization interleaving, concur-
rent bugs, testing tool and coverage measure. This research
addresses the challenges to testing concurrent programs pre-
sented by Yang [55] in 1999.

Another review result is the construction of a diagram
showing the relationship among authors. This diagram il-
lustrates the subjects of interest for each author, this high-
lighting the collaborative networks. The knowledge of the
key topics that are being researched and the people work-

ing in each area is important for the establishment of new
collaborations.

5. ACKNOWLEDGMENTS
The authors would like to thank the Brazilian funding

agencies CAPES and FAPESP, for the financial support, un-
der Capes process 1191/10-1 and FAPESP processes: 2008/
04614-5, 2009/04517-2, 2010/04935-6, 2010/02839-0.

6. REFERENCES
[1] A. Bechini, J. Cutajar, and C. Prete. A tool for

testing of parallel and distributed programs in
message-passing environments. In Electrotechnical
Conference, 1998. MELECON 98., 9th Mediterranean,
volume 2, pages 1308 –1312 vol.2, may 1998.

[2] M. A. S. Brito, K. Felizardo, P. S. L. Souza, and
S. R. S. Souza. Concurrent software testing: A
systematic review. Technical Report 359, ICMC/USP,
2010.

[3] J. Cao, A. T. S. Chan, S. C. F. Chan, and N. K. C.
Cheung. A robust monitor construct with runtime
fault detection. Concurrency Computation Practice
and Experience, 18(5):471–500, 2006.

[4] J. Cao, N. Cheung, and A. Chan. Run-time fault
detection in monitor based concurrent programming.
In Dependable Systems and Networks, 2001. DSN
2001. International Conference on, pages 357 –366,
july 2001.

[5] R. Carver and J. Lei. A stateful approach to testing
monitors in multithreaded programs. In
High-Assurance Systems Engineering (HASE), 2010
IEEE 12th International Symposium on, pages 54 –63,
nov. 2010.

[6] R. Carver and K. C. Tai. Deterministic execution
testing of concurrent ada programs. In Proceedings of
the conference on Tri-Ada ’89: Ada technology in
context: application, development, and deployment,
TRI-Ada ’89, pages 528–544, New York, NY, USA,
1989. ACM.

[7] R. Carver and K.-C. Tai. Replay and testing for
concurrent programs. Software, IEEE, 8(2):66 –74,
mar 1991.

[8] R. H. Carver and Y. Lei. A general model for
reachability testing of concurrent programs. Lecture
Notes in Computer Science, 3308:76–98, 2004.

[9] J. Chen and S. MacDonald. Towards a better
collaboration of static and dynamic analyses for
testing concurrent programs. In Proceedings of the 6th
Workshop on Parallel and Distributed Systems:
Testing, Analysis, and Debugging 2008, PADTAD’08,
2008.

[10] M. Christakis and K. Sagonas. Detection of
asynchronous message passing errors using static
analysis. Lecture Notes in Computer Science, 6539
LNCS:5–18, 2011.

[11] S. Copty and S. Ur. Multi-threaded testing with AOP
is easy, and it finds bugs! In Lecture Notes in
Computer Science, volume 3648, pages 740–749, 2005.

[12] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
deterministic shared memory multiprocessing. In
Proceeding of the 14th international conference on

2

Table 1: Summary of the papers selected in the systematic review
Category Paradigm Technique Language References

testing approach message-passing analysis static - [10]
testing approach message-passing mutation and - [51, 20, 44, 15]

multithreaded perturbation
testing approach multithreaded model checking Java, C [17, 31, 35, 59, 36]
testing approach message-passing reachability testing - [16, 32, 5, 28, 19, 29, 52]

multithreaded [30, 42, 53]
testing approach message-passing structural testing Java, C/MPI, [56, 22, 24, 23, 25, 49, 57]

multithreaded Ada, C/Pthread [54, 58, 18, 49, 24, 43, 50]
[48]

testing approach multithreaded deterministic testing Java, Ada [6, 39, 12, 46, 7]
testing approach multithreaded search-based testing Java [27]
testing approach multithreaded static and dynamic analyses - [9]

testing tool multithreaded race detection - [41, 45, 26]
testing tool multithreaded mutation testing - [15]
testing tool multithreaded exaustive testing Java [37, 38]
testing tool multithreaded controled execution Java [13, 11]
testing tool multithreaded deterministic testing - [39]
testing tool message-passing structural testing Ada, C/PVM, [56, 1, 47, 22, 40]

multithreaded C/MPI
testing tool message-passing reachability testing - [8]

multithreaded
bug taxonomy multithreaded bug patterns - [14, 3, 4, 34]
bug taxonomy multithreaded interleaving sequences in - [33]

software transactional memory

Figure 1: Diagram with the relationship among authors

Architectural support for programming languages and
operating systems, ASPLOS ’09, pages 85–96, New
York, NY, USA, 2009. ACM.

[13] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded java
programs. Concurrency Computation Practice and
Experience, 15(3-5 SPEC.):485–499, 2003.

[14] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In Parallel and Distributed

Processing Symposium, 2003. Proceedings.
International, page 7 pp., april 2003.

[15] M. Gligoric, V. Jagannath, and D. Marinov. Mutmut:
Efficient exploration for mutation testing of
multithreaded code. In Software Testing, Verification
and Validation (ICST), 2010 Third International
Conference on, pages 55 –64, april 2010.

[16] X. Gong, Y. Wang, Y. Zhou, and B. Li. On testing
multi-threaded java programs. In Software

3

Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2007. SNPD 2007.
Eighth ACIS International Conference on, volume 1,
pages 702 –706, aug 2007.

[17] S. Gradara, A. Santone, M. L. Villani, and G. Vaglini.
Model checking multithreaded programs by means of
reduced models. Electronic Notes in Theoretical
Computer Science, 110:55–74, 2004.

[18] H.-F. Ho, G.-H. Chen, and T.-S. Kuo. Branch testing
of concurrent programs using petri net models.
Computer Systems Science and Engineering,
5(2):116–125, 1990.

[19] G.-H. Hwang, K.-C. Tai, and T.-L. Huang.
Reachability testing: An approach to testing
concurrent software. International Journal of Software
Engineering and Knowledge Engineering, 5:493–510,
1995.

[20] V. Jagannath, M. Gligoric, S. Lauterburg,
D. Marinov, and G. Agha. Mutation operators for
actor systems. In ICSTW 2010 - 3rd International
Conference on Software Testing, Verification, and
Validation Workshops, pages 157–162, 2010.

[21] B. Kitchenham and S. Charters. Guidelines for
performing systematic literature reviews in software
engineering. Technical Report EBSE 2007-001, Keele
University and Durham University, 2007.

[22] H. Kojima, Y. Kakuda, J. Takahashi, and T. Ohta. A
model for concurrent states and its coverage criteria.
In International Symposium on Autonomous
Decentralized Systems, ISADS, pages 1 –6, march
2009.

[23] P. V. Koppol, R. H. Carver, and K.-C. Tai.
Incremental integration testing of concurrent
programs. IEEE Transactions on Software
Engineering, 28(6):607–623, 2002.

[24] P. V. Koppol and K.-C. Tai. An incremental approach
to structural testing of concurrent software. In
Proceedings of the 1996 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA
’96, pages 14–23, New York, NY, USA, 1996. ACM.

[25] H. Krawczyk and B. Wiszniewski. A method for
determining testing scenarios for parallel and
distributed software, 1996.

[26] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar.
Healing data races on-the-fly. In Proceedings of the
2007 ACM Workshop on Parallel and Distributed
Systems: Testing and Debugging, PADTAD’07, pages
54–64, 2007.

[27] B. Krena, Z. Letko, T. Vojnar, and S. Ur. A platform
for search-based testing of concurrent software. In
PADTAD 2010 - International Workshop on Parallel
and Distributed Systems: Testing, Analysis, and
Debugging, pages 48–58, 2010.

[28] Y. Lei and R. Carver. Reachability testing of
semaphore-based programs. In Computer Software and
Applications Conference, 2004. COMPSAC 2004.
Proceedings of the 28th Annual International, pages
312 –317 vol.1, sept. 2004.

[29] Y. Lei and R. H. Carver. Reachability testing of
concurrent programs. IEEE Transactions on Software
Engineering, 32(6):382–403, 2006.

[30] Y. Lei, R. H. Carver, R. Kacker, and D. Kung. A

combinatorial testing strategy for concurrent
programs. Software Testing Verification and
Reliability, 17(4):207–225, 2007.

[31] J. Li, D. Hei, and L. Yan. Correctness analysis based
on testing and checking for openmp programs. In
ChinaGrid Annual Conference, 2009. ChinaGrid ’09.
Fourth, pages 210 –215, aug. 2009.

[32] S. Q. Li, H. Y. Chen, and Y. X. Sun. A framework of
reachability testing for java multithread programs. In
Systems, Man and Cybernetics, 2004 IEEE
International Conference on, volume 3, pages 2730 –
2734 vol.3, oct. 2004.

[33] J. Lourenço and G. Cunha. Testing patterns for
software transactional memory engines. In Proceedings
of the 2007 ACM workshop on Parallel and distributed
systems: testing and debugging, PADTAD ’07, pages
36–42, New York, NY, USA, 2007. ACM.

[34] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. SIGOPS Oper. Syst.
Rev., 42:329–339, March 2008.

[35] M. Musuvathi and S. Qadeer. Iterative context
bounding for systematic testing of multithreaded
programs. SIGPLAN Not., 42:446–455, June 2007.

[36] M. Musuvathi and S. Qadeer. Fair stateless model
checking. In In PLDI 08: Programming Language
Design and Implementation, 2008.

[37] M. Musuvathi, S. Qadeer, and T. Ball. CHESS: A
systematic testing tool for concurrent software.
Technical report, MSR-TR-2007-149, Microsoft
Research, 2007.

[38] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In Proceedings of
the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, pages 267–280,
Berkeley, CA, USA, 2008. USENIX Association.

[39] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
efficient deterministic multithreading in software.
SIGPLAN Not., 44:97–108, March 2009.

[40] M.-Y. Park, S. J. Shim, Y.-K. Jun, and H.-R. Park.
MPIRace-check: Detection of message races in MPI
programs. Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 4459
LNCS:322–333, 2007.

[41] E. Pozniansky and A. Schuster. Efficient on-the-fly
data race detection in multithreaded C++ programs.
In Parallel and Distributed Processing Symposium,
page 8 pp., april 2003.

[42] F. Pu and H.-Y. Xu. A feasible strategy for
reachability testing of internet-based concurrent
programs. In Networking, Sensing and Control, 2008.
ICNSC 2008. IEEE International Conference on,
pages 1559 –1564, april 2008.

[43] F. S. Sarmanho, P. S. L. Souza, S. R. S. Souza, and
A. Simão. Structural testing for semaphore-based
multithread programs. Lecture Notes in Computer
Science, 5101 LNCS:337–346, 2008.

[44] A. Sen and M. Abadir. Coverage metrics for
verification of concurrent systemc designs using
mutation testing. In IEEE International High Level
Design Validation and Test Workshop (HLDVT),

4

pages 75 –81, june 2010.

[45] K. Sen and G. Agha. A race-detection and flipping
algorithm for automated testing of multi-threaded
programs. In Haifa Verification Conference, pages
166–182, 2006.

[46] H.-S. Seo, I. S. Chung, B. M. Kim, and Y. R. Kwou.
The design and implementation of automata-based
testing environment for java multi-thread programs.
In Software Engineering Conference, 2001. APSEC
2001. Eighth Asia-Pacific, pages 221 – 228, dec. 2001.

[47] P. L. Souza, E. T. Sawabe, A. S. Simão, S. R. Vergilio,
and S. R. S. Souza. ValiPVM - a graphical tool for
structural testing of PVM programs. Lecture Notes in
Computer Science, 5205 LNCS:257–264, 2008.

[48] S. Souza, S. R. Vergilio, P. S. L. Souza, A. Simão, and
A. C. Hausen. Structural testing criteria for
message-passing parallel programs. Concurrency
Computation Practice and Experience,
20(16):1893–1916, 2008.

[49] J. Takahashi, H. Kojima, and Z. Furukawa. Coverage
based testing for concurrent software. In 28th
International Conference on Distributed Computing
Systems, ICDCS ’08, pages 533 –538, june 2008.

[50] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural
testing of concurrent programs. IEEE Transactions on
Software Engineering, 18(3):206–215, 1992.

[51] R. Vuduc, M. Schulz, D. Quinlan, B. D. Supinski, and
A. Sæbjørnsen. Improving distributed memory
applications testing by message perturbation. In In
Proceedings of Parallel and Distributed Systems:
Testing and Debugging (PADTAD), 2006.

[52] W. E. Wong and Y. Lei. Reachability graph-based test
sequence generation for concurrent programs.
International Journal of Software Engineering and
Knowledge Engineering, 18(6):803–822, 2008.

[53] W. E. Wong, Y. Lei, and X. Ma. Effective generation
of test sequences for structural testing of concurrent
programs. In Proceedings of the IEEE International
Conference on Engineering of Complex Computer
Systems, ICECCS, pages 539–548, 2005.

[54] Yang, , C. s. D. Yang, and L. L. Pollock. An algorithm
for all-du-path testing coverage of shared memory
parallel programs. In In Sixth Asian Test Symposium,
pages 263–268, 1997.

[55] C.-S. D. Yang. Program-Based, Structural Testing of
Shared Memory Parallel Programs. PhD thesis,
University of Delaware, 1999.

[56] C.-S. D. Yang, A. L. Souter, and L. L. Pollock.
All-du-path coverage for parallel programs. In
Proceedings of the 1998 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA
’98, pages 153–162, New York, NY, USA, 1998. ACM.

[57] R.-D. Yang and C.-G. Chung. A path analysis
approach to concurrent program testing. In Computers
and Communications, 1990. Conference Proceedings.,
Ninth Annual International Phoenix Conference on,
pages 425 –432, mar 1990.

[58] R.-D. Yang and C.-G. Chung. Path analysis testing of
concurrent programs. Information and Software
Technology, 34(1):43–56, 1992.

[59] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A
runtime model checker for multithreaded C programs.
Technical report, UUCS-08-004, School of Computing,
University of Utah, 2008.

5

