SemSorGrid4Env

D5.1

Specification of high-level application programming
interfaces

Kevin R. Page

David C. De Roure, Kirk Martinez, and Jason Sadler

University of Southampton, UK

24/02/2009

Status: Final version

Scheduled Delivery Date: 28/02/2009

SemSorGrid4Env FP7-223913

Executive Summary

This document defines an Application Tier for the SemsorGrid4Env project. Within the
Application Tier we distinguish between Web Applications - which provide a User
Interface atop a more traditional Service Oriented Architecture - and Mashups which are
driven by a REST API and a Resource Oriented Architecture. A pragmatic boundary is
set to enable initial development of Web Applications and Mashups; as the project
progresses an evaluation and comparison of the two paradigms may lead to a
reassessment of where each can be applied within the project, with the experience
gained providing a basis for general guidelines and best practice.

Both Web Applications and Mashups are designed and delivered through an iterative
user-centric process; requirements generated by the project case studies are a key
element of this approach.

D5.1 Specification of high-level API i

SemSorGrid4Env FP7-223913

Note on Sources and Original Contributions

The SemSorGrid4Env consortium is an inter-disciplinary team, and in order to make
deliverables self-contained and comprehensible to all partners, some deliverables thus
necessarily include state-of-the-art surveys and associated critical assessment. Where
there is no advantage to recreating such materials from first principles, partners follow
standard scientific practice and occasionally make use of their own pre-existing
intellectual property in such sections. In the interests of transparency, we here identify
the main sources of such pre-existing materials in this deliverable:

* N/A

D5.1 Specification of high-level API ii

" SemSorGrid4Env FP7-223913

Document Information

Contract Number FP7-223913 Acronym SemSorGrid4Env

Full title SemSorGrid4Env: Semantic Sensor Grids for Rapid Application Development for
Environmental Management

Project URL www.semsorgrid4env.eu

Document URL

EU Project officer Daniel Quintart

Deliverable Number 5.1 Name Specification of high-level application programming
interfaces

Task Number 5.1 Name Specify high-level application programming interfaces for
SemsorGrid4Env

Work package Number 5

Date of delivery Contractual Actual

Code name Status draft O final M

Nature Prototype O Report O Specification ¥ Tool O Other O

Distribution Type Public ¥ Restricted O Consortium O

Authoring Partner University of Southampton

QA Partner University of Athens

Contact Person Kevin R. Page

Email krp@ecs.soton.ac.uk Phone |+44 23 80594059 |Fax

Abstract
(for dissemination)

Keywords

D5.1 Specification of high-level API iii

mailto:krp@ecs.soton.ac.uk
http://www.semsorgrid4env.eu/

e

SemSorGrid4Env

FP7-223913

Project Information

This document is part of a research project funded by the IST Programme of the
Commission of the European Communities as project number FP7-223913. The

Beneficiaries in this project are:

Partner

Universidad Politécnica de Madrid
(Coordinator)

The University of Manchester

National and Kapodistrian University of Athens

University of Southampton

Deimos Space, S.L.

EMU Limited

Techldeas Asesores Tecnoldgicos, S.L.

Acronym

UNIMAN

MANCHESTER
1824

y
er

The Universit
of Manchest

NKUA

a
University of Athens

SOTON

UNIVERSITY OF

Southampton

Contact

Prof. Dr. Asuncién Gémez-Pérez
Facultad de Informéatica

Departamento de Inteligencia Atrtificial
Campus de Montegancedo, sn

Boadilla del Monte 28660

Spain

#e asun@fi.upm.es

#t +34-91 336-7439, #f +34-91 352-4819

Prof. Carole Goble

Department of Computer Science

The University of Manchester

Oxford Road

Manchester, M13 9PL, United Kingdom

#e carole@cs.man.ac.uk

#t +44-161-275 61 95, #f +44-161-275 62 04

Prof. Manolis Koubarakis
University Campus, llissia
Athina

GR-15784 Greece

#@ koubarak@di.uoa.gr
#t +30 210 7275213, #f +30 210 7275214

Prof. David De Roure

University Road

Southampton

S0O17 1BJ United Kingdom

#@ dder@ecs.soton.ac.uk

#t +44 23 80592418, #f +44 23 80595499

Mr. Agustin Izquierdo

Ronda de Poniente 19, Edif. Fiteni VI, P 2, 2°
Tres Cantos, Madrid — 28760 Spain
#@agqustin.izquierdo@deimos-space.com

#t +34-91-8063450, #f +34-91-806-34-51

Dr. Bruce Tomlinson

Mill Court, The Sawmills, Durley number 1
Southampton, SO32 2EJ — United Kingdom
#@ bruce.tomlinson@emulimited.com

#t +44 1489 860050, #f +44 1489 860051

Mr. Jesus E. Gabaldén

C/ Marie Curie 8-14

08042 Barcelona, Spain

#@ jesus.gabaldon@techideas.es

#t +34.93.291.77.27, #f ++34.93.291.76.00

D5.1 Specification of high-level API

iv

mailto:jesus.gabaldon@techideas.es
mailto:bruce.tomlinson@emulimited.com
mailto:manolis@intelligence.tuc.gr
mailto:dder@ecs.soton.ac.uk
mailto:richard@isoco.com
mailto:carole@cs.man.ac.uk
mailto:asun@fi.upm.es

I'®

8
= o
)

SemSorGrid4Env FP7-223913

Table of Contents

3.2.1. Map Viewer and Data CatalogUe......ccuueeeiiiiiiiiieiiiiiiiiiieeieeeeieeiiieeeeeeeeeeeeeeeevinnnnnn 7
3.2.2. Realtime Data....cccueeeiiieiiiiieiiiiiiiiiieiiieeeiiiee e eeieeeeiieeeeeiieeeeeeeeeeeeeeiee e 8

3.3.3. REST and Mashups in the Application TieT.....eoeeeneeneiniiniiiiiiiiiiiiiiiiieceeeee, 15

3.4. Web Applications vS. MashupS....ce.eeaeeeenieniininiiiiiiiiiiiiiiiiiiiiicicicececeece, 16

4. Evolution of the Application Tier.......eeseiiiiiiiiiiiiiieic s, 17
4.1. Comparison of WS-* and REST....c.cceeisiiiiiiiiiiiiiiciiiciccccsccscc 17
4.2, Semantic MashUPS....eeeeerenieiiiiiiiiiiiiieiieieieiieee i 17

5. ReferenCes. ...ocueueiiceiiiiiec 18

D5.1 Specification of high-level API \Y

SemSorGrid4Env FP7-223913

D5.1 Specification of high-level API Vi

SemSorGrid4Env FP7-223913

1. Introduction

1.1. Scope

This document represents the D5.1 of Work Package 5 High-level Application
Programming Interfaces for Semantic Sensor Grids within the EU project “Semantic
Sensor Grid Rapid Application Development for Environmental Management
(SemSorGrid4Env)”.

1.2. Document Structure

Section 2: introduces Work Package 5, sets out its position in the project, and details the
relationship and dependencies of the WP — and this deliverable — with the deliverables
and future output of this and other project WPs.

Section 3: describes the two aspects of the Application Tier — Web Applications and
Mashups. We describe both the traditional Service Oriented Architecture (including
OGC standards) and the REST interfaces provided in a Resource Oriented Architecture,
and introduce existing examples of both.

Section 4: explores the opportunities within SemsorGrid4Env to evaluate Service and
Resource Oriented Architectures side-by-side, and their effectiveness at different levels
within the overall project architecture. We introduce the possibility of “semantic
mashups”, applying Semantic Web technology in a Resource Oriented Architecture.

D5.1 Specification of high-level API 1

SemSorGrid4Env FP7-223913

2. Overview and context within
SemsorGrid4Env

Work Package 5 encompasses the design and delivery of the Application Tier for the
SemSorGrid4Env project. This Application Tier is needed to provide the mechanisms —
the High-level Application Programming Interfaces (APIs) referenced in the work
package and deliverable titles — through which applications can access sensor network
components and associated data for presentation and interaction with end-users.

In this document we elaborate upon the nature of these APIs and the Application Tier,
considering:

1. the set of reusable software components that interface with the SemSorGrid4Env
middleware and are used to build web applications; the APIs an application
developer uses to work with the libraries.

2. the resource oriented APIs that expose data (and metadata) from the sensor
network, via the web applications, to enable rapid creation of further ad-hoc
lightweight applications by independent developers (“mashups™).

Both of these aspects support the integration of dynamic sensor network sources and
changing (possibly unexpected) application requirements that are fundamental to the
SemSorGrid4Env concept, but in the latter case adoption by the external “mashup”
developer community is desirable for wvalidation of our approach. This mashup
community is associated with a fluid and rapidly advancing body of theory and practice
that will doubtless continue to grow apace over the term of the SemSorGrid4Env
project; nonetheless it is clear we will need to develop a straightforward REST interface
as a minimum to gain developer acceptance.

Past experience in developing web applications and associated REST APIs [DGS2009]
has demonstrated that this is best approached in an application-centric manner, with an
iterative development model closely involving end-users throughout the process. As
such, this document does not set out to explicitly specify an API which might then be
implemented as the project progresses — which would run counter to the best practice
described above — but instead details the requirements, principles, and paradigms
involved.

This document is therefore the starting point for a corpus of best practice and design
patterns for the Application Tier which will be built up and reported as the project
progresses (deliverable D5.2), incorporating the practical experience gained from
development and deployment (deliverable D5.2).

As the principal component for interaction directly with end-users, the Application Tier
will be designed and implemented with significant input from the two SemSorGrid4Env
cases studies: the Solent Flooding case study (WP7), and the Spanish Fire Prevention
case study (WP6). This is especially true given the application-centric, resource
oriented, approach taken when developing REST APIs; the recently completed

D5.1 Specification of high-level API 2

SemSorGrid4Env FP7-223913

requirements analyses (D7.1v1, D6.1v1) will be instrumental in informing Application
Tier development.

We will, at first, approach the two case studies separately, initially focussing on the
Flood scenario during implementation stage T5.2v1, before re-applying tools and
techniques to the Fire study. This staging will also provide a critical test of our ability to
rapidly adapt and deploy our technology.

That is not to say that the Fire case study will be ignored during initial development —
its requirements are still crucial to our design. However, we believe the Flood study
provides several benefits for immediate progress in WP5:

* an existing, active, sensor network
* existing, readily available, data sets from this sensor network

* management of the sensor network is performed by GeoData, a
SemSorGrid4Env partner

» geographic locality of the sensor network and case study end-users to the
University of Southampton should encourage closer feedback between users and
developers during design and implementation of the Application Tier and ensure
resource oriented APIs into the sensors and data is appropriate to the use case

By the time of implementation stage T5.2v2 the other SemSorGrid4Env Work Packages
will have advanced considerably, allowing full exposure of their respective components,
through the middleware, to the Application Tier. The interfaces and mechanisms for this
integration will be included in the forthcoming architecture deliverable (D1.3v1).
Similarly the sensor network being constructed for the Fire case study will have been
deployed and collecting data for use in the fire development application.

D5.1 Specification of high-level API 3

SemSorGrid4Env FP7-223913

3. Application Tier

Due to differing — but closely related and interlinked — approaches and requirements
introduced in the previous section, we define two elements within the Application Tier:
Web Applications, and Mashups (utilising RESTful interfaces) (figure 3.1).

—@ External applications
and mashups

Application Tier Library REST interfaces

REST . RDF
Web Application Ul APl ot
[y A
Mapping '
Element [? ,
0T : SemsorGrid4Env
; ' , Application Tier
*I'1 Data :
Element .
. : Potential Resource
1 Oriented Architecture
h J 4 ' directly exposing

€===d---

OGC SWE
RDF / (50S, WMS,
SPARQL ¥ WFS, etc.) v WS-DAI

Interfaces to other SSG4Env components

Figure 3.1: SemsorGrid4Env Application Tier

3.1. Web Applications

Web Applications primarily present a User Interface to access, utilise, and manipulate,
sensors and associated data provided by systems employing the SemsorGrid4Env
architecture.

In terms of the SemsorGrid4Env project the two demonstrator case studies — Fire and
Flood — will provide requirements (D6.1, D7.1) that define the interactions an end-user
will have with the Web Application, and from these a UI will be designed.

Other SemsorGrid4Env components will be accessed through a middleware. The
complete design of the architecture is still in progress (D1.3v1), however some
attributes are already known: that it will be a Service Oriented Architecture

D5.1 Specification of high-level API 4

SemSorGrid4Env FP7-223913

implemented using Web Services (WS-* standards), that data services are virtualized
(e.g. using WS-DAI), and that the middleware will provide a semantic registry and
semantic data integration service.

While the two case studies are obviously different, we anticipate several, if not many, of
their requirements will be common between them. Given common UI elements, and a
common middleware, the Application Tier will include a software library — a toolkit —
for easily creating Web Applications atop the SemsorGrid4Env middleware. This will
include, for example:

* routines to map between geospatial Ul elements (e.g. using OpenLayers) and
geospatially constrained queries and results to and from the middleware

* routines to dynamically generate Ul elements (e.g. option lists, menus) from
middleware queries for available resources and data

The case study Web Applications are also expected to require integration of other data
sources external to SemsorGrid4Env (e.g. the Flood use case may require census data
for locating centres of dense population, or highways traffic information for potential
evacuation routes). As such, the library will also need to:

e retrieve data from external sources that have been included as data services
through the SemSorGrid4Env middleware

* retrieve data through external standardised interfaces, such as those defined by
the OGC Sensor Web Enablement

* at least initially, retrieve data directly from existing sources (e.g. the Channel
Coastal Observatory data for the Solent can be used to to prototype Web
Applications until the SemsorGrid4Env architecture is complete)

This final point highlights that we envisage the development process of the Web
Applications, and therefore the supporting library, to be an iterative, user-centric,
process. To build engagement and trust with our end-users we expect to first build
simple Web Applications with limited functionality from which we can gain user
feedback. In this aspect we are informed by the Web 2.0 inspired design principles
applied to the myExperiment project [DG2009].

This approach ties closely with the user-centric view taken in work-package WP7 — for
representative applications that fit real users working within real management systems
and driven ultimately by real business cases. As highlighted in the previous section,
development of the Application Tier will occur in tandem with development of the user
requirements in the Flood case study; this document should be seen within this context
as the technical companion to the user requirements described in deliverable D7.1.

Some early software prototypes to start demonstrating and evaluating possible
applications and components (dual-map comparison view, temporal sensor data view,
initial REST prototypes) can therefore be found described in deliverable D7.1, and we
direct the reader to the companion document at this point.

D5.1 Specification of high-level API 5

101

SemSorGrid4Env FP7-223913

3.2. Examination of the Channel Coast Observatory
Web Application

[Help][Reset] [Feedback] [Full screen map]r.l

Channel
r Coastal (1) Search by geographic area (2) Refine your search (3) View your results
“ Observatory

Data type
Total lo 0
[View your results]

ults from baske

[\gmy View your basket] . - —
1 ap controls
B (R)
(ReferenceMap () & @) e
Huly‘ﬁ Zoomin to an arel(@Zuum right
= out)
Milford, Hstugth
Fid
[Zoom to a region| v |
e e B B =
Haluhead Preston
._j}‘ wuuerpool 5
= EAngor
= Ortho-rectified photography 5 Bostar Cr‘ome}r’
[« 2007 Great Tarnouth
() W 2006 Southwold
é S ; ’J_Smansea .Snuthend?’nn—SEa
[2003 hirord Havemw =
[& 2002 gt e fagzate

Zouthampton Hastings

¥ 2001 11fraCombe

False colour infrared photography
MNon-rectified photography
Lidar data

plge 0

Newport.

rfglgmuuth
St Tues
&

Topographic data

@ Hydrographic data

® Photogrammetric data

@ Topographic ground model data
Hydrographic ground model data
Sediment distribution data

Beach profile cross section changes J
F Real time data k|

Figure 3.2: CCO Map Viewer and Data Catalogue

KILOMETRES

1] 100 200
129250.58002, 213725.36253

The Channel Coastal Observatory' (CCO) is the data management centre for the
Regional Coastal Monitoring Programmes in South-East England. CCO is hosted by
New Forest District Council in partnership with the University of Southampton and the
National Oceanography Centre Southampton (NOCS), with technical development and
delivery provided by the GeoData Institute.

The CCO website is an example of a Web Application in the domain of interest
(environmental sensing) of SemsorGrid4Env; but through GeoData it also provides a
key sensor network, historical data set (for modelling), and end user group for the
Flooding case study (as described in greater detail in D7.1).

As such we examine here both the design and interfaces of the website as an example of
an existing Web Application — albeit one that cannot take advantage of the as-yet non-
existent SemsorGrid4Env semantic infrastructure — and comment (in italics) where

! http://www.channelcoast.org/

D5.1 Specification of high-level API 6

SemSorGrid4Env FP7-223913

good practice should influence SemsorGrid4dEnv Web Application development, and
how SemsorGrid4Env might advance the features found on the CCO website.

Two major elements of functionality are found on the CCO website, presented to the
user as separate options from the front page: “Realtime Data” and “Map Viewer and
Data Catalogue”. As shown in figure 3.3 these are implemented independently,
principally due to historical development and design decisions.

The SemsorGrid4Env architecture will enable the swift discovery, addition, and
integration of new sensor networks and data sources. The Web Application user should
expect to be able to draw upon both archived and live data as needed — and the
Application Tier must support this.

User Interface
r——=-=—===-=== 1 Fm- - - == === == === A
1 Realtime Data | 1 Map Viewer and Data Catalogue
1 1 1 1
! Data Mapping element Session !
: tables OpenlLayers & prefs :
| & graphs Ajax |
1 1
I | L |

» » N

HTML JSON Web Services (WMS, WFS)
A 4 \ 4

Data

PHP WSGI TileCache

(Python)
1
4 [
MapServer
‘ v
Realtime data Data Catalogue
MySQL L _..»| PostGIS

Figure 3.3: Channel Coast Observatory components

3.2.1. Map Viewer and Data Catalogue

The Map Viewer and Data Catalogue interface (figure 3.2) provides a means for the
user to select a number of existing data sets for downloading. The user can select a
geospatial area within a map viewer component through zooming and panning; further
detail of many types of data (e.g. topographic, hydrographic, infrared, lidar) can be
plotted on the map at higher zoom levels by way of adding layers to the map (bottom
left hand column of figure 3.2).

D5.1 Specification of high-level API 7

SemSorGrid4Env FP7-223913

The User Interface comprises several visual components, which are populated with data
retrieved using several different service interfaces (figure 3.3). These visual components
and services are examples of the elements we plan to implement in the Application Tier
software library; while SemsorGrid4Env applications will be more wide-ranging,
generic components with this kind of functionality will be re-usable across them. The
underlying SemsorGrid4Env components and middleware will provide semantically
enriched data and adapt to integrate new sensor sources, so future components will
reflect and take advantage of this (e.g. dynamic generation/re-generation of the layers),
but should also expose and access this more advanced functionality — where possible —
using existing standard interfaces.

The map viewing component is implemented using OpenLayers®, a Javascript library
for building web based geospatial applications. OpenLayers can present and integrate
map data provided through several services and formats, including KML, Google Maps,
Yahoo! Maps, and — as used by the CCO site — the Web Map Service (WMS) [OGC-
WMS] and Web Feature Service (WFS) [OGC-WFS].

Session information — including data selection, preferences, and the “shopping basket”
(which collates user selected sets data for ultimate download) — is handled by bespoke
Ajax and server-side elements; the overall page is composed using the elements by PHP
on the server.

MapServer® is used to feed map data to the OpenLayers component using exposed
WMS and WES services. The MapServer instance is backed by a PostGIS* database
storing the map and feature data (PostGIS spatially enables PostgreSQL through
additional support of geographic objects).

WMS and WFS are web-based interoperability service specifications published by the
Open Geospatial Consortium (OGC). They are used to transfer data, typically used in a
map view, from the server where the data is stored to the client where the map is
presented to the user, or from one map server to another.The biggest difference between
two services is that WMS returns raster formats (PNG, GIF, JPEG) whilst WFS uses the
Geography Markup Language (GML — the OGC XML Schema for geographic features)
to return data which is rendered at a later stage (typically by the client).

Images generated by MapServer are split by geographic area into “tiles”; these tiles can
be pre-generated, and are cached by TileCache® (which implements a proposed WMS
profile called WMS-C).

3.2.2. Realtime Data

The CCO website also allows users to view “live” (last recorded) and recent data that
has been received from the network of wave, tide, and meteorological sensors. Through

2 http://www.openlayers.org/
3 http://www.mapserver.org/
* http://postgis.refractions.net/

® http://www.tilecache.org/

D5.1 Specification of high-level API 8

SemSorGrid4Env FP7-223913

a series of robust bespoke software components, data is uploaded from the sensors when
they have network connectivity to a collating server, and from here the data is stored in
a MySQL database.

Selecting the Live Data section of the CCO website, a user is presented with a mapping
element that plots the locations of the sensors for which data is available. From here —
or the list of sensor sites below the map element — a user is taken to a page for the
selected sensor. Here tables and plots of the data are generated from the MySQL
database and combined on the page using PHP.

The CCO live data feed system was developed before the advent of the OGC Sensor
Observation System (SOS) [OGC-SOS]; if re-designed now this would be an obvious
interface to implement as it complements the WMS and WFS already in use by the CCO
and other GIS systems worldwide (indeed a partial implementation of SOS is included
in recent versions of MapServer).

The SOS — an API for managing deployed sensors and retrieving sensor data and
specifically “observation” data — is one of a series of futher OGC standards that
comprise the Sensor Web Enablement (SWE) suite [OGC-SWE]. Other relevant SWE
specifications include the Sensor Planning Service (SPS), Sensor Alert Service (SAS),
and Web Notification Services (WNS) — together they can be used to implement a SOA
for a sensor web with interoperable interfaces.

3.3. REST interfaces and mashups

The core of the SemSorGriddEnv WS-* architecture is based on tried and tested
technologies, which are very suitable for a planned approach to designing the different
components and the interfaces between them.

To enable the rapid development of web based thin-applications — mashups — we also
adopt the representational state transfer (REST) paradigm and Resource Oriented
Architecture pioneered by the web mashup community.

3.3.1. REST and Resource Oriented Architecture

Representational state transfer (REST) is a set of design principles which have been
popularly and successfully adopted in many (“RESTful”) web services, and is typically
framed as an alternative to “heavyweight” web services, including as the WS-* family.

REST aims to capture the features of the Web which allow it to scale so successfully:
everything is a resource which is addressable
resources have multiple representations
relationships between resources are expressed through hyperlinks

all resources share a common interface with a limited set of operations

D5.1 Specification of high-level API 9

SemSorGrid4Env FP7-223913

. client server communication is stateless

REST is not, however, defined in terms of, nor limited to, the web [Fie2000] (though
HTTP meets the REST criteria) and while there have been attempts to clarify the
application of REST to web services through definition of a Resource Oriented
Architecture [RR2007] the term is still often loosely, sometimes incorrectly, applied.

In this document we refer to REST exclusively in the context of its application to Web
Services, and so use the terms REST and Resource Oriented (Architecture)
interchangeably.

The key principle of REST is the use of resources for specific things that we wish to
reference, and the referencing of these resources using URIs. Representations of these
resources — encoded in a particular format - are then accessed through the URI, usually
using HTTP.

REST limits the operations exposed by a web service to a small, well-defined, standard,
set — for HTTP these are GET, POST, PUT, and DELETE. This contrasts with a
potentially expansive set of operators (for RPC style web services) or message contracts
(for SOA style web services). It also means HTTP is retained as an application layer
protocol as per its originally design, rather than being re-purposed as a transport layer,
e.g. for SOAP; this brings both benefits (e.g. compatibility and scalability with standard
web infrastructure) and further constraints (e.g. idempotence becomes desirable across
operations to cope with network unreliability).

This constrained set of operations leads to a design process focused on correctly
identifying the resources that should be exposed for a service and their representations;
while the interface to the resources is simple, the number of resources — every piece of
information that could be served - is likely to be many, with a URI for each. Since an
application client cannot possibly know of every URI in existence it is important that
resources hyperlink to other resources so a client application can navigate around them.

A Resource Oriented Architecture also requires statelessness — that each HTTP
operation is totally separate from any other. As such, any state the service has must also
be exposed as a resource; an application client enters that state by accessing the URI for
that resource; to enter another state a will use another URI.

Any application state a service requires to provide a representation of a resource must
be completely contained within the request to the server (where the application is the
client software processing and modifying the resource representations returned by the
service). Transitions in application state are made by moving - “navigating” in a web
sense — to alternate resources provided as URI links in the representation of a resource
provided returned by the server.

D5.1 Specification of high-level API 10

G- | Seemtef. L5,

~“':-*

T
A

SemSorGrid4Env FP7-223913

3.3.2. Examination of the myExperiment REST API

myExperiment®, jointly developed by the Universities of Manchester and Southampton,
is a collaborative environment where scientists can safely publish their workflows and
experiment plans, share them with groups and find those of others. Workflows, other
digital objects and collections can now be swapped, sorted and searched in a manner
inspired by Web 2.0 sites for e.g. photos and videos (fig 3.4).

expe ri ment beta Abowut | Mailing List | Publications & Logowt | £ Give us Feedhack | [, Invite
Home Users Groups Workflows Files Packs
Home » Workflows BODKMARK wf 50 47, New/Upload
L_V} Uplead Hew Workflow _d View All Workflows Workflow
Top 50 tags for Workflows [se= Al Tags) ' ‘

£l08 | alignmert benchmarks | sioaip binassist_nl | hioinformatics | kiomoby | biorange_nl | BLAST | cok-taverna | dgrid | dbfetch

demo | design pattern | disease | e-science | ehi example genatype | gwes | gworkilowd | kegg | 10CEIWOIKST | microarray | muttiple P
seguence alignmert mygrid nbiconwarkfiovws | pathway | pathway-driven | pattvacays | pdb | pochem:tigress | phenctype | protein | protein David De

Roure
annctation | pubmed | semantic_weh | sequence | sequence alignment | sequence similarty search | shim | social sciences | taverna | test |text
mining | teet_mining | test_mining_network | trident | WL-g | workflow pettern & My Profile [edit]
[by Messages
| L Latest | Last Updated | Most Viewed | Most Downloaded az| My Memberships
(=) ly History
Tawerna 1 4 BioAID_DiseaseDiscovery [v1) L, view 9 My Mews
Created: 1241107 @ 22 39:04 | Last updated: 21 1003 @ 10:44:19 £ bovnioad (1)
Original Credit Miarco R D 2} Manage Announcements
redits: arco Roos =%
Upleader & &
License: Crestive Cammans Aftrinution-Share alike 3.0 License 1 new friendship request
ey — g This workflow finds dizease relevant to the guery string via the & Dfmac
I S following steps: 1. 8 uger query: a list of terms or boolean query - ' .
b & look at the Apache Lucene project for all details. E.g.: (EZH2 OR
= Marco - | "Enhancer of Feste” +(mutation chraomating -clinical) 2. Retrieve My Stuff
_RDDS S documerts: finds relevant documents (abstract+itle) based on

guery (edit maxHits to change the default maximum number of 2ifriends | T groups |3

documents retupned; the AIDA service inside is based on Apache Packs | 1Files | 1 Workflows

Lucene) 3. Discover proteins: extract... Ve

Crinmnde

Figure 3.4: myExperiment workflows page

As well as the Web Application, myExperiment exposes its functionality through a
REST API’; we explore a few of the interfaces from this API below. We do not
highlight the myExperiment API as a perfect REST implementation (indeed some
elements might be considered non-RESTful by some in the community), but because it
is an API exposed by a Web Application and developed under the principles outlines
above — the lessons and experience of developing the myExperiment Web Application
and REST API will feed into the development of the SemsorGrid4Env Application Tier.

For a detailed description of a fully RESTful web service see chapter 3 of Richardson
and Ruby [RR2007], where the example is the Amazon S3 web storage service.

® http://www.myexperiment.org/

7 http://wiki.myexperiment.org/index.php/Developer:API

D5.1 Specification of high-level API 11

SemSorGrid4Env FP7-223913

myExperiment provides a number of read only index representations. For example,
workflows in myExperiment are available from the URI:

http://www.myexperiment.org/workflows.xml

Example output returned might be:
<?xml version='1.0' encoding='UTF-8'?>

<workflows>
<workflow uri="'http://www.myexperiment.org/workflow.xml?id=4"
resource="http://www.myexperiment.org/workflows/4'>EBI
InterProScan</workflow>

<workflow uri="'http://www.myexperiment.org/workflow.xml?id=5"
resource="http://www.myexperiment.org/workflows/5'>D0I2PMID</wo
rkflow>

<workflow uri='http://www.myexperiment.org/workflow.xml?id=6"
resource="http://www.myexperiment.org/workflows/6'>Genome
annotation pipeline demonstrator workflow for Nucleic Acids
Research</workflow>

<workflow uri="'http://www.myexperiment.org/workflow.xml?id=7"
resource="'http://www.myexperiment.org/workflows/7'>Fetch Dragon
images from BioMoby v2</workflow>

<workflow uri="'http://www.myexperiment.org/workflow.xml?id=10"

resource="http://www.myexperiment.org/workflows/10'>HUMAN
Microarray CEL file to candidate pathways</workflow>

</workflows>

The server returns a list of workflows, for each detailing the resource of each workflow,
a URI from which a representation of the resource can be retrieved, and a description of
the workflow.

(Note that in this example content negotiation — i.e. to return XML — is encoded in the
URI)

A GET on a specific workflow, e.g.

http://www.myexperiment.org/workflow.xml?id=173

might output:
<?xml version="1.0" encoding="UTF-8" ?>
<workflow uri="http://www.myexperiment.org/workflow.xml?id=173"

resource="http://www.myexperiment.org/workflows/173"
version="2">

D5.1 Specification of high-level API 12

http://www.myexperiment.org/workflow.xml?id=173
http://www.myexperiment.org/workflows.xml

SemSorGrid4Env FP7-223913

<title>Unique tags</title>

<description>This workflow takes a comma separated list of tags and
removes duplicate entries. Tags may have multiple words in
them. An example string is "carrots,handbags,carrots,cheese".</
description>

<uploader uri="http://www.myexperiment.org/user.xml?id=22"
resource="http://www.myexperiment.org/users/22">Don
Cruickshank</uploader>

<created-at>Tue Mar 11 16:52:42 +0000 2008</created-at>

<preview>http://www.myexperiment.org/workflow/image/173/unique tags 1
8054 2.png</preview>

<svg>http://www.myexperiment.org/workflow/svg/173/unique tags 18054 2
.Svg</svg>

<license-type>by-sa</license-type>

<content-uri>http://www.myexperiment.org/workflows/173/download/
unique tags 18054.xml</content-uri>

<content-type>application/vnd.taverna.scufl+xml</content-type>
<tags>

<tag uri="http://www.myexperiment.org/tag.xml?id=555"
resource="http://www.myexperiment.org/tags/555">example</tag>

<tag uri="http://www.myexperiment.org/tag.xml?id=450"
resource="http://www.myexperiment.org/tags/450">scampi</tag>

<tag uri="http://www.myexperiment.org/tag.xml?id=760"
resource="http://www.myexperiment.org/tags/760">design
pattern</tag>

</tags>

</workflow>

Here the returned XML confirms the resource and representation, also flagging the
version of the workflow, the time it was created, a title, and a more verbose description.
The creator of the workflow is provided (as a resource and description), with links by
which the client can obtain a representation of the creator. Details about the workflow
itself are given, including the application type, a URI to the workflow data, images that
can be used to preview the workflow (as is done in myExperiment) and the license the
workflow is released under.

The above examples are read-only. A POST of a workflow to:

http://www.myexperiment.org/workflow.xml

D5.1 Specification of high-level API 13

http://www.myexperiment.org/workflow.xml

SemSorGrid4Env FP7-223913

(i.e. the myExperiment service generates the new resource) with the input workflow
data:

<?xml version="1.0"?7>
<workflow>
<title>Cove NetCDF visualization</title>
<description>The Cove workflow reads oceanographic NetCDF data, does
a simple processing step, writes the data out, then sends a web
service message to the COVE visualization tool. It is a four
step, sequential workflow.
</description>
<license-type>by-sa</license-type>
<content-type>application/xaml+xml</content-type>
<content encoding="base64" type="binary">
PhdmOTNT1cXV1bnRpYWxXb3J rZmxvdOFjdGl2aXR5DQogIHhtbG5zPSJodHRw

0i8vc2NoZW1lhcy5tawWNyb3NvZnQuY29tL3J1c2VhemNoLz IwMDcvU2NpZW50
aWzpY1dvemtmbG93IgOKICBAbWxuczp3Zj0iaHROCDOVL3N] aGVtYXMubWl

eSBCYXkiIExpbms9Int3ZjpBY3RpdmlOeUJIpbmQgV3JIpdGUsUGFOaD1MaW5r
fSIgSG9zdEShbWU9ImxvY2FsaG9zdDoxMTIyMyIvPgOKPC93ZjpTZXF1ZW50
aWFsV29ya2Zsb3dBY3Rpdm10eT4NCg==

</content>

<preview encoding="base64" type="binary">
1VBORwWOKGgoAAAANSUhEUgAAA0BAAADACAIAAADgYX68AACIHOTEQVR4Nn0Yd

B3gVxdgAZ+vZ0893772QQu9deq9SFBDsKF6xge23XRWvDXtBsQA2QIoiIAhI
7ySUhJqQ3uup28s/exIQlatiEgyXfTkPz81mM7s738xXZme+QRRFBN8V5S+f

k+u2DMpAiPL8t7/FOYD1/PuY8IBq7R3706uhVHVNGXmRonhPTbwKr71UvApv
uW7RS1vppXhNIWVVTkWO7Y0otZfcDwjvB10giLukmikKwsupSr38P/JToTLY
INTZAAAAAETFTkSuQmCC

</preview>

</workflow>

This contains similar elements to our previous example, but of course this a new
workflow being uploaded, and here the workflow is encoded in a binary format.

After POSTing, the server would return the output:

<?xml version="1.0" encoding="UTF-8"?>

D5.1 Specification of high-level API 14

SemSorGrid4Env FP7-223913

<workflow uri="http://www.myexperiment.org/workflow.xml?id=635"
resource="http://www.myexperiment.org/workflows/635"
version="1">

<title>Cove NetCDF visualization</title>

<description>The Cove workflow reads oceanographic NetCDF data, does
a simple processing step, writes the data out, then sends a web
service message to the COVE visualization tool. It is a four
step, sequential workflow.</description>

<uploader uri="http://www.myexperiment.org/user.xml?id=22"
resource="http://www.myexperiment.org/users/22">Don
Cruickshank</uploader>

<created-at>Wed Jan 21 15:56:19 +0000 2009</created-at>

<preview>http://www.myexperiment.org/workflow/image/635/preview. png
</preview>

<license-type>by-sa</license-type>

<content-uri>http://www.myexperiment.org/workflows/635/download/
cove netcdf visualization 88240</content-uri>

<content-type>application/xaml+xml</content-type>
<tags/>

</workflow>

Here the server has taken the uploaded workflow, assigned it a resource, and returned
the details for the newly assigned resource as it did for an existing resource in our
earlier example, i.e. the client is told that the workflow has been accepted and where
representations are to be found.

myExperiment also exposes and RDF API®,

3.3.3. REST and Mashups in the Application Tier

For purposes of this document, when we use the term mashup, we refer to a third party
web application which integrates data from two or more separate sources, at least one of
which is external to the web application's internal data structure, is accessed using an
API, and is processed to generate greater user value than its original form .

SemsorGrid4Env aims to promote rapid development and deployment of web
applications utilising the project components - where the SemsorGrid4Env data is a
mashup external source.

8 http://wiki.myexperiment.org/index.php/Developer:RDF

D5.1 Specification of high-level API 15

SemSorGrid4Env FP7-223913

To enable mashup development we will expose SemsorGrid4Env data and functionality
via REST API — the prevalent mechanism used and accepted by the mashup
community.

This will build upon the data structures composed for, and by, the Web Applications —
the Web Applications will gather data from services through the middleware and “add
value”, which is then accessed through the REST API. The REST API exposes
functionality and data from the Web Application, not (directly) from the entire
SemsorGrid4Env architecture.

Other parts of SSG4Env are designed to promote rapid adaptability and flexibility too,
e.g. deployment and reconfiguration of sensors and data sources, so these facets must
also be exposed to deliver an end-to-end solution using SemsorGrid4Env components
(though as the Web Applications will make use of these features, the REST API should
include them as a matter of course).

Development of the - resource centric - REST API will a process of identifying the
resources required to encapsulate the application concepts, and structuring the
hyperlinks between their representations.

We expect this to be a domain specific exercise based on the application and its
requirements. While there are likely to be shared concepts between the two case studies,
this is a manifestation of their overlapping domains (geo-location, sensors,
measurement etc.) and there will also be resource concepts unique to each case study
(and application).

Code to generate and structure resource representations will be within the Application
Tier libraries — but again, while the library will be generic and enable re-use of
functionality, both Web Applications and their REST APIs will be specific to some
degree.

For example, the initial REST examples in deliverable D7.1 have resources structured
by their environment (e.g. aquatic) and function (e.g. wave height).

While the purpose of the REST API is to expose SemsorGrid4dEnv to external
developers for lightweight rapid application development and integration, we expect the
development of the first mashups to take place within the project, to act as
demonstrators and proof-of-concept (e.g. Alert Information System, D7.1).

3.4. Web Applications vs. Mashups

We have deliberately discussed Web Applications and Mashups separately, and it is
worthwhile expanding upon why we have introduced this distinction.

The Web Applications utilise and fuse data from several sources, and build on a
semantic integration service through the middleware — why are the these Web
Applications not “mashups”?

D5.1 Specification of high-level API 16

SemSorGrid4Env FP7-223913

In some senses this is just a terminology distinction we are imposing. Mashup
development is a new, perhaps immature, and rather ill-defined field, and over the
course of the SemsorGrid4Env project it is inevitable that further innovation and change
will occur — possibly including the definition of the terms we use. Witness the
introduction of “Enterprise Mashups”, for instance, which offer data fusion in a more
traditional Service Oriented Architecture - “mashups as a service”, and would probably
not be approved of by REST purists.

So more accurately the distinction is drawn between two approaches: the WS-*
architecture exposed by the middleware to the Application Tier, and the REST
architecture exposed by the Application Tier to mashups.

D5.1 Specification of high-level API 17

SemSorGrid4Env FP7-223913

4. Evolution of the Application Tier
4.1. Comparison of WS-* and REST

The placing of WS-* and REST within the project architecture is due to their
appropriateness: the middleware for bringing together the constituent lower level
components into a cohesive system; and a REST API for rapid development of
lightweight applications.

While there are differences in these approaches, they are not incompatible, and the
SemsorGrid4Env project provides an interesting environment in which to study,
compare, and evaluate the two with each other.

Nor do we see the division between WS-* and REST as fixed and permanent, merely an
initial architecture which, from a pragmatic point of view, is required to move forward
with software development. While WS-* is not currently the favoured approach within
the mashup community, the APIs exposed by the middleware could be used directly (or
through the Application Tier library) for mashup-style applications (perhaps in the spirit
of the Enterprise mashups mentioned above).

Similarly, while we initially expect the REST APIs to be application specific - rather
than exhaustively expose the complete set of SemsorGrid4Env functionality and data
through a single REST API - it would be an instructive experiment to try and deliver a
REST API for services currently exposed through the middleware — and to evaluate the
effectiveness of these techniques.

We expect to report on the effectiveness and applicability of the two approaches in
deliverable D5.3v2.

4.2. Semantic Mashups

It is clear that there is a very strong common element between REST and RDF — the
primacy of resources. There is also a semantic thread running through all the
components in SemsorGrid4Env, so it is a natural extension to enhance mashups, as
well as our Web Applications, with these semantics.

The overlap between the REST principles and architectural style, and the Semantic
Web's foundation upon RDF, is a topic we will explore further and in depth. A first step
will be returning RDF from our REST API.

We will also investigate exposing SemsorGrid4Env data through the Linking Open Data
community, where several sets of geospatial data are already included, centred around
the GeoNames database.

D5.1 Specification of high-level API 18

SemSorGrid4Env FP7-223913

5.References

[DGS2009]

[DG2009]

[Fie2000]

[OGC-SOS]

[OGC-SWE]

[OGC-WFS]

De Roure, D., Goble, C. and Stevens, R. (2009) The Design and
Realisation of the myExperiment Virtual Research Environment for
Social Sharing of Workflows. Future Generation Computer Systems 25,
pp. 561-567.

De Roure, D. and Goble, C. (2009) "Software Design for Empowering
Scientists," IEEE Software, vol. 26, no. 1, pp. 88-95, January/February
2009

Fielding, R. T. (2000). “Architectural Styles and the Design of Network-
based Software Architectures”, PhD thesis, Information and Computer
Science, University of California, Irvine, California, USA, 2000.

Na, A. and Mark Priest, M. (2007) “OpenGIS Sensor Observation
Service 1.0”, OGC 06-009r6

Botts, M., Percivall, G., Reed, C., and Davidson, J. (2007) “OGC Sensor
Web Enablement: Overview and High Level Architecture”, version 3,
OGC 07-165

Vretanos, P. A. (ed.) (2005) “OpenGIS Web Feature Service (WFS)
Implementation Specification 1.1.0”, OGC 04-094

[OGC-WMS] de la Beaujardiere, J. (ed.) (2006) “OpenGIS Web Map Service (WMS)

[RR2007]

Implementation Specification 1.3.0” OGC 06-042

Richardson, L. and Ruby, S. (2007) “RESTful Web Services, O'Reilly &
Associates, Sebastopol, California, May 2007, ISBN 0-596-52926-0.

D5.1 Specification of high-level API 19

	1. Introduction
	1.1. Scope
	1.2. Document Structure

	2. Overview and context within SemsorGrid4Env
	3. Application Tier
	3.1. Web Applications
	3.2. Examination of the Channel Coast Observatory Web Application
	3.2.1. Map Viewer and Data Catalogue
	3.2.2. Realtime Data

	3.3. REST interfaces and mashups
	3.3.1. REST and Resource Oriented Architecture
	3.3.2. Examination of the myExperiment REST API
	3.3.3. REST and Mashups in the Application Tier

	3.4. Web Applications vs. Mashups

	4. Evolution of the Application Tier
	4.1. Comparison of WS-* and REST
	4.2. Semantic Mashups

	5. References

