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Abstract— Inspired by the concept of Space-Time Shift Keying (STSK),
the further evolved philosophy of Space-Time-Frequency Shift Key-
ing (STFSK) was proposed for Multiple-Input-Multiple-Output (MIMO)
wireless communications, where a beneficial diversity gain may be gleaned
from three different domains, namely the space-, time- and frequency-
domain. In this paper we proposed soft-detected STFSK in order to
conceive its iterative decoding aided version combined with channel codes.
Our results showed that the STFSK soft demodulator, which iteratively
exchanges extrinsic information with channel codes, may decrease the
required transmit power by approximately 3 dB at the Eb/N0 of
10−5, compared to hard-decision STFSK. Furthermore, the detection
complexity of both the hard- and the soft-decision STFSK demodulator
is quantified in terms of the number of multiplications and additions
required for each detection iteration.

I. INTRODUCTION

The family of multiple-input-multiple-output (MIMO) arrange-
ments, one of the most significant technical breakthroughs in contem-
porary communications, has attracted substantial research attention
owing to its potential to increase the attainable capacity without re-
quiring additional bandwidth. A simple diversity-gain-oriented detec-
tion technique is constituted by the employment of multiple antennas
at the receiver, where several diversity combining techniques can be
utilized in order to exploit the independently fading signal replicas.
Similarly, MIMO techniques additionally employing multiple trans-
mit - rather than only receive-antennas - have also been proposed in
the literature [1]–[4]. In [1], Alamouti proposed a simple transmit
diversity technique employing two-transmit antenna. Inspired by this
proposal, Tarokh et al. further developed the technique, creating the
fully-fledged family of Space-Time Block Codes (STBC) [3], [4]. The
STBCs are capable of maximizing the attainable diversity order, but
offer no coding gain. By contrast, the family of Space-Time Trellis
Codes (STTC) [2] is capable of providing both diversity gain and cod-
ing gain at the cost of an increased decoding complexity. Furthermore,
Hochwald et al. proposed the attractive transmit diversity concept of
the Space-Time Spreading [5] for the downlink of Wideband Code
Division Multiple Access (WCDMA), which is capable of achieving
the highest possible diversity gain. However, unfortunately all of the
above-mentioned codes fail to attain a multiplexing gain.

In contrast to space-time coding, the class of spatial division
multiplexing, such as the family of BLAST schemes [6], [7], is
capable of increasing the transmission rate, i.e the multiplexing gain,
albeit this is achieved at the cost of significantly increasing the
decoding complexity. For the sake of striking an attractive tradeoff
between the attainable space-time coding and spatial multiplexing
gains, Hassibi et al. proposed Linear Dispersion Codes (LDC) [8].

However, the above-mentioned MIMO arrangements have their
own problems, for example due to imposing inter-antenna interfer-
ence and inter-antenna synchronization errors. In order to avoid these
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problems, the philosophy of activating only a single transmit antenna
at any instant was utilized by Haas and his team, proposing Spatial
Modulation (SM) [9], while the team of Ghrayaeb and Szczecin-
ski [10] introduced the Space Shift Keying (SSK) concept into MIMO
communications. Motivated by the above concepts, the authors of [11]
conceived Space-Time Shift Keying (STSK), which strikes an im-
proved diversity versus multiplexing tradeoff. This design results in
a reduced-complexity system operating at a higher capacity than the
SM/SSK and BLAST schemes. As a further advance, we proposed the
Space-Time-Frequency Shift Keying (STFSK)1 concept [13], where a
beneficial diversity gain may be gleaned from three different domains,
namely the space-, time- and frequency-domain (SD, TD and FD). In
addition to the advantages provided by STSK modulation, the STFSK
scheme is capable of avoiding the Inter-Symbol Interference (ISI)
imposed by frequency-selective fading channels.

In this paper we further develop the STFSK philosophy with the
aid of iterative decoding in order to investigate the beneficial effects
of these techniques on the performance of the holistically optimized
system. The outline of this paper is as follows. Section II describes
the system’s architecture and the associated assumptions. The STFSK
soft-demodulation and our EXtrinsic Information Transfer (EXIT)
chart investigations are included in Section III. The detection com-
plexity of STFSK demodulator is quantified in Section IV. Finally,
the attainable system performance is presented in Section V, followed
by our concluding remarks in Section VI.

II. SPACE-TIME-FREQUENCY SHIFT KEYING

In this section, we will briefly describe the STFSK concept, which
was detailed in [13]. Consider an (M ×N)-element system, where
the transmitter and receiver employ M and N antennas, respectively.
The channel is assumed to impose frequency-selective Rayleigh
fading. Generally, a transmission block-based system model may be
described as:

Y k(i) =

8
><
>:

J−1P
j=0

H(i− j, j)S(i− j) + V (i) : at transmit freq.

V (i) : otherwise
(1)

where i indicates the block index and j represents the tap index in
the tap-delay-line channel model, which consists of J taps. Naturally,
flat fading is encountered for J = 1. Furthermore, Y k ∈ CN×T

represents the received signals of the N antennas at the kth frequency
and S ∈ CM×T denotes the signal transmitted from the M antennas
in T time slots. Furthermore, H(i, j) ∈ CN×M characterizes the
coefficients of the ith symbol at the jth channel tap, each obeying
correlated frequency-selective Rayleigh fading. Finally, V denotes
the complex-valued zero-mean Gaussian distribution of CN (0, N0),
where N0 is the noise variance. It is also assumed that the fading
and noise coefficients remain constant during each time slot.

Fig. 1 illustrates the transmitter of the STFSK scheme, where the
information bits are divided into three parallel bits streams. In the
first bit stream each group of log2(q) bits is mapped to one out of

1The design in [12] is a special case and referred to as SFSK in this paper.
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Fig. 1. The transceiver block diagram of STFSK scheme.

Q pre-defined dispersion matrices Aq ∈ CM×T (q = 1, 2, ..., Q).
The second stream is mapped to sl(i) symbols (l = 1, 2, ..., L) by a
conventional modulation scheme, such as L-PSK or L-QAM, while
the third one is mapped to the FSK symbol r(i), which is represented
by r(i) = cos(2πfrt + ϕr), where fi (r = 1, 2, ..., K)) is the
frequency associated with the ith transmitted FSK symbol and ϕi is
the random phase during the ith symbol interval. Then, the resultant
modulated streams are multiplexed in order to create the space-time-
frequency block S(i) ∈ CM×T , which conveys a total of log2(QLK)
source bits, yielding

S(i) = r(i)s(i)A(i), (2)

where each symbol s(i) is a function of time during the period Ts

of each time slot.
As in [13], the space-time-frequency signal Y received at the

destination may be presented as

Y (i) =
˘
Y 1(i), Y 2(i), ..., Y k(i), ..., Y K(i)

¯
, (3)

where we have

Y k(i) =

8
><
>:

J−1P
j=0

H(i− j, j)χK(i) + V (i− j) : at transmit freq.

V (i) : otherwise
(4)

with the variables formulated as

Ȳ = vec(Y ) ∈ CNT×1, (5)
H̄ = I ⊗H ∈ CNT×MT , (6)
V̄ = vec(V ) ∈ CNT×1, (7)
χ = [vec(A1) · · · vec(AQ)] ∈ CMT×Q, (8)

where I is the (T × T )-element identity matrix and ⊗ is the
Kronecker product. Furthermore, K(i) ∈ CQ×1 is the equivalent
transmitted signal vector, being expressed as

K(i) = [0, · · · , 0| {z }
q−1

, r(i)s(i), 0, · · · , 0| {z }
Q−q

]T , (9)

where T indicates the matrix transpose operation.
At the receiver, we employ an FSK demodulator consisting of

a bank of K parallel square-law detectors [14] in order to detect
the activated frequencies of the SFSK symbols. Then the maximum
likelihood (ML) detector [15] is employed to search for an appropriate
pair of the lth (l = 1, · · · , L) PSK/QAM symbol and the qth (q =
1, · · · , Q) dispersion matrix. More particularly, the estimate (q̂, l̂) is
given by minimizing the following metric

(q̂, l̂) = arg min
q,l

˛̨
˛
˛̨
˛Ȳ k(i)− H̄(i)χKq,l,k(i)

−
J−1X

j=1

H̄(i− j, j)χK(i− j)
˛̨
˛
˛̨
˛
2

(10)

= arg min
q,l

˛̨
˛
˛̨
˛Ȳ k(i)− r(i)sl(i)

`
H̄(i)χ

´
q

−
J−1X

j=1

H̄(i− j, j)χK(i− j)
˛̨
˛
˛̨
˛
2
, (11)

where sl(i) is the lth symbol in the L-point constellation at the
ith block index and the signal vector Kq,l,k (1 ≤ q ≤ Q, 1 ≤ l ≤

L, 1 ≤ k ≤ K) is presented by

Kq,l,k(i) = [0, · · · , 0| {z }
q−1

, r(i)sl(i), 0, · · · , 0| {z }
Q−q

]Tr. (12)

Furthermore,
PJ−1

j=1 H̄(i − j, j)χK(i − j) represents the delayed
paths of the dispersive channel, which is omitted in flat-fading
environments, while

`
H̄(i)χ

´
q

denotes the qth column of the matrix
H̄(i)χ.

Additionally, in order to maintain a unity transmission power for
a STSK symbol duration, each of the Q dispersion matrices has to
obey the power constraint of [11]

tr[A†
qAq] = T (q = 1, · · · , Q), (13)

where tr[·] indicates the trace of a matrix, while the superscript †
denotes the complex conjugate transpose operation.

When K = 1, the STFSK becomes the STSK scheme [11] while
it becomes the SFSK [12], when L = 1.

III. SOFT STFSK DEMAPPER

Let us now detail the soft demapper designed for our STFSK
schemes. Based on the equivalent system model of Eq. (3) derived
for our STFSK scheme, the conditional probability p(Y |Kq,l,k) is
obtained as

p(Y |Kq,l,k) =
1

(πN0)NT
exp

 
−||Y k −HχKq,l,k||2

N0

!
. (14)

Note that the equivalent received signals Y carry B = log2(KLQ)
channel-coded binary bits b = [b1, b2, · · · , bB ], where the resultant
extrinsic LLR value of bit bk for k = 1, · · · , B may be expressed
as [16]

Le(bk) = ln

P
Kq,l,k∈Zk

1

p(Y k|Kq,l,k) · e

"
P

j 6=k
bjLa(bj)

#

P
Kq,l∈Zk

0

p(Y k|Kq,l,k) · e

"
P

j 6=k
bjLa(bj)

# (15)

= ln

P
Kq,l,k∈Zk

1

e

2
4−
˛̨˛̨

Y k−HχKq,l,k

˛̨˛̨2
N0

+
P

j 6=k
bjLa(bj)

3
5

P
Kq,l,k∈Zk

0

e

2
4−
˛̨˛̨

Y k−HχKq,l,k

˛̨˛̨2
N0

+
P

j 6=k
bjLa(bj)

3
5

,

where Zk
1 and Zk

0 represent the sub-space of the legitimate equiv-
alent signals Z, satisfying Zk

1 ≡ {Kq,l,k ∈ Z : bk = 1} and
Zk

0 ≡ {Kq,l,k ∈ Z : bk = 0}, respectively, while La(·) represents
the a priori information expressed in terms of the LLRs of the
corresponding bits. Furthermore, Eq. (15) is readily simplified by
the max-log approximation [17], yielding:

Le(bk) = max
Kq,l,k∈Zk

1

2
4−||Y k −HχKq,l,k||2

N0
+
X

j 6=k

bjLa(bj)

3
5

− max
Kq,l,k∈Zk

0

2
4−||Y k −HχKq,l,k||2

N0
+
X

j 6=k

bjLa(bj)

3
5 .

(16)

EXIT Chart Analysis: The EXIT charts, proposed by S. ten
Brink [16], constitute useful tools designed for the analysis of
iterative decoding schemes. This tool allows designers to graphically
explore the characteristics of a demodulator/decoder based on the
soft-input soft-output decisions, which are exchanged between the
decoder components. The chart describes the dependence of the
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Fig. 2. The EXIT functions of the various STFSK schemes specified in
Table II and using soft-demodulation of B = log2(K × Q × L) = 3
bits/block.

extrinsic information on the a-priori information, which is typi-
cally quantified by the mutual information of the Log-Likelihood
Ratios (LLR).

In EXIT chart analysis, the mutual information between the a-
priori LLRs, LA, or extrinsic LLRs, LE , and the corresponding bits
S may be computed as [16]

I(Li; S) =
1

2

X

s=±1

∞Z

−∞
pLi

(x|s)log
pLi

(x|s)
pLi

(x)
dx (i = A, E) (17)

with
pLi

(x) =
1

2
pLi

(x|s = +1) + pLi
(x|s = −1), (18)

where pLi(x|s) is the probability of the a-priori or extrinsic
information conditioned on s = ±1. According to the amount of
mutual information of LA and LE , the two EXIT functions (or EXIT
curves), i.e. the inner and outer EXIT functions, may be drawn.
The convergence characteristics of the iterative receiver may now
be predicted by examining the relationship between the two curves
of the EXIT chart.

The EXIT functions of the various STFSK schemes characterized
in Table II are shown in Fig. 2, leading to the following observations:
• Increasing the number of frequencies, K, may increase the

extrinsic information at the cost of extending the bandwidth
used. This fact may be inferred by comparing Schemes 1,2,3
and 4, where we have K =16, 8, 4 and 2, respectively.

• Increasing the number of dispersion matrices, Q, reduces the
extrinsic information, when the same number of frequencies, K,
is employed, which may be observed by comparing Schemes 3,
6 and 8.

IV. DETECTION COMPLEXITY

Let us quantify the computational complexity imposed by the ML
hard-detection and the soft-detection of STFSK schemes, which is
given by the number of real-valued multiplications and real-valued
additions. We make the following assumptions:
• Each complex-valued addition is equivalent to two real-valued

additions.
• Each complex-valued multiplication is equivalent to four real-

valued multiplications plus two real-valued addition.
• Each square of absolute value calculation carried out for a

complex number is equivalent to two real-valued multiplication
and one real-valued addition.

A. Hard Demodulator
1) STFSK: First, we consider the complexity of the FSK detector.

If the square-law FSK detector is employed as mentioned in Sec. II,

then the number of multiplications, C×, and the number of additions,
C+, may be obtained as

C× = 2K, (19)
C+ = K. (20)

In order to evaluate the complexity of the STSK detector, Eq. (10)
can be utilized, where the product of χK involves the multiplication
of two matrices, where one has a dimension of (nT × Q), which
the other has a dimension of (Q × 1). However, the vector K has
only a single non-zero element. Therefore, instead of carrying out the
matrix multiplication, the encoder may select the elements of χ at the
specific positions corresponding to the non-zero element in K. This
reduces the decoding complexity imposed. As a result, the number
of multiplications and the number of additions required for executing
the decision matrix are equal to

C× = (4MT + 4MTNT + 2NT )QL, (21)
C+ = [2MT + 2(2MT − 1)NT + 2JNT + 2NT − 1]QL.(22)

Note that J denotes the number of taps describing our fading model,
where the decoder has to eliminate the interfering signals dispersed
from the previous symbol intervals. For a flat-fading channel, we
have J = 1.

Since K host both the FSK symbol and the PSK/QAM symbol,
the encoder requires additional multiplications and addition, which
are quantified as

C× = 4QL, (23)
C+ = 2QL. (24)

Each STFSK block consists of log2(K · Q · L) bits. Hence, by
employing Eqs. (19-24), the average number of multiplications, C̄×,
and the average number of additions, C̄+, required for each bit of a
STFSK scheme is given by

C̄× =
2K + (4MT + 4MTNT + 2NT )QL + 4QL

log2(KQL)
, (25)

C̄+ =
K + [2MT + 2(2MT + J)NT − 1]QL + 2QL

log2(KQL)
(26)

2) STSK: STSK is a special case of STFSK, where K = 1,
no FSK detector is necessary. Furthermore, the vector K now
only contains PSK/QAM symbols. Hence, the average number of
multiplications and additions for each bit of a STSK scheme may be
reduced to

C̄× =
(4MT + 4MTNT + 2NT )QL

log2(QL)
, (27)

C̄+ =
[2MT + 2(2MT + J)NT − 1]QL

log2(QL)
. (28)

3) SFSK: Similarly, SFSK is another special case of STFSK,
where we have L = 1 and the vector K now only hosts FSK symbols.
Therefore, the average number of multiplications and additions for
each bit of a SFSK scheme may be reduced to

C̄× =
2K + (4MT + 4MTNT + 2NT )Q

log2(KQ)
, (29)

C̄+ =
K + [2MT + 2(2MT + J)NT − 1]Q

log2(KQ)
. (30)

4) LDC: LDC is a special case of STSK, where we have L = 1.
Thus, the vector K is redundant in the decision metric of Eq. (10).
Hence, the the average number of multiplications and additions for
each bit of a LDC scheme may be simplified to

C̄× =
(4MTNT + 2NT )QL

log2(QL)
, (31)

C̄+ =
[2(2MT + J)NT − 1]QL

log2(QL)
. (32)
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Fig. 3. Complexity versus the normalized throughput of the LDC, STSK,
SFSK and STFSK schemes, where system parameters are provided in Table I.

B. Soft Demodulator
1) STFSK: In a soft STFSK demodulator each computation of

Eq. (16) consists of two evaluations of Eq. (10) plus log2(QLK)
multiplications and log2(QLK) additions rewired for adding the a-
priori information. However, the searching space may be halved.
Therefore, the average number of multiplications and additions be-
comes equivalent to

C̄× =
[4MT + 4MTNT + 2NT + 4 + log2(QLK)]QLK

log2(QLK)
,(33)

C̄+ =
[2MT + 2(2MT + J)NT + log2(QLK)]

log2(QLK)
. (34)

2) STSK: Similar to the hard-decision STSK demodulator, the
soft-decision STSK demodulator only has to process PSK/QAM
symbols. Hence, the average number of multiplications and additions
for each bit of a STSK scheme may be reduced to

C̄× =
[4MT + 4MTNT + 2NT + log2(QL)]QL

log2(QL)
, (35)

C̄+ =
[2MT + 2(2MT + J)NT − 2 + log2(QL)]

log2(QL)
. (36)

3) SFSK: Similarly, the average number of multiplications and
additions required for each bit of a soft-decision SFSK scheme, where
L = 1, may be reduced to

C̄× =
[4MT + 4MTNT + 2NT + log2(QK)]QK

log2(QK)
, (37)

C̄+ =
[2MT + 2(2MT + J)NT − 2 + log2(QK)]

log2(QK)
. (38)

4) LDC: Finally, the average number of multiplications and addi-
tions associated with each bit of a soft-decision LDC scheme becomes

C̄× =
[4MTNT + 2NT + log2(Q)]Q

log2(Q)
, (39)

C̄+ =
[2(2MT + J)NT − 2 + log2(Q)]

log2(Q)
. (40)

The complexity results of the STFSK, STSK and SFSK schemes
summarized in Table I are shown in Fig. 3, where the continuous and
the dashed lines portray the detection complexity of the hard- and
soft-demapper, respectively. As seen in the figure, the complexity of
the hard-decision STFSK schemes is comparable to that of the SFSK
schemes in terms of the number of multiplications and additions.
By contrast, the hard-decision STSK schemes have doubled the
complexity of the hard-decision STFSK and SFSK arrangements,
when considering the same normalized throughput, while the number
of multiplications and additions required by the hard-decision LDC
demappers is 50% higher than those of the hard-decision STFSK
schemes. Observe furthermore from Fig. 3 that the complexity of the
soft-decision STSK, SFSK and STFSK demappers is comparable,
while they are slightly more complex than the soft-decision LDC

TABLE I
MODULATION SCHEMES’ PARAMETERS

Parameters MNTQ L K Throughput
LDC 4/1/4/16 N/A N/A
STSK 4/1/4/4 4 N/A
SFSK 4/1/4/8 N/A 2 1 bit/Ts/freq
STFSK 4/1/4/2 4 2
LDC 4/1/2/16 N/A N/A
STSK 4/1/2/4 4 N/A
SFSK 4/1/2/8 N/A 2 2 bit/Ts/freq
STFSK 4/1/2/4 2 2
STSK 4/1/2/64 N/A N/A
STSK 4/1/2/8 8 N/A
SFSK 4/1/2/32 N/A 2 3 bit/Ts/freq
STFSK 4/1/2/8 4 2
LDC 4/1/1/16 N/A N/A
STSK 4/1/1/4 4 N/A
SFSK 4/1/1/8 N/A 2 4 bit/Ts/freq
STFSK 4/1/1/4 2 2

TABLE II
MODULATION SCHEMES’ PARAMETERS

Scheme MNTQ η Hard-decision Soft-decision
−L−K C̄× C̄+ C̄× C̄+

1 4/1/4/2-2-16 0.1875 227 201 3605 3221
2 4/1/4/2-4-8 0.375 445 397 3605 3221
3 4/1/4/2-8-4 0.75 887 793 3605 3221
4 4/1/4/2-16-2 1.5 1771 1584 3605 3221
5 4/1/4/4-2-8 0.375 455 397 3605 3221
6 4/1/4/4-4-4 0.75 887 793 3605 3221
7 4/1/4/4-8-2 1.5 1771 1584 3605 3221
8 4/1/4/8-2-4 0.75 887 793 3605 3221
9 4/1/4/8-4-2 1.5 1771 1584 3605 3221
10 4/1/4/16-2-2 1.5 1771 1584 3605 3221

demapper. Furthermore, we found that in case of the SFSK and
STFSK schemes the soft demappers doubled the complexity of the
hard demappers, whilst in case of the STSK and LDC schemes the
complexity of the soft- and hard-demappers remain comparable.

Furthermore, the complexity of the hard- and the soft-decision
STFSK schemes, where the block size of 6 bits per symbol is
employed, is summarized in Table II. The following observations
may be made:
• For the hard-decision, the complexity of decoder is reduced,

when the number of frequencies, K, increases.
• For a given value of K and for a given value of the product QL,

all possible combinations of Q and L exhibit the same decoding
complexity when hard-decision is employed.

• in case of hard-decision, the complexity of a STFSK scheme
increases upon increasing the normalized throughput.

• The complexity of a soft-decision STFSK demodulator depends
only on the product of (Q × L × K), rather than on each
individual component Q, L and K.

V. PERFORMANCE RESULTS

In this section we consider the achievable iterative detection
aided performance, when the soft STFSK demapper iteratively
exchanges extrinsic information with the Recursive-Systematic-
Convolutional (RSC) decoder. The RSC codec employs a half-
rate constraint-length-3 code having the generator polynomial of

1+Z−2

1+Z−1+Z−2 . The STFSK scheme is equipped with four transmit
and a receive antenna, transmitting two symbols in four time slots
((M/N/T/Q = 4/1/4/2) and assisted by QPSK and BFSK.
Observe from Fig. 4 that the achievable performance is significantly
improved, when the number of iterations between the soft demapper
and the RSC decoder was increased. Quantitatively, an Eb/N0

improvement of 3 dB was achieved at the BER of 10−4, when the
number of iterations was increased from one to five.
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The results of Fig. 4 are further supplemented by the EXIT charts.
As seen in Fig. 5, at the Eb/N0 value of -3 dB the intersection of the
two EXIT curves is at the point of (0.75, 0.55) and up to this point
a gradually narrowing tunnel exists between the two EXIT curves.
Hence, at this value of Eb/N0 only an insignificant improvement is
obtained upon increasing the number of decoding iterations between
the STFSK demodulator and the RSC decoder. By contrast, the tunnel
is more widely open in case of Eb/N0 = −1 dB in Fig. 5 and
the extrinsic information gleaned increases significantly, when the
number of iterations increases from one to three. This explains why
the attainable BER performance improves rapidly for the first three
iterations, while the BER improvement significantly reduces for the
fourth and fifth iteration.

Fig. 6 characterizes the performance of all the ten STFSK schemes
of Table II. The performance confirms the EXIT-chart based predic-
tion of Fig. 2. More particularly, the results may be divided into
four groups. The first group, including Schemes {1,2,3}, exhibit
the best performance, achieving a BER of 104 at an Eb/N0 value
around 0 dB. The EXIT functions of the demappers in these three
schemes are shown at top of Fig. 2, where a significant advantage is
shown in comparison to the remaining schemes. The second group
consisting Schemes {4,5,6,7} achieved the same BER, namely 104,
at the Eb/N0 of about 2.5 dB. The EXIT functions of these schemes
remained significantly below those of the first group. The third group
contained Scheme 8 and Scheme 9, whose EXIT functions remained
further below those of Schemes {4,5,6,7} in Fig. 2. They achieved
the BER of 104 at the Eb/N0 value around 5.5 dB. Finally, Scheme
10, which has the demapper EXIT function at the bottom of Fig. 2,
acquired the same BER at the Eb/N0 value around 9.5 dB.
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with the aid of QPSK and BFSK modulations.
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Fig. 5. EXIT Charts of the RSC coded STFSK using Iterative Decoding at
Eb/N0 = −3 dB (left) and -1 dB (right).

VI. CONCLUSIONS

In this paper we proposed the soft-modulation aided iterative
decoding of STFSK. Our results demonstrated that upon carrying out
iterative information exchange between the STFSK soft-demodulator
and the RSC channel decoder, the system achieved a 3 dB power
gain at the Eb/N0 value of 10−5 compared to using its counterpart
dispensing with iterative decoding. Also, we quantified the detection
complexity of both the hard- and soft-detection STFSK demodulators.
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Fig. 6. The performance of the soft-decision RSC-coded STFSK schemes
of Table II, where the EXIT functions of STFSK demodulators at Eb/N0 =
0 dB is shown in Fig. 2.
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