The University of Southampton
University of Southampton Institutional Repository

Gaussian Processes for Time Series Prediction

Gaussian Processes for Time Series Prediction
Gaussian Processes for Time Series Prediction
9780521196765
341-360
Cambridge University Press
Osborne, Michael A.
a31bb544-076f-4eb7-8dd2-20cd600fbb6f
Rogers, Alex
f9130bc6-da32-474e-9fab-6c6cb8077fdc
Roberts, Stephen J.
4fb70865-53c6-4054-9e08-b6c566454941
Ramchurn, Sarvapali D.
1d62ae2a-a498-444e-912d-a6082d3aaea3
Jennings, Nicholas R.
ab3d94cc-247c-4545-9d1e-65873d6cdb30
Osborne, Michael A.
a31bb544-076f-4eb7-8dd2-20cd600fbb6f
Rogers, Alex
f9130bc6-da32-474e-9fab-6c6cb8077fdc
Roberts, Stephen J.
4fb70865-53c6-4054-9e08-b6c566454941
Ramchurn, Sarvapali D.
1d62ae2a-a498-444e-912d-a6082d3aaea3
Jennings, Nicholas R.
ab3d94cc-247c-4545-9d1e-65873d6cdb30

Osborne, Michael A., Rogers, Alex, Roberts, Stephen J., Ramchurn, Sarvapali D. and Jennings, Nicholas R. (2011) Gaussian Processes for Time Series Prediction. In, Bayesian Time Series Models. Cambridge University Press, pp. 341-360.

Record type: Book Section

This record has no associated files available for download.

More information

Published date: 2011
Additional Information: Chapter: 16
Organisations: Agents, Interactions & Complexity

Identifiers

Local EPrints ID: 272746
URI: http://eprints.soton.ac.uk/id/eprint/272746
ISBN: 9780521196765
PURE UUID: e419ffc9-1a83-4ceb-82e5-91de6222115b
ORCID for Sarvapali D. Ramchurn: ORCID iD orcid.org/0000-0001-9686-4302

Catalogue record

Date deposited: 06 Sep 2011 11:37
Last modified: 11 Dec 2021 04:03

Export record

Contributors

Author: Michael A. Osborne
Author: Alex Rogers
Author: Stephen J. Roberts
Author: Sarvapali D. Ramchurn ORCID iD
Author: Nicholas R. Jennings

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×