Finite element prediction of wave motion in structural waveguides


Mace, Brian R., Duhamel, Denis, Brennan, Michael J. and Hinke, Lars (2005) Finite element prediction of wave motion in structural waveguides. Journal of the Acoustical Society of America, 117, (5), 2835-2843. (doi:10.1121/1.1887126).

Download

Full text not available from this repository.

Original Publication URL: http://dx.doi.org/10.1121/1.1887126

Description/Abstract

A method is presented by which the wavenumbers for a one-dimensional waveguide can be predicted from a finite element (FE) model. The method involves postprocessing a conventional, but low order, FE model, the mass and stiffness matrices of which are typically found using a conventional FE package. This is in contrast to the most popular previous waveguide/FE approach, sometimes termed the spectral finite element approach, which requires new spectral element matrices to be developed. In the approach described here, a section of the waveguide is modeled using conventional FE software and the dynamic stiffness matrix formed. A periodicity condition is applied, the wavenumbers following from the eigensolution of the resulting transfer matrix.

The method is described, estimation of wavenumbers, energy, and group velocity discussed, and numerical examples presented. These concern wave propagation in a beam and a simply supported plate strip, for which analytical solutions exist, and the more complex case of a viscoelastic laminate, which involves postprocessing an ANSYS FE model. The method is seen to yield accurate results for the wavenumbers and group velocities of both propagating and evanescent waves.

Item Type: Article
ISSNs: 0001-4966 (print)
Related URLs:
Subjects: Q Science > QA Mathematics
T Technology > TA Engineering (General). Civil engineering (General)
Divisions: University Structure - Pre August 2011 > Institute of Sound and Vibration Research > Dynamics
ePrint ID: 28025
Date Deposited: 28 Apr 2006
Last Modified: 27 Mar 2014 18:16
Contact Email Address: brm@isvr.soton.ac.uk
URI: http://eprints.soton.ac.uk/id/eprint/28025

Actions (login required)

View Item View Item