A phase-field model with convection: sharp-interface asymptotics


Anderson, D.M., Wheeler, A.A. and McFadden, G.B. (2001) A phase-field model with convection: sharp-interface asymptotics. Physica D: Nonlinear Phenomena, 151, (2-4), 305-331. (doi:10.1016/S0167-2789(01)00229-9).

Download

Full text not available from this repository.

Description/Abstract

We have previously developed a phase-field model of solidification that includes convection in the melt [Physica D 135 (2000) 175]. This model represents the two phases as viscous liquids, where the putative solid phase has a viscosity much larger than the liquid phase. The object of this paper is to examine in detail a simplified version of the governing equations for this phase-field model in the sharp-interface limit to derive the interfacial conditions of the associated free-boundary problem. The importance of this analysis is that it reveals the underlying physical mechanisms built into the phase-field model in the context of a free-boundary problem and, in turn, provides a further validation of the model. In equilibrium, we recover the standard interfacial conditions including the Young–Laplace and Clausius–Clapeyron equations that relate the temperature to the pressures in the two bulk phases, the interface curvature and material parameters. In nonequilibrium, we identify boundary conditions associated with classical hydrodynamics, such as the normal mass flux condition, the no-slip condition and stress balances. We also identify the heat flux balance condition which is modified to account for the flow, interface curvature and density difference between the bulk phases. The interface temperature satisfies a nonequilibrium version of the Clausius–Clapeyron relation which includes the effects of curvature, attachment kinetics and viscous dissipation.

Item Type: Article
ISSNs: 0167-2789 (print)
Related URLs:
Keywords: phase-field, convection, solidification, sharp-interface analysis
Subjects: Q Science > QA Mathematics
Q Science > QC Physics
Divisions: University Structure - Pre August 2011 > School of Mathematics > Applied Mathematics
ePrint ID: 29106
Date Deposited: 10 May 2006
Last Modified: 27 Mar 2014 18:17
URI: http://eprints.soton.ac.uk/id/eprint/29106

Actions (login required)

View Item View Item